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a b s t r a c t

The Java virtual machine (JVM) has been adopted as the executing platform by a large

number of dynamically typed programming languages. For example, Scheme, Ruby,

Javascript, Lisp, and Basic have been successfully implemented on the JVM and each is

supported by a large community. Interoperability with Java is one important require-

ment shared by all these languages.

We claim that the lack of type annotation in interpreted dynamic languages makes

this interoperability either flawed or incomplete in the presence of method overloading.

We studied 17 popular dynamically typed languages for JVM and .Net, none of them

were able to properly handle the complexity of method overloading.

We present dynamic type tag, an elegant solution for dynamic language interpreters

to properly interact with Java objects in the presence of overloaded methods. The idea is

to embody a type annotation in a Java object reference. Java references may be

annotated in order to properly determine the signature of methods to invoke. We

demonstrate its applicability in the JSmall language and provide the pellucid embedding,

a formalization of our approach.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Probably due to its robustness and its availability for hundreds of different hardware platforms, the Java virtual machine (JVM)
has been adopted as the executing platform by a large number of interpreters for dynamically typed programming languages
(commonly shortened as ‘‘dynamic languages’’). More than 200 different language interpreters are known to run on the JVM.1

A number of them have a dynamically typed system (also called ‘‘latently typed system’’). Such a type system implies that it may
not be possible to statically establish an assumption regarding the type of an expression.

The benefits of using a dynamically typed language as a way to script and compose Java objects are multiple. Simplicity, clarity
and conciseness of the dynamic language over Java are a strong but not exclusive motivation. The lack of a static type system
brings such a flexibility that dynamic adaption and incremental compilation are almost unconstrained in a dynamically typed
language.

An embedded language becomes more interesting when it is able to interact with its environment. Being able to
interoperate with Java significantly raises the expressiveness of such a language. The interoperability between Java and an
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embedded dynamically typed language interpreter is essentially based on the ability to send messages to Java objects from
the hosted interpreter.

Java classes should be freely instantiated and objects should be manipulated within the dynamic language interpreter.
In particular, sending messages to Java objects from the dynamic language is an essential requirement for useful
interoperability.

However, such interoperability is hard to achieve because of the static nature of Java. In the 13 dynamically typed
languages for JVM and the four dynamic languages for .Net we studied, some of them behave either wrongly or in an
unpredictable way in the presence of overloaded Java methods, while the remaining simply raise runtime exceptions when
no method can be selected. None of them offer the flexibility of Java regarding calling overloaded methods. This situation
becomes critical when considering the number of overridden methods present in the JDK. For example, Swing2 has 9648
methods and 2303 of them are overloaded.3 Scripting graphical user interfaces (GUIs) is the traditional application domain,
where benefits of dynamically typed languages over Java to build a GUI are apparent.

As we will see later, the limitation of dynamic languages to properly handle overloading of Java methods comes from
the fact that only the class of Java objects is used to resolve Java method signatures at runtime. As a consequence,
overloaded methods may be inaccessible from the embedded interpreter since overloaded Java methods having more
specific parameter types will ‘‘hide’’ the more generic ones. Most of the time, this is not really a problem since the method
that is called is the one which has the greatest possible amount of knowledge about its actual arguments. However, this is
less flexible and more restrictive than what Java permit; it would be a bug if a scripting language using a Java library
follows different invocation rules than in Java.

Our analysis, problem formulation and solution are equally applicable to the .Net platform. But since many more
dynamic languages are available in Java than in .Net, this paper is Java-centric. The .Net case is related in Section 6.

This paper is about fixing the flaw in the interoperability with Java against overloaded methods, issue shared by most
dynamically typed languages. Handling Java overloaded methods within an embedded dynamic language interpreter is a
well known and difficult problem recognized by most dynamic language communities. Several solutions have been
proposed, but as far as we are aware of, none of them are complete.

We propose a generic technique called dynamic type tag for dynamically typed programming languages. The idea is to
make a Java object wrapper embed a type intended to be used when an overloaded method has to be resolved at runtime.
Each of the references to a particular Java object may embed a dynamic type tag. This embedded type comes in addition to
the dynamic type of the wrapped Java object. Dynamic type tag is implemented in JSmall, a Smalltalk interpreter running
on the Java virtual machine. This paper makes the following contributions and innovations:

� it highlights an important deficiency in the common way dynamically typed languages interoperate with Java;
� it presents the pellucid embedding, a simple and generic solution easily embeddable in a language for which a static

type system is missing;
� it demonstrates type soundness and highlights type tag propagation along the control flow.

This paper is structured as follows. In Section 2, we present the limitations of dynamically typed programming
languages in the way they interact with Java. In Section 3, we solve these issues with the dynamic type tag. We use the
JSmall Smalltalk language as an informal support. In Section 4, we discuss about some benefits of the static type
annotation. In Section 5, we formally describe the dynamic type tag with the pellucid embedding. In Section 6, we provide
an overview of the related work. In Section 7, we conclude by summarizing the presented work.

2. Static and dynamic typing

This section presents a number of scenarios illustrating limitation of dynamic languages in the presence of method
overloading. Each of the three scenarios shows methods that are either inaccessible or wrongly selected upon sending
messages to a Java object. As an illustration, consider the contrived but compact Java class definitions intended to write
XML transcriptions of some values:

// Java code

public class XMLWriter {

public XMLWriter( ) { y}

public void write(int e) { y}

public void write(Integer e) { y}

public void write(XMLElement e) { y}

public void write(StructuredXMLElement e) { y}

public void write(Serializable e) { y}

}

2 Version 6 of the Java Platform, Standard Edition.
3 To illustrate the metric we use, there are two overloaded methods in class C{void m( ){} void m(C c){} void n( ){}}.
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public class XMLElement extends Object { y}

public class StructuredXMLElement

extends XMLElement implements Serializable { y}

We will use this example throughout this paper. For the sake of clarity, we will use only one language, JSmall, to
illustrate these limitations. We will not use the dynamic type tag in this section since this linguistic construct aims at
addressing these limitations. We will add appropriate notes in case of divergence with other languages.

Scenario 1: Method overloading. A method called on a Java object in JSmall is translated into an invocation of a Java
method on this object. The signature of the Java method that has to be invoked is resolved from the name of the method
call, the number of parameters and the dynamic type of the parameters. The fact that the message name and the number of
arguments are statically determined gives a good indication about the targeted Java method signature (note that we do not
consider the recent introduction in Java of variable number of parameters).

The Java method to invoke is easily resolved when one method only in the inheritance chain of the receiver’s Java class
matches the name and number of parameters of the call. Resolving the Java method to invoke remains easy in the presence
of several Java methods having the same name, each having an arity (i.e., number of arguments) different from the other
methods: the number of arguments contained in the call is sufficient to discern the right Java method.

The situation gets far more complex when several methods have the same name and arity. The only way in Jython,4

JRuby,5 and Rhino6 to resolve the Java method signature to invoke is to use the runtime type of arguments. The method for
which its signature matches or is ‘‘close’’ enough to the method call in the dynamically typed language is elected for
invocation by the Java object wrapper (usually based on the class of the Java object). Consider the following example:

‘‘JSmall code’’

w :¼‘XMLWriter’ asJavaClass new.

e1 :¼‘XMLElement’ asJavaClass new.

e2 :¼‘StructuredXMLElement’ asJavaClass new.

w write: e1. ‘‘call #1’’

w write: e2. ‘‘call #2’’

Call #1 uniquely matches write(XMLElement) since (i) the name and the number of arguments contained in the JSmall
call match and (ii) the dynamic type of the e1 variable is XMLElement.

Call #2 is more problematic because two methods are equally eligible for an invocation (write(StructuredXMLElement)

and write(Serializable)) since StructuredXMLElement implements Serializable. A decision has to be made by the dynamic
language interpreter. JSmall and Rhino will throw an exception saying that this call is ambiguous and JRuby will select
write(Serializable). A similar code in Jython will invoke write(StructuredXMLElement). The algorithm of selection used by Java
object wrappers may favor subtyping of interfaces or classes, or may use the first method given by the virtual machine that
is close enough when enumerating methods in order to resolve the call. No consensus among different communities has
been reached.

Scenario 2: Primitive and reference values. When a Java method is called by a dynamic scripting language, numerical
values provided as arguments are automatically boxed into their corresponding reference value, i.e., the JSmall integer 10

is converted into an instance of java.lang.Integer when used to call a method on a Java object. This new type is then used to
resolve the Java method to invoke. For example, consider the following excerpt of JSmall and JRuby code:

‘‘JSmall code’’ # JRuby code

w :¼‘XMLWriter’ asJavaClass new. include Java

w write: 10. include_class ‘‘XMLWriter’’

w ¼ XMLWriter.new

w.write(10)

The write: 10 message is sent to an instance of the class XMLWriter. In JSmall, this method call raises an exception7 and in
JRuby XMLWriter.write(Integer) is executed instead. In both cases, two methods may be equally invoked (write(int) and
write(Integer)). However, only one method is accessible from the client. In JSmall, the fact that write(y) is overloaded
completely hides the write(Integer) method, whereas in JRuby write(int) is hidden. Programmers in JSmall and JRuby cannot
indicate which write(y) they are referring to. It is reasonable to expect write(Integer) and write(int) to have the same
behavior in most cases. However, this cannot stand as a motivation from preventing a programmer to select a particular
one, especially since nothing enforces programming consistency and in some case where serialization is involved (as in our
situation), the difference may matter.

4 http://www.jython.org
5 http://jruby.codehaus.org
6 http://www.mozilla.org/rhino/ScriptingJava.html
7 Similarly than in Rhino, JSmall raises an exception in case of ambiguity. The dynamic type tag introduced later removes the ambiguity.
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Scenario 3: The empty value. As we described above, the dynamic type of a wrapped Java object is used to resolve the Java
method when receiving a message sent within JRuby. With such a strategy, the empty value will inevitably be problematic.

In JSmall, the expression w write: nil raises a runtime error since no version of write(y) can be reasonably chosen. In
JRuby, the expression w.write(nil) picks the last method declared in the Java class. Jython does not have any preference and
picks any method. Rhino raises a runtime error.

From what we can see in large and popular API, it is perfectly conceivable to explicitly provide the empty value when
calling a method. For example, in the JDK, the Swing method JComponent.setComponentPopupMenu(JPopupMenu) may
accept a null value to delegate a popup menu to a parent object.

2.1. Reflection is not acceptable

Reflection may be employed to retrieve a particular method, and then to invoke it independently from the type of the
parameter. Use of reflection is the only way to circumvent the limitations described above.

For example, the following JRuby code invokes write(Object) and uses an instance of StructuredXMLElement as the
parameter:

# JRuby code

cls ¼ Java::JavaClass.for_name(‘‘XMLWriter’’)

w ¼ cls.constructor( ).new_instance( )

cls.java_method(:write, ‘‘java.io.Serializable’’).

invoke(w, StructuredXMLElement.new)

This kind of writing goes against the primary aim of dynamically typed scripting languages, which is to provide a more
concise and expressive language than Java, the underlying hosting language. In that respect, reflection appears to be an ad
hoc and verbose solution. Moreover, using reflection completely goes against pillars of object orientation since the
responsibility of objects to understand messages has dramatically shifted to the caller side. As a consequence, this kind of
method invocation do not benefit from polymorphism since no lookup along a class inheritance happens.

3. Dynamic type tag

This section presents a natural and concise solution to the problems described in the previous section by introducing
dynamic type tags for foreign objects in a dynamically typed language. The dynamic type tag is a generic solution to cope
with the Java type system for embedded dynamic languages.

3.1. Dynamic type tag in JSmall

Each object in JSmall understands the message type: aType, where aType is a character string that represents the
dynamic type tag. Legal strings are the ones that correspond to Java type names. This annotation is contained in the
reference and is used to resolve the Java method signature when sending messages to Java objects. The formulation exp

type: aType has the following semantics: (i) exp is evaluated, (ii) the resulting value is turned into a Java object if not
already, and (iii) the reference of this object is tagged with aType.

The value aType provided as argument should be equal or be a supertype of the dynamic type of the tagged Java value.
An error is raised if it is a subtype or unrelated. This is similar to a failed Java downcast: one cannot downcast a Java value
with a subtype of the dynamic type of the value.

Note that type: does not perform any side effect; it behaves as a function that returns a new reference. Naturally, the
referenced alien object remains untouched. In the forthcoming Section 5 we give the formal semantics of type:. The tag is
always associated with a wrapper that serves as a value in the host dynamic language.

In JSmall, the XMLWriter class described above may be accessed within JSmall as follows:

‘‘JSmall code’’

‘‘Instantiation of the XMLWriter Java class’’

w:¼‘XMLWriter’ asJavaClass new.

‘‘The value 10 is converted into a Java object,

and its type is set to ‘int’’’

i:¼10 type: ‘int’.

‘‘Instantiation of StructuredXMLElement and

set its type to ‘java.io.Serializable’’’

obj :¼‘StructuredXMLElement’ asJavaClass

new type: ’java.io.Serializable’.

w write: i. ‘‘Invocation of write(int)’’

w write: obj. ‘‘Invocation of write(Serializable)’’

‘‘Invocation of write(StructuredXMLElement)’’

w write: (obj type: ’StructuredXMLElement’).

w write: obj. ‘‘Invocation of write(Serializable)’’
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In this short excerpt, type: is used three times. The expression 10 type: ‘int’ means that the JSmall value 10 is converted
into a Java object, returning a JSmall wrapper for the Java integer 10, then the static type tag is set to the primitive type int.
When the variable i is used as a parameter when sending write:, the resolved Java method is write(int), which results into the
invocation of XMLWriter.write(int).

Similarly for the second use of type:, an instance of the Java class StructuredXMLElement is first created, then the static
type of this new object is set to java.io.Serializable. When this structured XML element is passed to write:, the
corresponding Java method signature is write(Serializable).

Finally, the expression obj type: ’StructuredXMLElement’ returns a new reference of the Java object pointed by obj for
which its static type is StructuredXMLElement. Note that the static type of obj remains unchanged, this is why w write: obj

sends the Java message write(Serializable).
When no static type is set, the dynamic type of the object is used to resolve the Java method signature. In case of an

abuse of the type: message (e.g., ’Object’ asJavaClass new type: ‘int’), errors will be signaled at runtime. The expression type:

allows for downcasting and upcasting only.

3.2. Evaluation of JSmall’s dynamic type tag

We presented three severe limitations of dynamically typed languages in the way overloaded methods are invoked.
This subsection will review the different scenarios exposed in Section 2 against JSmall’s static annotation.

Scenario 1: Method overloading. Annotating each message parameter with a static type enables overloaded methods to
be called. Method selection is then based on the static type of the parameters instead of the dynamic type. The following
code excerpt illustrates this situation:

‘‘JSmall code’’

w :¼‘XMLWriter’ asJavaClass new.

e :¼’StructuredXMLElement’ asJavaClass new.

w write: e. ‘‘Exception raised’’

w write: (e type: ’Serializable’).

w write: (e type: ’StructuredXMLElement’).

The argument of the first call write(e) does not have any static type. By not annotating the provided argument, we fall in
an ambiguous case. In that case, a runtime exception is raised, similarly to Rhino.

The second call invokes write(Serializable) since the dynamic type tag of the argument is Serializable. An exception is
thrown in case of no matching method. The third call to write(y) matches write(StructuredXMLElement).

One could argue that e may have the dynamic tag StructuredXMLElement. However, that would breach the distinction
we are making between the dynamic and static type of an object. The dynamic type tag must always be set to resolve
conflicting situation.

Scenario2: Primitive and reference values. The type: keyword may be employed to assign a primitive type to a numerical
value. Java objects are wrapped pretty much the same way than with JRuby, Jython and Rhino: numerical values are kept
as references when wrapped (i.e., as an instance of Integer, Float, etc.). However, the static type reference contained in a
Java wrapper is used instead of the dynamic type when resolving the method for which the numerical value was provided.
Each wrapper in JSmall has a type field and this field may be set with type:. Consider the following example:

‘‘JSmall code’’

w :¼‘XMLWriter’ asJavaClass new.

w write: 10. ‘‘Exception raised’’

w write: (10 type: ‘int’). ‘‘call write(int)’’

w write: (10 type: ‘Integer’). ‘‘call write(Integer)’’

The first call write: 10 raises an exception, similarly to Rhino. The two subsequent calls of write: use the dynamic type tag
to resolve the Java method signature to invoke.

Scenario3: The empty value. When the empty value of JSmall, nil, is an argument when calling a Java method, nil is
converted into Java’s null. This value may also be annotated, as for any Java object value. As in the situation previously
described, the static type is used to resolve the Java method. The following code shows different combinations:

‘‘JSmall code’’

w:¼‘XMLWriter’ asJavaClass new.

w write: (nil type: ’XMLElement’). ‘‘call write(XMLElement)’’

w write: (nil type: ’Serializable’). ‘‘call write(Serializable)’’

w write: (nil type: ’Integer’). ‘‘call write(Integer)’’

The interpretation of this code follows the rules given previously. The call write(nil type: ’Integer’) invokes write(Integer)

with the nil value as argument.
Since the dynamic type tag is attached to a reference, the nil value, as any object, may be tagged multiple times.
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3.3. From Java to JSmall

The previous section essentially focuses on passing annotated objects from JSmall to Java. The same mechanism applies
in the other way around. Values returned to JSmall from Java are automatically annotated with the return type called Java
method. The aim of this automatic annotation is not to lose the type when results from calling Java methods have to be
used as arguments when calling another Java method.

Note that the return type declared in the Java method is used to tag the returned value, and not the dynamic type of
the value.

Consider the following XML reader:

// Java code

public class XMLReader {

public int readInt( ) { y}

public Integer readInteger( ) { y}

public XMLElement readXMLElement( ) { y}

public StructuredXMLElement readStructuredXMLElement( ) {y}

}

An example in JSmall that replicates some elements contained in an XML file may be:

‘‘JSmall code’’

r:¼‘XMLReader’ asJavaClass new: ‘Data.xml’.

w:¼‘XMLWriter’ asJavaClass new: ‘ReplicatedData.xml’.

anInteger :¼r readInt.

w write: anInteger.

anElement:¼r readStructuredXMLElement.

w write: anElement.

The two variables anInteger and anElement refer to two Java objects, returned by readInt and readStructuredXMLElement,
respectively. These objects are annotated with the static types int and StructuredXMLElement, respectively, since these
types correspond to the return types of the invoked methods.

4. Discussion

A few points are worth discussing.
Using types on the caller side. The dynamic type tag embeds a type in a Java object reference. An alternative design would

be to put the annotation on the method calls, as opposed to attached to the values to those method calls. For example, this
annotation could be specified using o � � �4 as in the expression w writeoStructuredXMLElement4: anElement. The
general method invocation could then be exp name1oType14: exp1 name2oType24: exp2 yin case of multiple
argument invocation.

However, this model would be suboptimal compared with the dynamic type tag since it assumes that a Java class user
must associate parameter values and returned values with the type information contained in the signature of methods
involved in the computation. Another point that would be missed when specifying the type on the caller side is the ability
to pass objects around along with their dynamic type tag, which means that they can preserve their static type for further
invocations (later in time or through multiple calls on the JSmall side).

Let us consider the example of the previous section to illustrate this important point. Using this alternative model,
combining the XML reader and writer could be written as follows:

‘‘JSmall code’’

r:¼‘XMLReader’ asJavaClass new: y

w:¼‘XMLWriter’ asJavaClass new: y

w writeoStructuredXMLElement4: (r readStructuredXMLElement).

This short piece of code assumes that a user of XMLWriter has the knowledge about the return type of XMLReader.-

readStructuredXMLElement( ) in order to select XMLWriter.write (StructuredXMLElement) for invocation. As described in
Section 3.3, embedding the type in the object reference relieves the programmer from having to associate return values
with return types of called methods.

Bijection between method names: We assume a bijection between JSmall and Java method names. Although we provide a
converting schema, this issue is out of the scope of this paper.

This bijection is immediate: a JSmall method may always be named in Java, and a public Java method may always be
named in JSmall. However, argument passing from Smalltalk to Java need some care since arguments in Smalltalk are
inserted within the method name itself. For example, one way to create a geometrical rectangle is to send the message
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center: centerPoint extent: extentPoint to the class Rectangle. The variables centerPoint and extentPoint are values
determining the size of the rectangle where as the name of the invoked method is center:extent:.

A Java message send within JSmall must be expressed using the JSmall syntax. For example, the Java method
JButton.setInputMap(int condition, InputMap map) may be written in JSmall as jButton set: condition InputMap: map or jButton

setInputMap: (condition, map). Java method names that cannot be nicely written using this style, may be written with
arguments separated with commas. For example, the method JButton.reshape(int x, int y, int w, int h) may be invoked using
jButton reshape: (x, y, w, h). In that case, the message comma (‘‘,’’ is a method name in JSmall) is sent to the value x, taking
the argument y. Java messages sent from JSmall may always use either style.

5. The pellucid embedding

This section formalizes the dynamic type tag described in the previous section. The purpose of this formalization is
multiple. Firstly, it demonstrates that the dynamic type tag described previously is not tied to any particular programming
language. Secondly, it precisely exhibits the inter-languages message passing mechanism. Thirdly, our formalization shows
that adding dynamic type tags does not break the type soundness of Java.

The strategy we adopted for this aim can be summarized as follows: We first provide a formal model for JSmall and a
second one for Java. We then tie these models by extending them with the lump embedding, a technique proposed by
Matthews and Findler [16]. This technique is used to represent JSmall values in Java and the other way around without
allowing methods to be called. For that purpose, the pellucid embedding is a further extension of the lump embedding to
enable messages to be sent to objects issued from a different language. A set of properties will be then formalized.

The lump embedding was originally conceived to express the Scheme embedding in ML. A further contribution of this
section is the application of the lump embedding in an object-oriented setting.

The structure of our formalism and the outline of this section may be schematically depicted in Fig. 1. Gray boxes are
piece of work taken from other work, and put here for sake of completeness. White boxes are novel and should be
considered as paper innovations.

To help the reader to dissociate Smalltalk code from Java code, we use a textual convention: non-terminal terms
written in blue roman font designate Smalltalk terms, where those in red bold face font belong to Java.

5.1. SMALLTALKLITE

SMALLTALKLITE is a Smalltalk-like dynamically typed language8 featuring single inheritance, message-passing, field access
and update, and self message send.

SMALLTALKLITE has been first presented in a previous work [3]. Its syntax and semantics rules are given again here for sake
of completeness. Super-call and temporary variable declaration have been elided since those are not directly related to the
point of this section, which is about migration of type between JSmall and Smalltalk and cross-languages method calls.

The syntax of SMALLTALKLITE is presented in Fig. 2. A program in SMALLTALKLITE is a set of class definitions and an expression.
This expression is the ‘‘starting point’’ of a program and this expression is evaluated when a program has to be executed.
Note that the SMALLTALKLITE syntax is different from the real Smalltalk one. It has been ‘‘javaized‘‘ to reduce differences
between Smalltalk and Java to its essence, its type system. We use a star n to designate a list of elements.

For now, a program in SMALLTALKLITE is confined and no interaction with Java is possible. We will introduce later new
syntactic elements in this syntax to enable such interaction.

Before we introduce the reduction semantics rules, we need to introduce how syntactic elements (cf., Fig. 2) may be
translated into redex elements, final stage before evaluation. This translation is performed at runtime by the operator o1 U

JavaLiteSmalltalkLite language models
(Section  5.1 and 5.2) 

Lump embedding
exchanging values

(Section 5.3)

Pellucid embedding
sending messages

(Section 5.4)

Prop 2:
control flow

Prop 1:
soundness

properties deduction
(Section 5.5 and 5.6)

Fig. 1. Formalism edification (gray units do not belongs to the contributions of this paper).

8 The essential difference between the Smalltalk and Java formal model we are making here is about the preciseness of typing information, and not

whether type checking occurs at runtime only.
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before evaluating a method body. It annotates variable accesses with the object in which the variable has to be looked up.
Privacy of variables is achieved in SMALLTALKLITE by using an implicit object (self, the current object) as the environment in
which this variable has to be looked up. The redex translation annotates a field access with an object o. This object also
replaces occurrence of self.

The redex syntax is shown in the lower part of Fig. 3. It defines the syntax used in the resulting translation performed
by o1 U. This translation occurs before evaluating a method body as it will be shown later in Fig. 5. A SMALLTALKLITE value is
either nil or an object reference (o). Value of o is determined by the reduction rules (Fig. 5).

Our reduction semantics is inspired from ClassicJava’s [9] to specify operational semantics for our systems. In the figure,
we define an evaluation context E for SMALLTALKLITE. A value in our language can either be nil or an object reference.
Underlined phrases are inserted by the transformation to redexes and are not part of the surface syntax.

The type elaboration rules for SMALLTALKLITE are defined by the following judgments:

P ‘T
S defn) defn0 defn elaborates to defn0

P,c ‘T
S meth)meth0 meth in c elaborates to meth0

P,G ‘T
S e) e0 : TST e elaborates to e0

with type TST in G

Context-sensitive checks and type elaboration rules for SMALLTALKLITE are given in Fig. 4. This type system gives to all
closed terms the type TST (‘‘the Smalltalk type’’). Every SMALLTALKLITE expression has a rule that gives type TST if its subparts
have type TST.

The list of reductions rules is given in Fig. 5. These rules are pretty standard. The [send] rule translates an expression
body e into redexes before evaluating it. The relation 2P predicates the existence of a field or a method on a class. The
relation rP asserts the subclass relationship. Mapping between field names and fields value is denoted with
F ¼ ff1/v1, . . . ,fn/vng. F is a function that takes as argument the field name to lookup and returns its associated value.
F ½f/v� designates the replacement of a field value or the addition a new field.

Accessing a field or sending a message may fail since no type information prevents such situation. [get-err], [set-err] and
[send-err] take care of this.

5.2. JAVALITE

JAVALITE is a formalization of Java that captures the essence of its typing system, including method overloading. Java has
been reduced to focus on method resolution, an essential feature for our purpose.

Fig. 2. SMALLTALKLITE syntax.

Fig. 3. Translating expressions to redexes before evaluation.
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In JAVALITE fields are public and their accesses must be explicitly preceded by the object in which this field has to be
looked up; methods are public; methods may be overloaded; and object interaction solely uses message-passing. Objects
are the only values of our language. For sake of clarity and conciseness, we do not model int and Integer since this language
constructs are not essential for our purpose. Primitive types are a particularity of Java that is orthogonal to our model.

Syntax and semantics rules of JAVALITE are very similar to SMALLTALKLITE. The main difference is the privacy of variables and
the typing rules.

Before we go on the description of the language, it might be worth pinpointing differences with other Java formalisms.
CLASSICJAVA [9] and FEATHERWEIGHTJAVA [14] are two different minimal models for Java. CLASSICJAVA supports interfaces and field
assignments but no genericity, whereas FEATHERWEIGHTJAVA may support genericity but does not have variable assignments
and interfaces. These two models do not support method overloading. This is the primary reason why we did not
adopt one of these for our purpose. Other calculus such as MJ [4] and CORE-JAVA [6] are available. These two languages may
be seen as contenders for a minimal imperative core calculus. Imperative feature and ability to handle concurrency
(for Core-Java) are outside the scope of the paper. Principal typing [1] for Java supports method overloading, but their focus
is more on separate compilation and high-level representation of bytecode. An extension of FEATHERWEIGHTJAVA has been
proposed [2] to support dynamic and static method overloading. However, the fact that this extension has been made for
expressing multi-inheritance, the tiny bit that would be useful for our purpose comes with a large set of unnecessary
artifacts. Instead, the idea of JAVALITE is to have a minimal calculus that extends SMALLTALKLITE with a Java-like type system.
Fig. 6 describes the syntax of JAVALITE.

The differences with SMALLTALKLITE are public fields (i.e., accesses are prefixed by an expression), method parameters and
variable declaration are annotated with a type, and self has been replaced by this.

The redex syntax is presented in Fig. 7. Similarly than in SMALLTALKLITE, the this pseudovariable does not belong to this
syntax since it is replaced by the current object when a method body has to be evaluated.

Fig. 4. SMALLTALKLITE typing rules.

Fig. 5. Reductions for SMALLTALKLITE (the S in ‘S is for Smalltalk).
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The big piece of this formalization is the typing rules that embody method overloading.
The type elaboration for JAVALITE is defined by the following judgments:

‘T
J P) P0 : t P elaborates to P0

with type t

P ‘T
J defn) defn0 defn elaborates to defn0

P,c ‘T
J meth)meth0 meth in c elaborates

to meth0

P,G ‘T
J e) e0 : t e elaborates to e0 with

type t in G
P ‘T

J t t exists

Fig. 8 presents the JAVALITE typing rules. The type elaboration verifies that a JAVALITE program defines a static tree of
classes. In our calculus, a type is a class since interfaces and generics are not supported. Each type is annotated with its
collection of fields and methods, including those inherited from its ancestors. Underlined phrases are inserted by the typing
elaboration and are not part of the surface syntax.

The [prog] rule says the program elaborates only if its expression e and its class definitions elaborates for a program P.
[defn] says that a class definition elaborates only if each field’s type exists and each method meth elaborates into

meth0. Note that at this stage we assume that we do not have cycle in the hierarchy of classes. To keep our calculus
concise, we do not enforce this restriction, however, our calculus may be easily extended to satisfy this restriction [9].

The [meth] rule elaborates a method definition that belongs to a class t0 only if each parameter’s type exists and if the
method body e elaborates and has a type t0 that is a subtype of the method return type t. The environment G used to
elaborate each expression phrase is set in the [meth] rule. G maps this and each method parameters to its
corresponding type.

Type elaboration for class instantiation is realized with [new]. The expression new c elaborates only if the class c exists
in a program P. As given in [var], the type of a variable is given by the environment G.

In [get], a variable assignment e.f elaborates into e0 : c :f : t only if e elaborates to e0 with a type t0 and f exists in t0. In
order to be looked up in t0, the field f needs to be prefixed with c that designates the class from which the field f originates
and has the type t.

The [set] rule is very similar to [get]. Elaboration of the assigned value ev should have the type t00, a subtype of t.
As given in [nil], the nil pseudo variable may reduce into any type t.
For a given method call, the [send] typing rule annotates each argument with the static type of the declared argument

in the method definition. This annotation will be used to lookup the method implementation at runtime. This is essential
to handle method overloading.

Fig. 6. JAVALITE syntax.

Fig. 7. Redex syntax for JAVALITE; underlined phrases are inserted by elaboration and are not part of the surface syntax.
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When typing a method call, we guarantee the arguments have the type the method demands, and assume the result
will have the type the method promises.

Java allows for method invocation type conversion. In other words this means that an exact match in the type of a
parameter and the corresponding argument is not enforced. We say it is a match if the type of argument may be converted
to the type of the corresponding parameter by method invocation conversion. When resolving the method signature,
several methods may be applicable in the presence of overloaded methods. In the presence of overloaded methods, Java
(and therefore JAVALITE) selects the methods that ‘‘fits’’ best, called most specific [19].

Informally, meth is more specific than meth0 if any invocation handled by meth can also be handled by meth0. More
precisely, it means that for two methods meth and meth0 having the same arity such that meth¼/m,ðt1, . . . ,tn-tÞ,x�,eS
and meth0 ¼/m,ðt01, . . . ,t0n-t0Þ,x�,e0S, each tj can be converted to t0j for j 2 ½1,n�. Since we do not support interfaces and
primitive types, t may be converted into t0 if trPt0. The predicate MoreSpecificððt1, . . . ,tnÞ,ðt01, . . . ,t0nÞÞ is true if meth is more
specific than meth’. The predicate is defined as:

MoreSpecificððt1, . . . ,tnÞ,ðt
0
1, . . . ,t0nÞÞ()8j 2 ½1,n� tjrPt0j

A method meth is strictly more specific than another method meth0 if and only if meth is more specific than meth0 and
meth0 is not more specific than meth:

StrictlyMoreSpecificððt1, . . . ,tnÞ,ðt
0
1, . . . ,t0nÞÞ()MoreSpecificððt1, . . . ,tnÞ,ðt

0
1, . . . ,t0nÞÞ4:MoreSpecificððt01, . . . ,t0nÞ,ðt1, . . . ,tnÞÞ

A method is said to be maximally specific for a method invocation if it is applicable and there is no other applicable
method that is strictly more specific. We are now ready to provide a definition for the most specific method. The predicate
MostSpecificðc,/m,ðt1, . . . ,tn-tÞ,x�,eSÞ is true if the method belongs to c and the method is the only strictly more specific
method in c.

MostSpecificðc,/m,ðt1, . . . ,tn-tÞ,x�,eSÞ()/m,ðt1, . . . ,tn-tÞ,x�,eS2Pc

48/m,ðt01, . . . ,t0nÞ-t0Þ,x0�,e0S2Pc,tjat0j j 2 ½1,n� StrictlyMoreSpecificððt1, . . . ,tnÞ,ðt
0
1, . . . ,t0nÞÞ

Fig. 8. JAVALITE typing rules (in ‘T
J , the T is for type and J is for Java).
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The source declaration of any field or method in a class is computed with minP by finding the minimum (i.e., farthest
from the root) superclass that declares the field or method.

The MOSTSPECIFIC predicate ensures that only one method is the most specific. If the most specific method cannot be
found (or said in another way: if no method is more specific that the other ones), the predicate is not true and the type
elaboration ends.

The list of reduction rules for JAVALITE is given in Fig. 9. Those rules are pretty standard and are very similar to
SMALLTALKLITE’s set of rules. The type annotations t1 , . . . ,tn contained in the message send are used to lookup the method.

5.3. The lump embedding

The lump embedding is a simple method for giving operational semantics to multi-language systems [16]. It has been
designed to be expressive enough to support a wide variety of embedding strategies. This method is based on simple
constructs called boundaries, cross-language casts that regulate both control flow and value conversion between languages.

We extend the two calculi given above with syntactic boundaries between JAVALITE and SMALLTALKLITE, a kind of cross-
language cast that indicates a switch of languages: Java values can appear in JSmall and JSmall values can appear in Java.
The extensions is shown in Fig. 10.

Syntax: First of all, a program should permit SMALLTALKLITE and JAVALITE definitions to coexist. The notion of program is
refined accordingly. The expression part of a program (the program ‘‘starting point’’) is a JAVALITE expression. This enforces
the embedding of the Smalltalk calculus in the Java one.

Then, we add boundaries as a new kind of expression in each language. We extended e to produce 1eUt
JS and extended e

to produce 1eUt
SJ . The type t indicates the type JAVALITE will consider the expression on its side of the boundary. The SJ

subscript means ‘‘Smalltalk inside, Java outside’’ and JS means ‘‘Java inside, Smalltalk outside’’.
A boundary is a reference to an alien object (i.e., object which lives in a different language). An alien object may be

referenced several times, each reference expressed with a boundary.
Note that in the remaining of the formalization we extended the color and font convention to terminal and non-

terminal elements that are contained in a boundary. This will hopefully ease the reading of this section.
Typing rules: In our lump embedding extension, we add a new type L (for ‘‘lump’’), a direct subtype of Object, to JAVALITE

and we add two new typing rules, one for each new syntactic form. The new SMALLTALKLITE judgment says that an 1eUt
JS

boundary is well-typed if the JAVALITE type system proves that e has type t0 with t0rPt : a SMALLTALKLITE program type-checks
if it is closed and all its JAVALITE subterms have a subtype the program claims they have. The new JAVALITE judgement says
that 1eUt

SJ has type t if it is closed and e type-checks under SMALLTALKLITE’s typing system.
In both case, t can be any type. If t¼L a native SMALLTALKLITE value crosses the boundary, which will be considered as a

lump in JAVALITE; if taL a JAVALITE value crosses the boundary, which will be a lump in SMALLTALKLITE.
JAVALITE’s typing rules guarantee that values that appear inside 1vUL

JS expressions will in fact be lump values.
SMALLTALKLITE offers no such guarantee, so the rule for eliminating a 1Ut

SJ boundary must apply whenever the Smalltalk
expression is a value at all. This is why E½1vUt

SJ � may lead to an error.
Note that nil may be tagged. Since nil is a value, it may be enclosed within a boundary, meaning that a reference to nil

may be tagged.
Operational semantics: To allow SMALLTALKLITE expression to evaluate inside JAVALITE expressions and vice versa, we define

evaluation contexts mutually recursive at boundaries. We extended E with 1EUt
SJ to allow SMALLTALKLITE expressions to be

evaluated in JAVALITE and E with 1EUt
JS to evaluate JAVALITE expressions in SMALLTALKLITE.

Fig. 9. Reductions for JAVALITE (the J in ‘J is for Java).
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A typing error may occur during the evaluation when an embedded SMALLTALKLITE expression is mistyped. SJ boundaries
with a non-lump type that contain Smalltalk values and JS boundaries of type L that contain Java values should reduce,
since they represent foreign values returning to a native context. This is done by canceling matching boundaries, as the
reductions rules shown in Fig. 10.

5.4. The pellucid embedding

In this subsection we extend the lump embedding with the necessary typing and evaluating rules to handle message
sends and to cast boundaries. This new embedding is called the pellucid embedding.

The first rule given in Fig. 11 describes the evaluation of a message sent in JAVALITE to a boundary. Since no assumption
can be made on the return type of the method invocation, the boundary type is L.

The second rule describes a message sent in SMALLTALKLITE to a boundary. This rule elaborates a call into a Java call.
This call has to be annotated with some types to properly define the method signature to lookup. By paying a
close attention, one should see that the way this call is annotated is the same one performed by the Java typing
rules. The only difference is that this annotation is performed at runtime. It might therefore fail. In that case, an error is
raised.

In each of these two extra-boundary calls, values provided as message parameters must be issued by the same language
that the object receiver is, e.g., sending a message to 1oUt

JS requires arguments to be boundaries 1vkU
tk

JS .
In this second rule, it may be tempting to say that tj ¼ t0j. Such assumption cannot be made since t0j are arbitrary set

when by the dynamic type tag one wants to give. This is why we need to retrieve the minimal (most specific) method.
We introduce the operator b ct to upcast and downcast boundaries. By making this operator accessible in JSmall

(the type: keyword), the link between the pellucid embedding and the informal description given in the previous section
should now be clearer.

The cast performed by b ct is checked when the cast is interpreted. The new static type should be either a supertype or a
subtype (trPt03t0rPt) of the type of the object. Furthermore, a value cannot be downcasted with a type that is a subtype
of the real type of the value (crPt0).

Originally conceived to make Scheme and ML interoperable, the lump embedding is applied in this paper in a different
setting with Java and Smalltalk. This embedding has been extended to enable message passing from one language to the
second one. This new embedding is a natural calculus extension that does not rely on any particular feature expect that the
two considered languages should be able to send messages toward objects. This embedding may be successfully applied to
different languages (e.g., Python and C#).

The last execution rule ð+Þ enforces the coherence of the provided dynamic type tag. The tag must be coherent with
the wrapped Java value. It could be an upcast or downcast (if an upcast has been previously made). However the type tag
cannot be a subtype of the real type. This is like downcasting a Java value with a type below the real type. It is important to
notice that these constraints are not mandatory to get all the benefits of dynamic type tags. In order to ease the
implementation, one may want to leave them aside when implementing dynamic type tag. Improper type tag will be
signaled with an error upon method call.

Matthews and Findler’s method supports higher-order functions, which can represent various data structures and
operations. This means that an operation such as function application to be performed in the foreign language is definable

Fig. 10. Extensions of SMALLTALKLITE and JAVALITE to form the lump embedding (TST is the Smalltalk type).
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as a lambda term in the host language. JAVALITE and SMALLTALKLITE do not have explicit higher-order terms.9 As a consequence,
for each operation to be performed in the foreign language, the operational semantics must be extended with a dedicated
reduction rule that takes embedded foreign terms as arguments and generates the corresponding foreign term. Fig. 11 only
show this for method invocation and type cast.

5.5. Properties 1: type soundness

Type soundness says that a term may either reduce or is a value or stops with a specific errors generated by reductions rules.
The type-soundness theorem is proved by using the standard technique of subject reduction and progress theorems [20].

Note that because of the way we have combined the two languages, type soundness entails that both languages are
type-sound with respect to their own type systems—in other words that both single-language type soundness proofs are
special cases of the soundness theorem for the entire system. Type soundness of the lump embedding has been
demonstrated [16]. To conserve space, we do not demonstrate the type soundness of JAVALITE, which does not present any
major issue. The demonstration for SMALLTALKLITE is trivial since there is one unique type, not presented therefore. We will
rather focus on the extension made on them.

We refer to the empty set with [ ]. To prove this theorem, we will use the classical conserve, subject reduction and
progress lemmas. Since the rewriting rules reduce annotated terms, we derive two new type judgements, ‘

T
J and ‘

T
S , that

relate annotated terms to show that reduction preserves type correctness. These new rules perform the same checks as the
rule it is derived from without adding annotation. ‘

T
S performs trivial checks: all elements must have the type TST. For

[set], [get] and [send] that annotate the program being type checked, ‘
T
J performs the same check than ‘T

J without
modifying the program. Since the type checking rules for the lump embedding (Fig. 10) and the pellucid embedding
(Fig. 11) do not annotate the program, no particular treatment is required.

Lemma 1 (Conserve). If ‘T
J P) P0 : t and P0 ¼ defn1 . . . defnn e, then P0, ½ � ‘

T
J e : t.

Proof. If ‘T
J P) P0 : t and P0 ¼ defn1 . . . defnn e, then P,½ � ‘T

J e : t per definition, thus P0, ½ � ‘
T
J e : t. &

The subject reduction lemma states that each evaluation step preserves the type correctness of the expression-store
pair /e,SS, e being either e or e. Said in another word, for a given configuration on the left-hand side of an evaluation step,
it exists a type environment that establishes the expression’s type. This environment must be consistent with the store.
This consistency is given by the judgment P,G‘sS: it is true when all objects contained in S have a binding in G and all
instances variables are consistent with the class of the object in which it the variable is defined.

Fig. 11. The pellucid embedding.

9 One could argue that an object is a higher order term since it can carry behavior and it is not known by the client which behavior it is.
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Lemma 2 (Subject reduction). Reduction preserve types.

� If P,G ‘T
J e : t and P,G‘sS and P‘J/e,SS+/e0,S0S, then e0 is an error or (G0 such that P,G0 ‘T

J e0 : t0 and P,G0‘sS0 and

t0rPt.
� If P,G ‘T

S e : TST and P,G‘sS and P‘S/e,SS+/e0,S0S, then e0 is an error or (G0 such that P,G0 ‘T
S e0 : TST and P,G0‘sS0.

Proof. The proof examines reduction steps for ‘J and ‘S. If the execution has not halted, then for the new environment G0

we constructed, we show that the two related consequents of the theorem are satisfied, relative to the new expression,
store and environment.

J-SEND: If e¼ 1oUt00

SJ :mð1v1U
t001
SJ , . . . ,1vnU

t00n
SJ Þ and P,G ‘T

J e : t then e0 ¼1o:mðv1, . . . ,vnÞU
L
SJ according to the reduction rule,

G¼G0 and P,G ‘T
J e0 : t0 and t0rPt according to the typing rule in the lump embedding.

S-SEND: if e¼1oUt0
JS:mð1v1U

t01
JS , . . . ,1vnU

t0n
JS Þ and P,G ‘T

S e : t then e0 ¼1o: t0 :mðv1: t1 , . . . ,vn: tn ÞU
t
JS according to the reduc-

tion rule and G¼G0 according to the typing rule in the lump embedding.

S-POP: if e¼ b1vUt
JSc

t0 and P,G ‘T
S e : t then e0 ¼1vUt0

JS according to the reduction rule and G¼G0 according to the typing

rule in the lump embedding.
Other rules of the lump embedding are proven [16]. JAVALITE and SMALLTALKLITE rules are proven assuming their type

soundness. &

Lemma 3 (Progress). For all Java expression e, JSmall expression e, both of the following hold:

� if P,G ‘T
J e : t, then either e is a Java value, or there exists an e0 such that P‘J/e,SS+/e0,S0S, or /e,SS reduces to an error.

� if P,G ‘T
S e : TST , then either e is a JSmall value, or there exists an e0 such that P‘S/e,SS+/e0,S0S, or /e,SS reduces to an

error.

Proof. By simultaneously analyzing all the possible cases for the current redex in e and e (in the case that they are not a
value).

J-SEND, S-SEND and S-POP satisfy the hypothesis by directly applying the reduction rules of the pellucid embedding.
Other rules of the lump embedding are proven [16]. JAVALITE and SMALLTALKLITE rules are proven assuming their type

soundness. &

The type soundness property can be formulated as the following theorem:

Theorem (Pellucid soundness theorem). Given Lemmas 1–3, if ‘T
J P) P0 : t and P¼defnn defnn e and the execution of P

terminates, then either:

� P‘J/e,½ �S+�/o,SS and SðoÞ ¼/t0,FS and t0rPt; or

� P‘J/e,½ �S+�/nil,SS; or

� P‘J/e,½ �S+�/error ‘‘ call’’ ,SS; or

� P‘J/e,½ �S+�/error ‘‘ value’’ ,SS; or

� P‘J/e,½ �S+�/error ‘‘ eval’’ ,SS; or

� P‘J/e,½ �S+�/error ‘‘ eval’’ ,SS

The theorem says that any state reachable from the original is either a value, one of the specified errors, or available for
another step.

The typing rules of JAVALITE and SMALLTALKLITE do not explicitly deal with errors. However, this is not necessary in our case.
If an JAVALITE and SMALLTALKLITE expression is well typed, then it cannot be stuck.

5.6. Properties 2: determining the execution flow

Ideally, dynamic type tags should be automatically set when possible without requiring a manual intervention. This
means that a programmer does not need to use the type: message (written b ct in the formal model) for values returned
from a Java method call. Intuitively, if a Java method has a return type t, then values returned from invocations of the
method must be statically annotated with t.

Consider the three Java classes A, B, and C described in Fig. 12. The class C contains two methods, m1( ) and m2( ),
having a return type A, B, respectively. Invoking one of these methods returns a value (instance or null) statically
annotated with A or B. This annotation is used to resolve future invocations, like when calling overridden(y).
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The pellucid embedding reflects this as illustrated by the following reduction steps:

1newBð ÞUB
JS: overriddenð 1newCð ÞUC

JS:m1ð Þ Þ+�

1n1U
B
JS: overriddenð 1n2U

C
JS:m1ð Þ Þ+

1n1U
B
JS: overriddenð 1n2: B:m1ð ÞUA

JS Þ+

1n1U
B
JS: overriddenð 1n3U

A
JS Þ

Consequently, the method overriden(A) will be invoked. This does not come as a surprise since the pellucid embedding
(Fig. 11) takes care of using the Java method return type to set the type of 1 . . .Ut

JS. As a consequence, Java objects handed
over to JSmall are annotated with the type specified in the Java API. JSmall programmers are therefore relieved from
manually setting these annotations on Java objects.

6. Related work

This section relates the work presented in this paper using two different perspectives. The first one (Section 6.1)
reviews all the dynamically typed scripting languages that we are aware of on Java and .Net, and compare them against the
dynamic type tag presented in this paper. Then, secondly (Section 6.2), we review more theoretical approaches against the
pellucid embedding.

6.1. Dynamically typed languages

Clojure: Clojure10 is a dialect of Lisp and is predominantly a functional programming language which features a rich set
of immutable, persistent data structures. As most dynamic languages running on a JVM, Clojure is designed to be a hosted
language, sharing the JVM type system, GC, thread, etc. Clojure offers the dot-target-member notation for Java calls. A Java
method call in Clojure has the following pattern: (. expression (instanceMethodName args�)) which calls the method
instanceMethodName on expression with args� as arguments. The dot-target-member uses the dynamic type of argument
values to resolve overloaded methods.

Jython: Jython,11 an implementation of Python in Java, behaves in a way similar to JRuby. The dynamic type of Java
objects are used to resolve the signature of the Java method to invoke upon message send. Java objects in Jython are
instances of the Java class PyJavaInstance, a subclass of PyInstance,12 itself a subclass of PyObject.

JScheme: JScheme is a dialect of Scheme for JVM with a very simple interface to Java. The Java Dot Notation13 provides
JScheme with an access to most Java constructors, methods, and fields for all Java classes. The idea is to annotate Java calls
with a dot notation to indicate which Java elements have to be invoked. Let us consider the following JScheme code
obtained from the JScheme webpage and its corresponding Java version:

; JScheme code

(define win (Frame. ‘‘Hello’’))

(.resize win 200 300)

(.Container.resize win 200 300)

(.Component.resize win 200 300)

// Java code

Frame win ¼ new Frame(‘‘Hello’’);

win.resize(200, 300);

((Container) win).resize(200,300);

((Component) win).resize(200,300);

Fig. 12. Type of return value impacts the control flow (A, B, C are Java classes).

10 http://clojure.sourceforge.net
11 http://www.jython.org/Project/userguide.html
12 http://jython.svn.sourceforge.net/viewvc/jython/trunk/jython/src/org/python/core/PyInstance.java?view=markup
13 http://jscheme.sourceforge.net/jscheme/doc/javaprimitives.html
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The Java dot notation enables a particular overloaded method to be called if the set of overloaded methods are spread
over a type hierarchy. Upcasting the Java object receiver may expose overloaded methods. Let us assume the two classes:

class XMLElement {

void printOn(OutputStream o) {}}

class StructuredXMLElement

extends XMLElement {

void printOn(ObjectOutputStream o) {}}

JScheme’s Java Dot Notation allows each printOn to be called on an instance of StructuredXMLElement with an instance
of ObjectOutputStream as parameter. For example (.XMLElement.printOn (StructuredXMLElement.) (ObjectOutputStream.))

invokes the Java method printOn (OutputStream) on an instance of StructuredXMLElement. The receiver is dynamically
upcasted to XMLElement, which reveals the method printOn(OutputStream). In contrary to the dynamic type tag, the Java
Dot Notation is not able to select a particular overloaded methods when they are defined in the same class.

LiveConnect: LifeConnect is a feature of Web browsers that allows Java and JavaScript software to intercommunicate
within a Web page. In an earlier version of LiveConnect, the way to invoke overloaded Java methods was to find the first
applicable method that is enumerated by the Java VM. ‘‘Applicable’’ means that the method name and the number of
arguments match and that each of the JavaScript arguments can be concerted to the corresponding Java type listed in the
method’s signature.

The enumeration of methods by the Netscape JVM always reflected the order of methods in the class file.
Rearrangement of methods in the Java source files was often required to invoke the desired method. This was a source
of pain since source code was not often available and because the static nature of this method resolution algorithm
sometimes made it impossible to choose a different method at each invocation site.14

Version 3 of LiveConnect provides a more intelligent way to deal resolving overridden methods when calling Java
methods. This version of LiveConnect is implemented in Rhino.

Javascript in Java: Rhino is an open-source implementation of JavaScript written in Java. Java objects may be
instantiated and messages may be sent to them.15 Rhino selects an overloaded method at runtime based on the type of
the arguments in the same fashion than Jython. An error is raised upon ambiguous call.

Sixx: Sixx16 is a Scheme based interpreter intended to keep its memory footprint low (around 20 KB). Java methods are
made first class entities in Sixx. The (method className methodName argTypes�) special form returns a reification of the
Java method named methodName having a signature that exactly matches argTypes�. It may be employed as follows:

; Sixx code

; call a static method

(define cos (method ‘‘java.lang.Math’’ ‘‘cos’’ ‘‘double’’))

(print (cos 1.0))

Java methods are accessed through reflection. It therefore falls into the drawback already mentioned earlier (Section
2.1): methods are not looked up but directly evaluated. Polymorphism is not supported therefore.

Other dynamic languages for the JVM : Each language in the list given above addresses Java interoperability against
method overloading. Other dynamically typed languages are available for the JVM: Bex,17 Tea,18 JudoScript,19 Object-
Script,20 Kanaputs,21 Groovy,22 JPiccola,23 Agora [13]. All those languages suffer from the same problems regarding
overloading of Java methods.

IronPython: A new implementation Python has been implemented on the .Net platform. IronPython24 gained a major
attention recently. It supports an interactive console with fully dynamic compilation and is well integrated with the rest of
the .NET Framework. All .NET libraries are available to Python programmers, while maintaining full compatibility with the
Python language. IronPython has an Overloads property on all methods that will allow you to select a particular signature
if needed. For example, the following o.foo.Overloads[A](b) will invoke the method foo(A), independently of the dynamic
type of b. This strategy falls into the problem cited earlier (Section 4).

14 http://www.mozilla.org/js/liveconnect/lc3_method_overloading.html
15 http://www.mozilla.org/rhino/ScriptingJava.html
16 http://dgym.homeunix.net/projects/sixx
17 http://bexscript.sourceforge.net
18 http://www.pdmfc.com/tea
19 http://www.judoscript.com
20 http://objectscript.sourceforge.net
21 http://www.kanaputs.org
22 http://groovy.codehaus.org
23 http://www.iam.unibe.ch/�scg/Research/Piccola
24 http://www.codeplex.com/Wiki/View.aspx?ProjectName=IronPython
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Other dynamic languages for the .Net platform: A number of dynamically typed scripting language exist on the .Net
platform. We reviewed IronLisp,25 IronScheme,26 and Nua.27 Unfortunately, these works have not reached a sufficient
stage (implementation and documentation) to address the problem presented in this paper.

6.2. Combining dynamic and static typing

Recently, a number of researchers have suggested different ways to integrate static and dynamic typing into a single
framework. Dynamic type tag presented in this paper is evaluated against these frameworks.

Contract and mirror: Gray et al. [11] proposed a fine-grained interoperability between a statically typed, object-oriented
language and a dynamically typed, functional language. They conducted an experiment over Java and Scheme. These two
languages have been extended by making functions available in Java, and objects available in Scheme. A notion of
dynamically typed expressions is added to Java that makes Java more compatible with Scheme.

The pellucid embedding does not add new construct to the two languages it applies on. Instead, it add a new syntactic
construct that allow for typing foreign objects. Moreover, the goal is slightly different since Gray et al. focussed on
potentially delayed checked and coercions of data, whereas our embedding target accessing overloaded methods in a
dynamic setting.

Gradual typing: Gradual typing provides the benefits of both static and dynamic checking by allowing a programmer to
specify the portion of the program to be type checked at compile time or at runtime [18]. This is achieved by adding or
removing type annotations on variables.

Similarly to gradual typing, the pellucid embedding promotes an early type checking when possible. However, gradual
typing operates on one single language.

Safe unknown type: Lagorio and Zucca [15] propose an extension of the Java type checker that allows programmer to not
type in strategic places of their code. They introduced an unknown type wherever they do not want to commit to a certain
type. Methods having parameters or result of the unknown type are translated to have unknown type replaced with a
know type. The latter being statically computed with a sophisticated type system. Method overloading has not been
considered so far.

Hybrid type checking: An extension of traditional static types is proposed with hybrid type checking [10] to support
precise specifications while preserving the ability to detect simple, syntactic errors at compile time. Hybrid type checking
is inspired from prior work on soft typing [5] by extending it to reject ill-typed programs according.

A different perspective has been adopted in this paper. The pellucid embedding is an extension of classical type checker
supporting method overloading. It annotates foreign object with a type annotation, and allows this type annotation to be
manually set.

Blame typing: Wadler and Findler [21] have introduced a notion of blame (from contracts [7]) to a type system with
casts. Programmers using this type system may add contracts to evolve dynamically typed program into statically typed
programs (as with gradual types) or to evolve statically typed programs into programs with refinement types (as with
hybrid types). Walder and Findler demonstrated that their blame typing is a flexible framework in which a number of type
systems, including gradual typing and hybrid typing, may be expressed in.

A cast from source type S to target type T is written ðT ( SÞs, where subterm s has type S and the whole term has type T.
Blame typing adds a blame to a type cast: ðT ( SÞpns.

A blame may either be positive (p) or negative (n). A positive blame is allocated if the term contained in the cast fails to
satisfy the contract implied by the cast. A negative blame is allocated if the context containing the cast fails to satisfy the
contract. The lump embedding (Section 5.3) may be expressed in blame typing since we defined cross-language casts
between Java and Smalltalk. The pellucid embedding cannot be directly expressed in blame typing, since rewriting is
necessary to achieve it. However, as a future work, we plan to use blame typing to provide a finer feedback in case of type
failure.

Cross-language inheritance: Some dynamically typed scripting languages support inheritance across languages. A class
defined in a language A may be subclassed in a different language B. Gray [12] provides an approach to enable a Java class
to be subclassed in Scheme and the other way around. Her compilation technique provides safe interoperability by
expanding the source language to insert wrappers that transfer values between typed and untyped expressions. She uses
two kind of wrappers: one that converts typed-values into untyped expression (a guard); and another that converts
untyped values into typed expressions (a mimic).

Gray provides a safe approach for cross-language lookup method mechanism. Overridden methods are supported.
However, overloading, a characteristic widely supported by statically typed languages, has been left outside her work. How
to deal with overloading is exactly the point of dynamic type tag.

25 http://www.codeplex.com/IronLisp
26 http://www.codeplex.com/IronScheme
27 Lua for the DLR: http://www.codeplex.com/Nua
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7. Conclusion

The omnipresence of the Java virtual machine and the rigidity of statically typed Java application has greatly
contributed to spreading the use of dynamically typed languages on this platform. It is primordial for those ‘‘high-level
languages’’ to interact with the ambient Java environment. However, differences in the type system of Java and an
embedded dynamic language make a complete interaction hard to obtain.

This paper presents an elegant solution for enabling an embedded dynamic language to call Java overloaded methods.
This problem has been around for years and has not been properly addressed. Our idea is to augment the reference to a
Java object with a type. This type is then used as a dynamic type tag when methods have to be called on Java objects from a
dynamically typed language. A theoretical foundation conveying the essence of this mechanism is also presented.
Although dynamic type tag is presented in the context of JSmall, we argue that this mechanism is applicable to other
dynamic languages.

Embedding a radically different language is a challenging task which comes with numerous problems. Differences in
the type system is one important issue which is tackled in this paper. Preserving the identify of converted object is also an
issue shared by a large range of languages. In the future we plan to investigate on this. Another future work is to consider
the generic case. Generics were deliberately left outside of this paper, however combining generic programming with
dynamic type tag looks promising.
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