
1

FlowTalk: Language Support for Long-Latency
Operations in Embedded Devices

Alexandre Bergel, William Harrison, Vinny Cahill, Siobhán Clarke

Abstract—Wireless sensor networks necessitate a programming model different from those used to develop desktop applications.
Typically, resources in terms of power and memory are constrained. C is the most common programming language used to develop
applications on very small embedded sensor devices. We claim that C does not provide efficient mechanisms to address the implicit
asynchronous nature of sensor sampling. C applications for these devices suffer from a disruption in their control flow. In this paper, we
present FlowTalk, a new object-oriented programming language aimed at making software development for wireless embedded sensor
devices easier. FlowTalk is an object-oriented programming language in which dynamicity (e.g., object creation) has been traded for a
reduction in memory consumption. The event model that traditionally comes from using sensors is adapted in FlowTalk with controlled
disruption, a light-weight continuation mechanism. The essence of our model is to turn asynchronous long-latency operations into
synchronous and blocking method calls. FlowTalk is built for TinyOS and can be used to develop applications that can fit in 4 kB of
memory for a large number of wireless sensor devices.

Index Terms—Embedded systems, object-based programming

F

1 INTRODUCTION

The use of wireless sensor networks has been constantly
increasing in various domains (e.g., automotive [28], civil en-
gineering1, biology [27]). Whereas wireless embedded devices
are getting smaller and more sophisticated2 [41], programming
languages used to develop software for small sensor devices
have not significantly evolved during the last decade. Most
embedded software is written in C [23] (or in one of its deriva-
tives [17]). By being very close to the execution platform, the
C language is not appropriate to model complex control flow
for an application in the presence of an underlying platform
that is event-based.

Although several approaches based on virtual machines like
Java Micro Edition3, SunSPOT4 or Resilient [1] exist, the
target platform must provide enough memory to host a virtual
machine. The amount of memory is required to be in the range
of 128 to 512 kilo-bytes [38]. This paper focuses on embedded
wireless sensor devices, with greater constraints on resources
for which the device’s memory ranges from 0.5 to 4 kilo-bytes.

These limited resources have an impact on the programming
model used to program these devices [33]. One difficulty in
sensor programming is the implicit asynchrony of long-latency
operations like sensor sampling and radio communications [9].
Sampling the environment (e.g., light, sound or magnetic field)
and emitting a radio packet are tasks for which its length in

• A. Bergel is with the PLEIAD Laboratory, Computer Science Department
(DCC), University of Chile, Santiago, Chile. W. Harrison is with the
Software Structure Group, V. Cahill and S. Clarke are with Lero and the
Distributed Systems Group, Trinity College Dublin, Ireland.
E-mail: abergel@dcc.uchile.cl, Bill.Harrison@scss.tcd.ie,
Vinny.Cahill@scss.tcd.ie, Siobhan.Clarke@scss.tcd.ie

1. www.coe.berkeley.edu/labnotes/1101smartbuildings.html
2. robotics.eecs.berkeley.edu/ pister/SmartDust/
3. java.sun.com/javame
4. www.sunspotworld.com

time cannot be predicted [35]. No prediction can be made on
how long the sampling or the radio emission will last. More-
over, the central processing unit cannot be interrupted or put
into a sleep mode during that time in order to make the device
reactive. The traditional approach used in sensor programming
is to emit an event, signifying a request for a sampling, and
to then wait for notification that will subsequently trigger a
callback. This approach has the disadvantage of disrupting
the application control flow. A callback, when triggered, does
not have the dynamic context in which the event (i.e., request
to a sensor) was emitted [39]. Passing data from the main
control flow to callbacks necessitates global shared memory
allocation, implying the use of guarding locks and preemption
needs to be prevented. Although these techniques might be
acceptable for a small application, they bring a significant
complexity that reduces program source code readability and
hampers maintenance.

In this paper, we present FlowTalk, a new programming
language aimed at reducing the cost of software development
for wireless embedded systems by offering linguistic
constructs to model event-based application control flow.
FlowTalk is an object-oriented programming language
syntactically close to Ruby and Smalltalk in which dynamicity
and flexibility has been sacrificed to fit very limited resource
constraints. For example, classes cannot be instantiated at
run-time. To deal with the asynchrony of sensor sampling
FlowTalk uses a technique that we call controlled disruption.
A computation is cut down into small pieces, which are then
inserted into a first-in-first-out (FIFO) queue making them
ready to be processed when long-latency operations (i.e.,
sensor sampling and radio packet emission) are completed.
Each of those pieces of computation has the knowledge
about the dynamic context of when and how a long-latency
operation was triggered. Whereas events are still used by
the hardware to request sampling and to be notified when

mailto:abergel@dcc.uchile.cl
mailto:Bill.Harrison@cs.tcd.ie
mailto:Vinny.Cahill@scss.tcd.ie
mailto:Siobhan.Clarke@scss.tcd.ie
http://www.coe.berkeley.edu/labnotes/1101smartbuildings.html
http://robotics.eecs.berkeley.edu/~pister/SmartDust/
http://java.sun.com/javame/
http://www.sunspotworld.com

this sampling is done, FlowTalk abstracts this mechanism by
making long-latency operations synchronous and blocking.

The contributions of this paper are twofold: (i) it first
points out challenges in the computational model offered by
wireless sensor networks, (ii) it proposes an approach called
controlled disruption to deal with the implicit asynchrony of
sensors. To ease a software engineering effort when building
an application, the benefits of FlowTalk are: (i) applications
for embedded sensor devices are built with classes and objects
rather than shared global variables and functions, (ii) use of
sensors and the radio is driven by method invocations, rather
than using signals and callbacks.

The structure of this paper is as follows: Section 2 presents
the issues related to long-latency operations and their asyn-
chrony. In Section 3 we describe the FlowTalk programming
language, present its properties and show how FlowTalk
removes issues resulting from this asynchrony. Section 4
discusses the design choices for FlowTalk and describes its
limitations. In Section 5 we briefly present the internals of our
compiler. Section 6 gives an evaluation of FlowTalk in terms of
memory and battery consumption. In Section 7 we enumerate
the principal related works in the field of programming models
for embedded devices. Section 8 concludes the paper.

2 LONG-LATENCY OPERATIONS AND THEIR
ASYNCHRONY

A mote5 is a small, flexible and low-cost embedded device
enabling external sampling of the environment (light, magnetic
field, sound, ...) and radio communication. The motherboard of
a mote contains a micro-controller, a small quantity of memory
(anywhere from 0.5 and 4Kb), a radio unit, three colored
leds and a collection of sensors. Wireless sensor networks
are composed of possibly large numbers of such motes or
similar devices. Such a network allows for measurement of
environmental values like the light and magnetic field intensity.
This data is propagated through the network in order to be
processed. Lifetime requirements for such devices scale from
months to a year.

This section describes general issues when programming
wireless sensor devices. We use a simple application as an
illustration (Section 2.1), then show how these issues are re-
flected in nesC and TinyOS [6], [17], one of the most common
programming platforms for embedded sensor networking.

2.1 Disruption in the Application Control Flow
To illustrate the difficulty of programming a wireless sensor
device, let us consider a simple behavior that consists of mea-
suring the light and magnetic field intensity, and then sending
these values to remote devices. This sensing application is
composed of fives steps: (1) sampling the light intensity, (2)
sampling the magnetic field intensity, (3) sending the adjusted
sum of these two sampled values to a second remote device
(operators << and >> performs bit shift operations), (4)
sending the value of the light intensity (obtained from the

5. http://www.xbow.com/Products/productdetails.aspx?sid=158

Micro-
controller Light sensor

1

2

3

request a sampling

completion
Magnetism

 sensor

request a sampling

completion
Radio
unit

sending to a second mote the sum of the two samplings

completion

sending to a third mote the light value

completion
4

5

sending to a fourth mote the magnetism value

completion

Fig. 1. Control flow of the Sensing application using two
sensors and the radio unit.

first step) to a third device, and (5) sending the magnetic field
intensity (obtained from the second step) to a fourth device.
The control flow of this behavior is depicted in Figure 1. The
benefit of summing the two samplings is to emit only one
radio packet while the receiver device has to wait for only one
package. Numbers on the left-hand side denote the different
steps of the computation. This application is intended to be
installed on a single wireless sensor device. Programs that run
on the three other devices are not discussed.

Operations like sampling a sensor and emitting a radio
packet are qualified as long-latency operations. Those op-
erations are non-blocking and are realized on the executing
platform by sending requests to different electronic component
units. Moreover, the time necessary to process a long-latency
operation cannot be predicted. The control flow of an applica-
tion under execution is not suspended or halted while such an
operation is processed, leading to an asynchrony between the
application and the sensors. From this fact, we have identified
two main issues:

• Data-passing. Passing data between different steps of a
computation has to be realized through shared memory.
Whereas a stack is used in traditional languages such
as Java and C, a heap has to be used to pass values
over different steps of the computation since the run-time
function stack does not contain any reference to long-
latency operation calls.
In Figure 1, the value resulting from Step 1 is used in
Steps 3 and 4. This value has to be stored in the heap,
leading to issues stemming from concurrent access as

2

http://www.xbow.com/Products/productdetails.aspx?sid=158

illustrated below.
• Sequence of operations. Long-latency operations are non

blocking, and the time needed for them to be processed
cannot be predicted. Whereas instructions defining pro-
gram code are naturally ordered in memory in a linear
fashion, proper ordering of long-latency operations is
not generally supported as illustrated in Section 2.2.
Invocations of these operations are driven by the program
code, and are therefore ordered, but no assumption can
be made about the order of their completion.
Sometimes, it is perfectly acceptable for long-latency
operations to complete in an out-of-order manner. This
is illustrated in Figure 1. Although we do not make any
assumption on the three remote motes, it is probably not
necessary to have Steps 3, 4 and 5 executed sequentially.
However, Step 1 must be executed before Step 2, itself
executed before Steps 3, 4 and 5. Usually requesting a
sampling of the magnetic field intensity takes a longer
time than emitting a radio packet. Although the sampling
can be triggered before the radio emission, the latter may
still complete before the former.
A programer should be free to specify sequences of
operations so that operation completions reflect the order
of their invocation.

Whereas in traditional languages such as Java, C and
Smalltalk the application control flow is driven by the run-
time stack and instruction sequence, in a wireless sensor device
this stack is free from any traces of long-latency operations.
We call this situation a disruption in the control flow and its
consequences are the two issues described above. Figure 1
illustrates a control flow of an application that current event-
based programming models for wireless sensor devices do not
express in a satisfactory way.

This problem is not singular to wireless sensor network.
In fact, most of event-based mechanism suffers from the
inversion of control issue making the main application control
flow moves from places where event handlers are set. This
paper innovates on formulating and illustrating the inversion
of control issue in wireless sensor network, and provides an
adequate solution to it. The inversion of control is mentioned
further down in the related work section, when talking about
the Scala programming language.

2.2 Illustration with nesC

TinyOS [39] is an open-source operating system designed for
wireless embedded sensor networks. Applications for TinyOS
are written in nesC, a derivative of C dedicated to motes. This
subsection shows how the issues mentioned above in Section
2.1 appear in this popular programming platform for motes,
TinyOS. nesC [6] uses an event/callback mechanism to handle
long-latency operations. The nesC approach to representing
long-latency operations is to make them split-phase [6], [17]:
operation request and completion are separate functions. In
essence, the sensing application, described above, is written
in nesC as the following:

// Sensing application written in nesC
// It consists of reading two sensors, and sending their

// values to other motes
uint16 t lightIntensity;
uint16 t magneticIntensity;
uint16 t step;

// Step 1
task void senseAndSend() {

call LightSensor.getData ();
}

async event result t LightSensor.dataReady (uint16 t value) {
atomic {lightIntensity = value;}
post taskForMagnetism();
}

// Step 2
task void taskForMagnetism() {

call MagneticSensor.getData();
}

async event result t MagneticSensor.dataReady (uint16 t value) {
atomic {magneticIntensity = value;}
post sendToRadio();
}

// Step 3
task void sendToRadio() {

...
atomic {

msg->val = (lightIntensity>>7) + (magneticIntensity>>7)<<8;
step = 4;
}
// 2 identifies the second mote
call SendMsgRadio.send (2, ..., msg);
}

// Invoked by the runtime when task sendToRadio has completed
event result t SendMsgRadio.sendDone(...) {

...
atomic {

// Step 4
if (step == 4) {

msg->val = lightIntensity;
step = 5;
// 3 identifies the third mote
call SendMsgRadio.send (3, ... , msg);

} else
// Step 5
if (step == 5) {

msg->val = magneticIntensity;
step = 0;
// 4 identifies the fourth mote
call SendMsgRadio.send (4, ... , msg);
}
}
return SUCCESS;
}

The nesC code contains 3 global variables. lightIntensity and
magneticIntensity are intended to store the light and magnetic
intensity, respectively. The step variable is used to indicate the
current stage of the computation. Because these variables are
global, their access has to be declared as atomic to prevent
concurrent calls. This is realized using atomic blocks. The
nesC compiler cannot guess that no race condition will occur.
nesC checks to see whether variables aren’t protected properly
and issues warnings when this is the case. The rule for when a
variable has to be protected by an atomic linguistic construct
is: if the variable is accessed from an async function, then it
must be protected. Async functions are functions that can run
preemptively, they run asynchronously with regards to tasks.

3

“Tasks” are provided by nesC to prevent re-entrance and
preemption. A task is intended to be posted, making the
execution of the code encapsulated by this task deferred.
(Step 1) The task senseAndSend() is the entry point of the
program. It simply requests light intensity sampling. (Step
2) When the value is computed by the light sensor, the
callback LightSensor.dataReady (uint16 t value) is invoked.
The variable value holds the measurement result. The callback
stores this value in the global variable lightIntensity, and
posts the task taskForMagnetism(). Without entering into the
technical details, a callback execution has to be short [17,
Section 2.1]. This is the reason why steps consist of callbacks
and tasks. The task taskForMagnetism() requests a magnetic
field intensity sample. (Step 3) Once completed, the call-
back MagneticSensor.dataReady (uint16 t value) is invoked.
It stores the value in the global variable magneticIntensity
and emits a radio packet to the mote 2 with the sum of
the two samplings. The numeric value 4 is assigned to the
global variable step. (Step 4) When this radio emission
has completed, the callback SendMsgRadio.sendDone (...) is
invoked signaling the completion of the radio emission. The
step variable is used to request the radio emission to mote 3
with the light intensity value. It also sets the step variable to 5.
(Step 5) The callback SendMsgRadio.sendDone (...) is again
invoked, and finally the last radio emission is performed).

The number of lines of code in the complete application is
136, spread over 3 files.

One of the primary goals of nesC is to provide an efficient
mechanism to minimise resource consumption, like memory
and power. The main construct is the callback (split-phase).
However, this construct makes programming a task more
difficult. First, data passing between different steps of the
computation is realized by means of global variables. Accesses
need to be atomic in order to prevent concurrent executions.
Second, the sequence of operations is driven by the callback
invocation ordering. Since the same callback is invoked twice,
for signaling completion of two operations, a global variable is
necessary. As a result, the behavior of the sensing application
depicted in Figure 1 is difficult to recognize in the nesC
program.

3 FLOWTALK

3.1 FlowTalk in a Nutshell
FlowTalk is a new programming language that makes the
programming of wireless sensor embedded devices easier. It
abstracts the inherent asynchrony of sensor devices and pro-
vides an elegant and simple composition mechanism enabling
the reuse of components across different target platforms and
embedded software systems.

A program written in FlowTalk is compiled into the native
bytecode of the target embedded platform. Programs written
in FlowTalk can be run on the Moteiv Telos/TMote and the
Crossbow Mica embedded platforms. As described in Section
5, FlowTalk is intended to be used with TinyOS [39]. The
executing platforms supported by the FlowTalk compiler
are therefore the ones supported by TinyOS. Representing
electronic components as objects and the controlled disruption

mechanism are the two main characteristics of FlowTalk.

Object-based. Each physical unit on the device (e.g., a sensor
or a timer) and each software component (e.g., encryption
component) is modeled as an object. Objects are composed
together to form executable software. An execution consists
therefore of a set of interacting objects. An object is an
instance of a class that has its own set of values (i.e., state)
and that is able to handle the invocation of methods that are
defined in its class (i.e., behavior).

Interaction between a timer, leds and sensors is modeled
by message exchanges between objects. Exchanging messages
is the only way for objects to interact. Similarly to pure
object-oriented languages such as Ruby and Smalltalk, the
“everything is an object” paradigm does not prevent one from
having global state. Global state in FlowTalk is easily realized
by shared a particular object reference to a number of other
objects. Variable accessors allow for state access.

Classes can be instantiated only at compile time. Dynamic
object creation is not permitted. As explained in Section 4, the
rationale behind these strict policies is to comply with limited
device resource constraints.

Subclassing enables specialization. New methods can be
added in a subclass, and existing methods can be redefined.
The original definition of a redefined method is accessible by
means of an aliasing mechanism.

Adopting object-orientation unifies the interaction between
different software components under a single notion, message
passing.

Controlled disruption. To cope with the asynchrony of
long-latency operations, the controlled disruption mechanism
makes these operations blocking. Method calls triggering
long-latency operations are statically detected by the compiler.
Each method is cut down into small pieces, each called a
fragment. At runtime, method invocation inserts fragments
into a global queue leading to a sequential processing
order. Each fragment has a reference to its method context
containing the value of local variables.

Design goals. FlowTalk offers an approximation of the tra-
ditional object paradigm for embedded device. The primary
objective of FlowTalk is to provide syntactical constructs to
express application control flow in presence of an underlying
event-based executing platform. This is achieved by turning
long-latency operations into blocking operations. Compared
to traditional object paradigm, we have the following four
restrictions:

• Method call is the primary mechanism to express control
flow. Recursive calls are permitted only if (i) the called
method does not perform any long-latency operation, or
(ii) if this call is a tail call, i.e., no further operation is
performed with the result of the call except than returning
it to another caller. A method performing a long-latency
operation cannot be active more than once at the same
time. The reason for this limitation is that long-latency
operations should be realized without consuming stack
frames.

4

• A variable that holds an object on which long-latency
operations may be performed is final. This implies that
no other value may be assigned to this variable. It is
essential to statically locate long-latency operations in a
program to cut the program into small pieces of code.

• Objects on which long-latency operation may be directly
invoked (e.g., sensor or a radio object) cannot be passed
as arguments when calling methods. This restriction is
necessary to enable the compiler to statically locate long-
latency operations.

• Objects cannot be dynamically created. Dynamic mem-
ory allocation is widely recognized as a very expensive
feature difficult to cope with wireless sensor network’s
constraints [37], [42], [43]. Objects are statically created,
at composition time.

These restrictions will be explained in a more exhaustive
fashion in the remaining of this paper.

3.2 Sensing Application in FlowTalk
The application described in Section 2 is defined in FlowTalk
by means of a class SensingApplication, and two methods
main and senseAndSend. In FlowTalk, method definitions are
syntactically separated from the class declaration. The class
SensingApplication is defined as the following:

RTObject subclass: #SensingApplication
variableNames: ’leds timer sensor1 sensor2 radio’

SensingApplication is a subclass of RTObject and defines 5
instance variables. RTObject belongs to the runtime provided
by FlowTalk and is required to be the top-level class in every
class hierarchy composing an application. The main method,
the starting point of the application, is defined on this class:

SensingApplication main {
timer invoke: #senseAndSend every: 250.
}

Once downloaded into the embedded device, the program
will immediately start executing from this method. The main
method simply initializes the timer. It sends to the object
referenced by the variable timer the message invoke:every:6

with two arguments, the symbol #senseAndSend and the
integer 250. The timer is set up to repeatedly invoke the
method senseAndSend every 250 milliseconds.

The method senseAndSend defined on the class SensingAp-
plication defines the behavior described in Figure 1 augmented
with the use of leds to indicate the current step of the
computation:

SensingApplication senseAndSend {
| v1 v2 |
leds display: 1. ”Step 1”
v1 := sensor1 read.

leds display: 2. ”Step 2”
v2 := sensor2 read.

leds display: 3. ”Step 3”

6. The reader familiar with the Smalltalk programming language will
immediately recognize the similarity with the perform: Smalltalk reflective
facility. In FlowTalk however, invoke: accepts only a symbol as immediate
value. General expression cannot be provided as a parameter to invoke:.

radio send: ((v1>>7) + ((v2>>7) << 8)) to: #mote2.

leds display: 4. ”Step 4”
radio send: v1 to: #mote3.

leds display: 5. ”Step 5”
radio send: v2 to: #mote4.
}

The method senseAndSend first defines two temporary
variables, v1 and v2. They are used to collect the sensor
samples. The expression leds display: 1 displays (using a
binary format) the value 1 on the leds. The expression v1 :=
sensor1 read performs a reading on the sensor1 and assigns
the result to the first temporary variable, v1. This reading is a
blocking operation. The second step is very similar to the first
one. The value 2 is displayed and a reading from the second
sensor is performed. The third step makes the mote, on which
the program is executing, emit a radio packet toward another
mote which has the id #mote2. The value transmitted is the
sum of the two samples. The fourth step sends the value held
by v1 to the mote #mote3, and the last sends the value v2 to
#mote4. The three mote identifiers #mote2, #mote3, #mote4
are values used to designate physical mote. Such a value is
used when deploying an application on a device.

In order to form an executable, ready to be installed into
a mote, the SensingApplication class needs to be instantiated
and its variables bound to objects that describe the leds, the
timer and the sensors:

SensingApplication composeWith:
{#leds -> Leds .

#timer -> Timer .
#sensor1 -> LightSensor .
#sensor2 -> MagneticSensor .
#radio -> Radio }

The composeWith: directive is interpreted at compile time,
before the application deployment therefore. It hooks together
the different application components by instantiating the class
SensingApplication and “filling” this new instance with in-
stances of the classes Leds, Timer, LightSensor, Magnetic-
Sensor and Radio. The practical result of the composeWith:
operation is the generation of nesC files. These classes are
part of the FlowTalk runtime. Each of them is instantiated, the
created object is then assigned to the corresponding instance
variable of the object issued from the class SensingApplication.
A same instance may be assigned to more than one variable
using nested arrows such as: v1 -> v2 -> Component.

The code given above describes the complete Sensing
application. Whereas the nesC version has 136 lines of code,
the FlowTalk version of this application has 24 lines only. The
code FlowTalk is translated into nesC by our compiler. The
number of generated lines of code is in the same order of
magnitude, with a minimal memory and battery overhead, as
explained below (Section 6).

3.3 Controlled Disruption
The previous subsection gave an example of using a blocking
long-latency operation with FlowTalk. Accesses to sensors
and the radio suspend the control flow of the application.
It is resumed later on, when the suspending operation has

5

completed. During the suspension, the micro-controller can
execute another part of the code, for example, if a second
timer is running.

Making long-latency operations blocking is non-trivial
because of very limited resources. Since thread scheduling is
a complex mechanism that requires a significant amount of
memory, providing threads would come at too high a cost to
be supported by the motes. To make long-latency operations
blocking, we developed a mechanism named controlled
disruption.

Long-latency operation identification. At compilation time,
long-latency operations are statically identified in the program.
As explained below, this is achieved through constraints on
variables holding a sensor or a radio. Each method is cut down
into small pieces named fragments. Each fragment contains a
sequence of instructions which ends with a long-latency oper-
ation. Methods that do not contain any long-latency operation
(for example, performing a computation that does not involve
either the sensors or the radio), are assimilated as one single
fragment. The sequence of long-latency operations is reflected
in the order of fragments composing the method.

At runtime, when a method is invoked, the first fragment
of the method is placed in a fragment queue. Fragments con-
tained in this queue are sequentially processed. When the first
fragment has completed, the following fragment is inserted
into the fragment queue. The execution of the method ends
when all fragments have been executed. Only one fragment
queue is embedded into each mote, it can, therefore, contain
references to fragments issued from different methods.

The division of the method senseAndSend into fragments
is illustrated in Figure 2. Each fragment ends with a call to a
sensor or to a radio. This division is performed at compile
time, by means of composeWith:. Each class provided by
FlowTalk has the knowledge about long-latency operations that
it provides (cf., Section 5). For instance, the class LightSensor
declares the method read to trigger a long-latency operation.
This is specified by the mapping between a FlowTalk class
and a TinyOS component.

Let’s assume an application in which three methods may
run concurrently:
RTObject subclass: #SensingApplication

variableNames: ’timer1 timer2 timer3 sensor1 sensor2 sensor3 radio’

SensingApplication main {
timer1 invoke: #senseAndSend every: 250.
timer2 invoke: #m1 every: 1000.
timer3 invoke: #m2 every: 2000.
}

The three methods senseAndSend, m1, and m2 will there-
fore run concurrently. The scheduling is determined by the
completion of long-latency operations contained in them. Fig-
ure 3 gives an example of an execution of these three methods.
As illustrated in Figure 2, senseAndSend is composed of 5
fragments (a, b, c, d, and e). Methods m1 and m2 consists of
x, y, z and o, p, q, respectively. We focus on the execution of
senseAndRead.
(1) Invoking the senseAndRead method inserts the fragment

a into the queue.

SensingApplication senseAndSend {
 | v1 v2 |
 leds display: 1.
 v1 := sensor1 read.

 leds display: 2.
 v2 := sensor2 read.

 leds display: 3.
 radio send: (v1 + v2) to: #mote2.

 leds display: 4.
 radio send: v1 to: #mote3.

 leds display: 5.
 radio send: v2 to: #mote4
}

a

b

c

d

e

Fig. 2. The method senseAndSend is cut down into small
pieces, called fragments (bit shift operations elided for
conciseness).

a

b

b y

c z

z

d

y o p

x Fragment
Fragment

under
execution

Link to
the next
fragment

Legend

o

(1)

(2)

(3)

(4)

(6)

(7)

(8)

(9)

Fragment for methods:
 senseAndSend: a, b, c, d, e
 m1: x, y, z
 m2: o, p, q

d

o c(5) z e(10)

p

p

e

Fig. 3. Example of an execution of the senseAndSend
method. Fragments y and z result from other method
executions.

6

a

b

self = ...
frag = a
v1 = ...
v2 = ...

b y

y o

self = ...
frag = b
v1 = 5
v2 = ...

self = ...
frag = y
t = 432
u = 123

Legend

x Fragment

self = ...
x = v

Current
method context of

the execution n

1

1

2

n

(1)

(2)

(3)

(4)

o

self = ...
frag = b
v1 = 5
v2 = ...

1

o c
self = ...
frag = o
d = ...

...

3
(5) z

Fig. 4. Two methods are under execution, two contexts
are therefore in use.

(2) When this fragment has completed and sensor1 has
finished its sampling, it is removed from the queue. And
the fragment b is then enqueued.

(3) While b is executing, fragments like y and o issued from
m1 and m2 are inserted. These two methods may be
executed by some timers.

(4) When b has completed and sensor2 has not finished its
sampling, it is removed from the queue, and y is being
executed.

(5) y has completed, and o is being executed. In the mean-
time, sensor2 has completed its sampling, which results
in an insertion of the c fragment. The fragment z that
follows y is also inserted.

(6) The o fragment has completed. c is now under execution.
(7) z is being executed. In the meanwhile, the radio has

completed its emission (in fragment c), the fragment d
is inserted. p is inserted as well.

(8) d is being executed.
(9) The e fragment is inserted.

(10) e is being executed. Once completed, the method
senseAndSend has been executed. Note that the
fragment q remains to be processed, however we do not
represent it since it is not related to senseAndSend.

Fragments. Methods are cut down into several pieces, called
fragments. A fragment contains code statements and an envi-
ronment called a method context. A method context is shared
among fragments issued from the same method. The code
contained in a fragment ends with a long-latency operation,
except for the last fragment (e.g., another fragment f might
simply use the leds, which is not a long-latency operation). The
method context contains a reference to the current receiver,
denoted by the self pseudo-variable, the list of values held in

temporary variables and the identifier of the current fragment
under execution.

When a method is called, the statically allocated method
context is initialized with a reference to the self variable and
some empty storage location for variables. It is left to the
programmer to initialize those variables.

Each fragment ends with a long-latency operation (except
for the last fragment of the method). When a fragment under
execution has completed, it is removed from the queue and
the long-latency operation is performed (i.e., sensor sampling
or use of radio). In the meantime, other fragments might be
processed. When the long-latency operation has completed,
the following fragment is inserted into the queue. The new
fragment shares the same method context as the previous
fragment.

Figure 4 shows three methods contexts. The first one
corresponds to the senseAndSend method, the second one
to the m1 method, and the third one to m2. The method
context 1 is filled during the execution of fragments a and
b at steps (1), (2), and (3). When the long-latency operation
associated with fragment a has completed, b is inserted into
the queue. The method context is passed from a to b, and the
fragment id corresponding to b is set. In (3), new fragments
are inserted. In (4), another method is under execution.

Declaring a long-latency operation. Designing a new class to
model a sensor may necessitate declaring a method as a long-
latency operation. For example, a class TemperatureSensor
will need to define a read method and annotate it as a long-
latency operation. This is done via a method annotation (< ...
>):
TemperatureSensor read {

<LongLatencyOperation> }

The annotation LongLatencyOperation declares the read
method to be a long-latency operation. This method is there-
fore blocking and it leads to a new fragment insertion at execu-
tion time. Annotating a method as a long-latency operation is
static information used by the compiler to identify operations
that are inherently asynchronous from the executing platform
point of view. As described in Section 5, the read method will
have to be mapped to some low-level component.

The LongLatencyOperation annotation is put only on
function that are directly long-latency. There is no need to
transitively annotate functions that may invoke the long-
latency one.

Branching instruction. Use of branching instructions such
as a conditional (condition ifTrue: [...] in FlowTalk) needs
some special care since the program control flow might not be
constant over time. For example, consider the following piece
of code:
ApplicationClass aMethod {
| v |
((lightSensor read) >> 7) > 2)

ifTrue: [
v := soundSensor read.
radio send: v to: 2.
radio send: v to: 3].

radio send: (magnetismSensor read) to: 4.

7

ApplicationClass aMethod {
 | v |
 ((lightSensor read >> 7) > 2)
 ifTrue: [
 v := soundSensor read.
 radio send: v to: 2.
 radio send: v to: 3].

 radio send: (magnestismSensor read) to: 4.

 led greenToggle.
}

a
b

c
d

f

g

e

Fig. 5. Controlled disruption applied to a branching
instruction.

a b

c d

e f g

Fig. 6. Control flow of the branching example.

led greenToggle.
}

If the first sample of the light intensity is greater than 2,
then the intensity obtained from the sound sensor is sent to two
motes. After this condition, the magnetic intensity is sampled
and sent to a fourth mote. The green led is toggled as the last
instruction.

The controlled disruption mechanism divides this method
into 7 fragments, as depicted in Figure 5. The execution
sequence of those fragments depends on the intensity of the
light. Figure 6 illustrates the fact that after the b fragment,
the following fragment can be either c or e.

Loops. Iterations in FlowTalk are achieved through recursive
method calls. Loops constructs are currently not supported in
FlowTalk, but this is simply a matter of syntactic sugar.

Benefits of FlowTalk. In Section 2.1 we identified three prob-
lems stemming from the disruption in the sensing application
control flow, namely: (i) the difficulty with transmitting data
along each step of a computation, (ii) the need to minimise re-
source consumption, especially regarding memory and power,
and (iii) the ability to express sequences of operations. The
FlowTalk version of the Sensing application has the following
properties:

• Data is passed throughout the execution of a method by
using local variables. By being in the same lexical scope,
variables are accessible from any part of the method that
defines them. Since fragments are sequentially processed
and they cannot preempt each other, concurrent local
variable access cannot occur.

• A fragment is inserted in the fragment queue only when
a long-latency operation has completed. If no other frag-
ment has to be processed while waiting for a fragment’s
completion, the micro-controller may be put in a sleep
mode by the operating system (TinyOS in our case). The

overall management of fragments keeps the activity of
the micro-controller to a minimum.

• The sequence of operations is reflected in the flow of
instructions contained in a method. By making long-
latency operations blocking, sensors are always synchro-
nized with the main application.

As a result, the FlowTalk version of the Sensing application
reflects the different steps of its control flow (depicted in
Figure 1). As we shall see later (Section 6), the fragment
management incurs a negligible amount of extra memory and
bettery.

The innovation of the language goes well beyond inversion
of control that may result from long-latency operations. A
programmer will not have to think in terms of asynchronous
operation anymore, which bring down the complexity of
programming WSNs.

4 DISCUSSION

This section discusses the design choices taken by FlowTalk
and their limitations. Beside syntactic differences, FlowTalk
differs from languages such as Java on several important
points, most especially regarding dynamic allocation in order
to cope with limited power and memory resources.

Object creation. Most object-oriented programming lan-
guages allow classes to be instantiated at runtime. Objects
stored in a heap are under a common memory management
policy possibly dictated by a garbage collector. In FlowTalk,
objects can be created only at compile time, when differ-
ent software components are assembled using composeWith:.
Dynamic object creation is not permitted. Although statically
identifying different objects needed at the execution is a strong
constraint, it is widely recognised [37], [42], [43] that dynamic
memory management is difficult to cope with while preserving
battery power.

Most of the classes in FlowTalk can be freely instantiated.
However classes that represent electronic components can be
instantiated only once. It would not make sense to instantiate
a class RadioEmitter when the execution platform offers only
one radio emission unit. This applies to the classes Leds,
Radio and for all the different sensors.

Inheritance. In order to reduce the number of entities defined
in memory, the class hierarchy is flattened into one single defi-
nition. This is enabled by using an alias mechanism for meth-
ods. The super pseudo-variable does not exist in FlowTalk.
When a subclass is created, methods can be aliased, enabling
invocations of the superclass behavior. Creating an alias for a
method adds a new name in the class method dictionary. The
aliased method can be invoked through its former name and
its alias. For instance, refining the class SensingApplication by
emitting a sound at each timer invocation is written:

SensingApplication subclass: #SensingApplicationWithBeeper
variableNames: ’beeper’
alias: {#sense -> #senseAndSend }

SensingApplicationWithBeeper senseAndSend {
self sense.

8

beeper emitBeep.
}

SensingApplicationWithBeeper
composeWith: {#leds -> Leds #beeper -> Beeper }

The alias: directive creates an alias sense for the method
senseAndSend. At this stage the method senseAndSend can
be invoked by sending the message senseAndSend or sense to
self. The new definition of the method senseAndSend replaces
the previous definition (shown in Figure 2). This new method
calls the original definition by means of a message sense sent
on self, the current object. The expression beeper emitBeep
emits a beep.

This aliasing mechanism of FlowTalk is essentially
the same as the alias composition operation in the Traits
models [14, Section 4.3]. This formulation of class inheritance
allows a class hierarchy to be flattened.

Threads and fragments. One motivation of the controlled
disruption mechanism is to make long-latency operations
blocking. Section 3.3 mentions thread-support would come
at an unacceptably high cost for an embedded device with a
very small amount of memory. One might therefore wonder
what is the difference between a fragment and a thread.
Whereas a thread traditionally comes with an individual
stack, a fragment contains a reference to a method context
that is shared among fragments issued from the same
method invocation. Statements contained in a fragment
use the globally unique runtime stack. Fragments cannot
be preempted, and their insertion into the fragment queue
is driven by the completion of implicitly defined existing
fragments.

Controlled disruption as coroutines. Coroutines can
be used as the basis for transferring control [10], [12]. With
coroutines, a blocking operation is separated into two parts:
one before the block and one after. Dynamic information is
stored in a context. The pre-block part contains a reference
(i.e., function name) to the post-block part. The coroutine is
defined by this reference.

Controlled disruption is very similar to coroutines. Long-
latency operations are used to delimit fragments, each frag-
ment is uniquely and statically identified and fragment are
not preemptively scheduled. However, a number of differences
exist.

The state of a coroutine is determined by its current entry
and exit points. The dynamic state of a fragment is stored into
a method context. This means that the lifespan of a fragment
and a method call is dictated by last-in, first-out; in contrast,
the lifespan of coroutine is dictated entirely by their use and
need.

A fragment does not have an explicit and unique yield
instruction. It rather uses long-latency operations to delimit
its entry and exit points.

Fragment and continuation. A continuation is a procedure
that resumes a remaining computation when giving a value.
Continuations are constructs that give a programming language

the ability to save the execution state at any point to return
to that point later on. Intuitively, a continuation represents
the “rest of the computation”. Fragments and continuation are
both mechanisms to suspend and resume a program execution.
However, fragments differ from continuation on several points.

Continuations allow you to resume a computational state
only if you have visited it before [25, Page 186]. Only back
leap may be expressed using continuation therefore. Fragments
allow one to do forward jump. This is used to express a control
between different software component. Back leaps are also
permitted in FlowTalk, only if a recursion is tail-call. The
selling point of continuations is to permit leap on non tail-
call.

The second difference is about first-class entities. Contin-
uations need to be first-class entities in order to be stored in
a variable and retrieved later on. In FlowTalk, a programmer
cannot obtain the reference of a fragment. Only the run-time
has access to this.

Although similar on the surface, the two differences
mentioned above make fragments distinct from continuations.

Static fragment allocation. One aspect of controlled dis-
ruption is that fragments need to be statically defined. Con-
sequently, some variables are single assignment only. As
explained above, fragment identification is achieved by identi-
fying calls representing long-latency operations in the source
code. To achieve this, it is necessary to statically determine
which long-latency operations can be invoked for each vari-
able. As a consequence, a variable that holds a sensor or
a radio cannot hold a value different from the one given
at composition time. Objects representing sensors or a radio
cannot be passed as method arguments, and no object can be
assigned to a variable that has been declared to refer to a
sensor or a radio with composeWith:.

However, variables that are bound to any object that does not
trigger a long-latency operation can be initialized and freely
rebound at execution time. Restricting some instance variables
to be single assignment is a consequence of statically identi-
fying fragments. Although dynamic definition of fragments
would be conceivable, it would probably come at a too high
cost in term of resources.

Recursive method calls are permitted only if the call is an
tail call (either returns a value without making a recursive
call, or returns directly the result of a recursive call) or if the
method does not contain any long-latency operation. As with
most programming languages for wireless sensor languages,
dynamic memory allocation is not permitted. Supporting recur-
sion or reentrance for non-tail calls necessarily implies method
context allocation. Our experience with FlowTalk shows that
not supporting a general schema for recursion and reentrance
does not represent a major obstacle.

Probably the restriction to use sensor or radio objects as
message arguments may be partially softened by determining
whether method variable arguments are polymorphic or not.
In that case, data flow analysis needs to be applied. We plan
to investigate this as future work.

Parallelism. In some situation, some operations may be re-

9

alized in parallel. For example, taking the scenario example
given in Figure 1, it will be perfectly legitimate to perform the
two sensors samplings at the same times since the light and
magnetism sensors are two different physical components on
the motherboard. This is a behavior that may be programmed
in nesC and is supported by TinyOS [22].

However, the controlled disruption makes long-latency
operation blocking, preventing them to be executed in
parallel. Our experience based on the realization of several
applications involving sensors sampling and data sending did
not make parallelism an important wish. On the other side,
we suspect parallelism to reduce the time the micro-controller
is active, hopefully leading to a reduced battery consumption.
Currently, FlowTalk does not support parallelism but will
definitely be investigated in the future.

Interaction with nesC. As it will be described in detail in
the coming section, a FlowTalk application is mapped into a
set of TinyOS components. A FlowTalk class may implement
a TinyOS interface either to be seen by the operating
system in case of events, or for being interfaced with a
nesC application. By “implementing a TinyOS interface”
we mean that each function declared in the interface has
to be associated to a method defined in FlowTalk. The fact
that FlowTalk is translated into nesC makes the interaction
between these two languages trivial: a TinyOS component
generated from a FlowTalk application may be interfaced
with a nesC application as any plain nesC component.

Speed overhead. Unfortunately, time profiling techniques
for wireless sensor networks have not gained a significant
acceptance. We therefore have not been able to conduct any
experiment to measure speed overhead since we haven’t found
any usable tools. However, since the majority of applications
for wireless sensor spend most of their time in waiting for
incoming network message or timer events, the usability
of FlowTalk should not be impacted, even in the case of a
significant overhead.

Applicability to other languages. Coroutines and
continuations have been traditionally employed to model
the control flow of applications in the presence of multiple
entry and exist points in various settings (e.g., Operating
systems [12], Web servers [13], [29]). Although we have
not demonstrated the applicability of controlled disruption
to other languages, we believe there is no major obstacle to
have controlled disruption in nesC and in Java.

TinyOS/nesC specificity. FlowTalk offers a linguistic con-
struct to deal with long-latency operations in a blocking
fashion without incurring significant overhead. The root of the
problem solved by FlowTalk is callback execution ordering.
TinyOS cannot order callback execution. As we illustrated
earlier (Section 2), the only way for a nesC programmer to
palliate this is to have a reification of the execution control
flow, traditionally realized with global variables. TinyOS/nesC
cannot ensure callback ordering because several instances of
the same events must be bound to the same callback. As

exemplified in Section 2.2 the callback associated to the
radio (SendMsgRadio.sendDone(...)) is invoked at each radio
transmission, even if the transmissions occur at different stage
in the scenario.

5 IMPLEMENTATION

The FlowTalk compiler performs a global whole program
analysis. This section describes different parts of the
implementation and code generation of the FlowTalk
compiler. Our compiler is freely available7. It is intended
to be used with TinyOS, and generates nesC code as
an intermediate language, before being compiled into
machine code. We compile FlowTalk to nesC for reasons of
convenience.

FlowTalk based on TinyOS and nesC. TinyOS [39] is an
open-source operating system designed for wireless embedded
sensor networks. It provides an abstraction of the executing
platform to enable applications to be easily ported to various
embedded device models. FlowTalk generates executable code
for TinyOS.

The FlowTalk compiler generates executables intended to
be run using TinyOS. As nesC [17] is the language meant to
be used with this operating system, our compiler produces
nesC source code. nesC is an extension to the C programming
language with some linguistic modularity constructs and
makes long-latency operations split-phase. An interface
specifies a set of function signatures that are provided by,
and expected from, a module. A module is a set of functions
and variable definitions. A module can implement several
interfaces. The TinyOS task queue is used by FlowTalk to
schedule the fragments.

Fragment and method context. A static interpretation
multiple fragments composing a program. Those fragments
are then mapped into nesC event handlers and tasks. We
created a complete meta-model of the nesC language.
Compiling a FlowTalk program creates an instance of this
meta-model, which is then translated into nesC source code.
Each class is translated into a nesC module, and wiring
between modules is inferred from binding rules provided at
composition-time (cf., end of Section 3.2). A fragment is
implemented in nesC as a task, augmented with a method
context. A method context is statically allocated.

Translation into nesC. FlowTalk programs are translated into
nesC. Parts of the code that do not contain any long-latency
operation calls, are directly translated into nesC. For instance,
a FlowTalk class defines the method display: used to display
a value using a binary format on the leds:

7. http://bergel.eu/flowtalk.html

10

http://bergel.eu/flowtalk.html

”FlowTalk code”
Leds >> display: value

((value bitAnd: 1) > 0)
ifTrue: [self redOn]
ifFalse: [self redOff].

((value bitAnd: 2) > 0)
ifTrue: [self greenOn]
ifFalse: [self greenOff].

((value bitAnd: 4) > 0)
ifTrue: [self yellowOn]
ifFalse: [self yellowOff].

// nesC code
result t display(uint16 t value) {

if ((value & 1) > 0) {
call Leds.redOn();
} else {

call Leds.redOff(); }
if ((value & 2) > 0) {

call Leds.greenOn();
} else {

call Leds.greenOff(); }
if ((value & 4) > 0) {

call Leds.yellowOn();
} else {

call Leds.yellowOff(); }
return SUCCESS;
}

A class representing an electronic component may be in-
stantiated only once (Section 4). The self variable is directly
mapped to the corresponding TinyOS component, Leds in the
example above.

Polymorphism is supported naturally in FlowTalk since it is
an object-oriented programming language. The only restriction
applies to variables from which long-latency operation may be
invoked, and in that case those variables cannot be rebound or
passed as a message argument. No restriction applies to other
classes.
RTObject subclass: #A
A foo { ˆ10 }

RTObject subclass: #B
B foo { ˆ20 }

RTObject subclass: #Application
variableNames: ’a b leds’

Application bar: object {
ˆobject foo
}

Application main {
leds display: ((self bar: a) + (self bar: b))
}

Classes A and B define a method foo that returns 10 and 20,
respectively. The caret mark (ˆ) indicates a return statement.
The class Application defines three variables, a, b and leds.
It also defines a method bar: which requires an argument.
It simply returns the result of invoking the method foo on
the passed object. The main method displays the sum of the
two invocations of foo: on the leds. This example involves a
polymorphic variable, object.

When generating nesC code, classes are flattened into a set
of nesC functions. Each object contains a numerical value that
identifies its class. For instance, the example Application is
translated into nesC as follows:
typedef struct {uint16 t id;} *Object;
typedef struct {uint16 t id;} ClassA;
typedef struct {uint16 t id;} ClassB;
ClassA t1;
ClassB t2;
ClassA* a = &t1;
ClassB* b = &t2;
uint16 t foo (Object object) {

if (object->id == 1) {return 10;}
else if (object->id == 2) {return 20;}
}
uint16 t bar (Object object) {

return foo(object);
}

command result t StdControl.init() {
a->id = 1;
b->id = 2;
// Display 3 on the leds
display (foo((Object)a) + foo((Object)b));
return SUCCESS;
}

During the compilation, an identifier is given to each class.
In this example, the class A has the identifier 1 and B has the
identifier 2. Methods that are invoked through polymorphic
calls are translated into a set of conditional statements to
select the proper method to invoke (e.g.,foo(Object object)).
The function init() in the component StdControl is the entry
point for a nesC application. This function is invoked when
the program is downloaded to the embedded device. The main
method is translated into the init() function.

Translating a FlowTalk application that contains long-
latency operations inserts global variables to represents
linearized instance variables, temporary variables and the
application control flow. Each fragment is associated with
a numerical identifier. The resulting output of the sensing
application is presented in Section 2.2.

Mapping to TinyOS components. A FlowTalk class does not
have to be mapped to a TinyOS component if it does not model
an electronic component. Each class that describes a TinyOS
component has to declare methods that trigger a long-latency
operation. Moreover, it has to specify to which component it
has been mapped. For instance, the class LightSensor is defined
as the following:

LightSensor initialize {
self implementInterface:

((Interface @ #StdControl) aliasedName: #StdControlPhoto)
self implementInterface:

((Interface @ #ADC) aliasedName: #ADCPhoto)
}
LightSensor tinyOSComponentName { ˆ#Photo }

The methods initialize and tinyOSComponentName define
the mapping of the FlowTalk class LightSensor to the TinyOS
component Photo. Calls to the light sensor are made through
two interfaces, StdControl and ADC.

The StdControl interface is defined as:

Interfaces at: #ADC put:
((Interface new

addMethods: {
#read ->

(MethodPrototype for:
’async command result t getData()’) .

#dataReady: ->
(MethodPrototype for:

’async event result t dataReady(uint16 t value)’)
}) addCallback: #dataReady: for: #read; yourself).

Interfaces is a dictionary that contains all the nesC
interfaces. The interface ADC declares two methods, read
and dataReady:. The method read triggers a long-latency
operation because of the callback declaration. The method
read is mapped into a nesC command which has the prototype
async command result t getData(). The method dataReady:
is never called in a FlowTalk program, it is only used to
indicate that read is a long-latency operation and it designates
the prototype of the nesC function callback.

11

Application name Executable
size
(FlowTalk)

Executable
size
(nesC)

Ratio

CounterToLeds 1’532+46 1’570+46 0.97
SensorToLeds 2’382+81 2’348+67 1.01
RadioToLeds 8’994+326 8’790+326 1.02
CounterToLedsAnd-
Radio

9’674+354 9’398+384 1.02

SensorToRadio 10’088+356 9’618+386 1.04

Fig. 7. Ratio between the nesC and FlowTalk version of
a number of programs

Operation sequencing. In FlowTalk, long-latency operations
complete in the order of their invocation. As illustrated in
Section 2, nesC does not provide a dedicated mechanism for
this ordering. The fragment identifier contained in method
contexts is used to achieve operational sequencing.

Two fragments constituting a method cannot be present in
the fragment queue at the same moment. Only when a frag-
ment has completed, will the following fragment be inserted
into the queue. The execution of a method is represented by
the sequential execution of fragments, where the fragment id
numbers are increasing.

6 MEMORY AND BATTERY CONSUMPTION

We ported a number of applications from nesC to FlowTalk
and measured the memory and battery consumption against
the original nesC versions.

Memory consumption. The table below shows for 5 ap-
plications the memory consumption once deployed in the
embedded device. A part of the application is stored in the
read only memory (ROM) and another part in the random
access memory (RAM). The ROM contains static data such
as program code and the RAM contains volatile information
such as variables.

The column titled FlowTalk executable indicates the size
of the applications8. The value 1532+46 means that the
application CounterToLeds consumes 1532 bytes of ROM and
46 bytes of RAM. The nesC executable indicates the size of
the application written in nesC.

Those results shows that the controlled disruption has a
very light cost in terms of memory consumption. The largest
application (∼10 kB) has a penalty of only 4% compared to
the original nesC application.

The FlowTalk version of the CounterToLeds application is
slightly smaller than the nesC version. Although the reason for
this difference might be found deep into the nesC compiler,

8. The nesC version of those applications are CntToLeds, CntToLed-
sAndRfm, SenseToLeds, SenseToRfm, RfmToLeds. Their source code is
accessible online on www.tinyos.net/tinyos-1.x/apps. The FlowTalk version
is accessible in the distribution available online.

SensorToLeds CounterToLedsAndRadio

min min

Volt Volt

Fig. 8. Battery consumption

we believe that there is no apparent reason for this. There is
probably a missed optimization in the nesC compiler.

The controlled disruption mechanism has practically no
memory overhead mainly because only a low number of them
are necessary in the example we provided.

Memory consumption. Measuring battery consumption accu-
rately is a non-trivial task since no support are provided by
TinyOS. We used a battery voltmeter for that purpose.

We conducted the experiment as follows. We took 4 Cross-
Bow wireless sensor networks mica mote2:

• Mote A and B are powered each with 2 batteries Duracell
ProCell MN1500 LR6, 1.5 V, AA. The SensorToLeds
application provided with the TinyOS distribution runs
on Mote A. On Mote B we run the FlowTalk version of
it.

• Mote C and D are powered each with 2 batteries Ducacell
Rechargeable 1700 mAh, AA HR6, DC1500 Ni-MH, 1.2
V. These batteries are available in any drugstore. The
CounterToLedsAndRadio application distributed from the
TinyOS distributions runs on Mote C. Similarly, we run
the FlowTalk version of the application on Mote D.

We use different set of batteries to cover most typical usage
set and situations.

We tuned the application to a high regime (very short
timer interval), leading to a quick consumption. Mote A and
B stopped working after 417 minutes, and Mote C and D
after 328 minutes. Figure 8 shows the battery voltage against
the time in minutes. Each motes has two batteries. Since
the consumption of the two batteries in each mote is almost
identical, we use 1 graph to represent the 2 mote batteries.
Actually, few millivolts may differ between the batteries in a
mote, but we are reaching the limit of accuracy of measuring
tools at that level.

For each of the two applications, the nesC and FlowTalk
versions have a consumption almost identical. According to
the figures, the FlowTalk version consumes slightly more (2
%) than the nesC version for the SensorToLeds application.
The reason is probably due to some cycle to handles frames.
This experiment shows that fragment manipulation does not
incur any unnecessary cycle-consuming addition that would
be avoided in nesC.

7 RELATED WORK

Being fragile to control flow disruption is a property shared
by most event-based systems. Programming Internet [13] and
concurrent programming [7] drag their own bag of similar

12

http://www.tinyos.net/tinyos-1.x/apps/

problems. FlowTalk focuses on the particular issue of long-
latency operation in Wireless Sensor Networks.

Several works in the field of programming models for em-
bedded devices are related to FlowTalk. The section groups the
related piece of work by the topic they share with FlowTalk:

• Programming languages: AmbientTalk, Java Card, RTSJ,
TaskJava, Virgil

• Concurrency: Clarity, galsC, Mantis, Protothread
• Component model: Pecos
• Global programming: DESEJOS, Maté, Pleiades, Spa-

tialViews
• Reducing memory consumption: Jepes
• Hardware: SunSPOT
• Synchronous languages: Esterel, Reactive objects

7.1 Programming languages
AmbientTalk. Mobile networks surround a device equipped
with wireless technology, and are demarcated dynamically as
users move. AmbientTalk [11] is a new programming language
making programming of mobile networks easier. It provides
linguistic constructs to deal with (i) volatile connections, (ii)
context-awareness based on the surrounding environment, (iii)
serverless autonomous computing, and (iv) concurrency.

The main focus of AmbientTalk is on the definition of
mobile network services. FlowTalk has different priorities.
While AmbientTalk aims at managing highly distributed,
dynamic connections, FlowTalk provides an efficient way of
dealing with long-latency operations in the presence of strong
resource restriction. AmbientTalk employs a purely event-
driven concurrency framework, founded on actors enabling
asynchronous and non-blocking message passing. Actors are
usually tied to strong resource consumption, assuming the
presence of a thread mechanism and a scheduler. There is
currently no perspective in applying AmbientTalk’s ideas to
wireless sensor networks.

Java Card. Java Card technology9 enables smart cards (de-
vices with very limited memory) to run small applications that
employ Java technology. It provide smart card manufacturer
with a secure execution platform. The Java Card 2.1 Virtual
Machine Specification defines a subset of Java that fits very
constrained resources. Among other things, threads are not
supported.

The range of applications supported by Java Card differs
from the one of wireless sensor networks since a Java
Card program is not meant to be at the heart of an highly
event-based environment.

Real-Time Specification for Java (RTSJ). An important
concern for meeting hard real-time constraints in Java is the
interaction of automatic memory management with real-time
operations. The time the garbage collection process will take
to free all un-necessary objects cannot be predicted. Real-Time
Specification for Java [2], [44] uses a memory model based on
scoped types. Scoped types enable timely memory reclamation
and allow for predictable performance.

9. java.sun.com/products/javacard

Whereas several experimental cases were conducted with
major industrial companies in aeronautics, the example
embedded devices used contained fairly large amounts of
memory (256 Mb SDRAM and 32 Mb FLASH [3]). FlowTalk
is intended to be used with systems that offer far smaller
amounts of memory.

Tasks. It has been widely acknowledged that the event-driven
programming style severely complicates program maintenance
and understanding as it requires a fragmentation of the logical
flow of control into multiple and independent callbacks.

Fisher et al. [16] proposed Tasks, a variant of cooperative
multi-threading, that allow “each logical control flow to be
modularized in the traditional manner, including usage of
standard control mechanisms like procedures and exceptions.”
They produced a backward compatible extension of Java,
called TaskJava.

The TaskJava type system tracks the set of methods whose
execution might yield using the async method annotation.
The compiler translates annotated methods into Java code that
uses a continuation-passing style. This mechanism is similar
to controlled disruption: fragments are statically located at
compile time and the code is cut into smaller pieces following
a reification of the control flow. We did not use a type system
since FlowTalk does not annotate variables and methods with
types, but the annotation mechanism is indeed similar. The
major difference lays in this reification: TaskJava assumes
full continuation to be modeled in the base language, whereas
FlowTalk restricts the operations that can be performed on a
method that refers to long-latency operations.

Virgil. An approach to use object-orientation with embedded
microcontrollers has been recently proposed with Virgil [40].
Virgil is a lightweight object-oriented language designed with
careful consideration for resource-limited domains. The main
contribution of Virgil is to decouple the initialization time
from runtime which allows an application to run on a bare
hardware. Although FlowTalk proposes an object model for
the same range of hardware, FlowTalk differs from Virgil by
explicitly supporting execution control flow over long-latency
operations.

7.2 Concurrency

Clarity. A new programming language has been recently
proposed to tackle issues related to asynchronous systems
components. Clarity [8] enables analyzable design of asyn-
chronous software components. Compared to classical event-
based systems, Clarity has three features: (i) nonblocking
function calls which allow event-driven code to be written in a
sequential style. If a blocking statement is encountered during
the execution of such a call, the call returns and the remainder
of the operation is automatically queued for later execution;
(ii) coords, a set of high-level coordination primitives to
encapsulate common interaction between asynchronous com-
ponents and make high-level coordination protocols explicits;
(iii) linearity annotations delegate coord protocol obligation
to exactly one thread at each asynchronous function call,

13

http://java.sun.com/products/javacard

transforming a concurrent analysis problem into a sequential
one.

When a nonblocking call is performed, if the hardware
is not ready, the caller returns a particular value and the
remainder of the computation is automatically converted
into a closure and put into a queue. The executing platform
must allow for stack reification. This is achieved by using
threads. In FlowTalk, what constitutes method contexts is
statically known since the location of long-latency operations
is known by the compiler. As a result, FlowTalk does not
need to attach a stack to fragments. FlowTalk is designed for
wireless sensor networks, whereas Clarity tackles issues on
asynchrony assuming the presence of enough resources to
hold continuations.

galsC. The galsC [9] programming language extends nesC
with advanced abstractions for concurrency. In galsC, com-
ponents are linked to each other to form actors. Messages
that are exchanged within an actor are synchronous. Actors
communicate with each other asynchronously via message
passing, which separates the flow of control between actors.
Actors are typed, and those types are inferred based on the
graph formed by the actors.

Whereas the problem tackled by galsC is similar to the
one in this paper, the approach is different. In galsC, the
programmer has to manually specify where asynchrony
may occur by specifying junction points between actors. In
FlowTalk, a long-latency operation (which is asynchronous
from the point of view of the operating system but not
from FlowTalk) is statically located by the compiler.
In FlowTalk, when a method is defined, the annotation
LongLatencyOperation needs to be added depending on
whether it directly invokes a primitive of the operating system
that is asynchronous. Contrary to galsC, each call does not
need to be annotated. Moreover, FlowTalk assumes that
long-latency operations are synchronized.

Mantis. A multithreaded embedded operating system for
wireless sensor network has been recently proposed to alleviate
limitations of the TinyOS event-based architecture. Mantis [5]
is a sensor operating system that supports a thread mechanism
with a lightweight RAM footprint making it possible to fit in
less than 500 bytes of memory.

The multithreading of Mantis is useful to prevent one long-
lived task from blocking execution of a second time-sensitive
task, mitigating the bounded buffer producer-consumer
problem. Mantis is meant to be used with time consuming
processing such as composition and encryption. The goal of
Mantis differs from the one of FlowTalk since long-latency
operations remains unchanged with Mantis whereas they are
made blocking with FlowTalk.

Protothread. FlowTalk focuses on the issue of implementing
sequential control flow on top of an event-driven system.
This issue has been partially addressed by Protothread [15].
Protothreads are an extremely lightweight, stackless threads
that provide a blocking context on top of an event-driven sys-
tem, without the overhead of per-thread stacks. Protothreads

provides conditional blocking inside a C function.
All protothreads run on the same stack and context switch-

ing is done by stack rewinding. This is advantageous in
memory constrained systems, where a stack for a thread
might use a large part of the available memory. A protothread
requires only two bytes of memory per protothread.

A protothread runs within a single C function and cannot
span over other functions. A protothread may call normal C
functions, but cannot block inside a called function. Block-
ing inside nested function calls is instead made possible by
spawning a separate protothread for each potentially blocking
function. The advantage of this approach is that blocking is
explicit: the programmer knows exactly which functions that
may block and which functions are not able to block.

Protothread differs from FlowTalk on several points: (i)
FlowTalk fragment are not user specified, but inferred by
the FlowTalk compiler according to the declared long-latency
operations whereas protothreads need to be explicitly declared;
(ii) it is not possible for a regular function called from
a protothread to block inside the called function whereas
FlowTalk allows a fragment to invoke a long-latency operation
to complete the fragment execution.

FlowTalk fragments are mapped into TinyOS tasks.
TinyOS tasks are very similar to prototalk. Mapping
FlowTalk fragments to protothreads is therefore realizable.

Scala. The “inversion of control” is a negative effect that may
be found in most of event-driven programming models ranging
from web applications [36] to concurrent based models [21].
The inversion of control happens when an execution environ-
ment dispatches events to the installed handlers, resulting in
an inversion of the control over the execution of program logic
since the program never calls these event handlers itself.

The inversion of control issue is at the root the control flow
disruption we formulated: the main application control flow
necessarily moves to places where event handlers are located.

The Scala10 general purpose programming language pro-
vides event-based actors, “an implementation technique for
lightweight actor abstractions on non-cooperative virtual ma-
chines such as the JVM. Non-cooperative means that the
virtual machine provides no means to explicitly manage the
execution state of a program.” The idea is as follows: an actor
that waits in a receive statement is not represented by a blocked
thread but by a closure that captures the rest of the actor’s
computation. The closure is executed once a message is sent
to the actor that matches one of the message patterns specified
in the receive. The key is that the execution of a closure is
carried by the thread of the sender.

Haller and Odersky [21] have considered the case of actor
based system using a queue between each interacting actors.
Moreover, the presence of closure is a necessary condition
for the Scala scheme to work. FlowTalk addresses this issue
differently by restricting operations associated to long-latency
operations. This relax the condition on supporting closure.

10. www.scala-lang.org

14

http://www.scala-lang.org/

7.3 Component model
Pecos. The goal of the Pecos (PErvasive COmponent Systems)
project [32] was to enable component-based technology for
a class of embedded systems known as “field devices” such
as temperature, pressure, and flow sensors, actuators, and
positioning devices. Pecos proposes a component model for
field devices that captures a range of non-functional properties
and constraints.

Pecos uses a discrimination of components and necessitates
realtime constraints to schedule components. Pecos is made to
ease gaining a better software architecture. FlowTalk focuses
on a finer grain, application control flow.

7.4 Global programming
Design space exploration tool. DESEJOS [30] (DEsign of
Software for Embedded Java with Object Support) is a tool
that enables an automatic selection of the best organization
for objects in a program written in Java. This deals with the
objects after the programmer has coded the application, and
before the code execution. The DESEJOS tool automatically
transforms dynamically created objects into statically allocated
ones when possible.

The DESEJOS approach assumes the use of a virtual
machine and a target platform supporting a memory
management function with garbage collection. FlowTalk runs
on platforms having much stronger resource constraints.

Maté. Deployment of wireless sensor application becomes
a critical task when the networks of devices is large or
when not easily physically accessible. The Maté virtual
machine [26] enables programs to be acquired from a
wireless sensor network using ad-hoc routing and data
aggregation algorithms. The set of Maté bytecode instructions
is designed to reduce the size of programs in order to reduce
energy consumption when wirelessly transmitted. FlowTalk
provides high level language constructs to better express
application control flow, which is not the main priority of
Maté.

Pleiades. A wireless sensor application is traditionally written
from the point of view of one particular node in the network.
Pleiades [24] is a new programming language for which an
application is implemented as a central program that concep-
tually has access to the entire network. Pleiades augments
the C language with constructs for addressing the nodes in
a network and accessing local state from individual nodes.
The Pleiades programming model borrows from a previous
work on Kairos [18], an extension to Python that also provides
support for iterating over nodes and accessing node-local state.

FlowTalk retains the node-centric view and tackles the
problem of asynchrony within one node instead of focusing
on a network-centric view as promoted by Pleiades.

SpatialViews. The programming model offered by Spa-
tialViews [31] allows for the specification of virtual ad-hoc
networks by describing nodes. A collection of virtual nodes
is described as a view over the real, physical network. Each

node may have various characteristics such as a set of provided
services and a location. A service is described in terms of a
set of methods, and are provided by a node by means of a
concrete implementation.

SpatialViews provides high level operators to manipulate
networks such as iteration, migration, and service offering.
SpatialViews places itself as a global management system,
whereas FlowTalk adopts a local view. Instead of specifying
global properties, FlowTalk allows for a behavior description
of one single mote.

7.5 Reducing memory consumption

Jepes. Static analysis of Java programs for embedded devices
is one of the most distinctive features of Jepes [37]. Jepes
targets embedded devices having a memory ranging from 0.5
kB to 5 kB by reducing Java program executables up to
75%. Jepes supports two aggressive optimisations for a Java
program: (i) Assembly macros can be embedded into Java
methods and (ii) Objects may be allocated in the stack rather
than in the heap. Those optimisations are driven by annotating
the program where those optimisations are likely to occur.

The initial motivation of Jepes is different than the one of
FlowTalk. Jepes takes standard Java and a set of annotations
as input. FlowTalk constrains the writing of programs by
forbidding dynamic object creation and restricting objects
passing.

7.6 Hardware

Java can be used to write applications for embedded sensor
networks thanks to SunSPOT, based on the Squawk virtual
machine [38]. SunSPOT is written in Java and does not need
an operating system to be run on. It supports thread scheduling
and garbage collection. SunSPOT’s features are very close
to that of a modern virtual machine. SunSPOT favors large
amount of memory ranging from 512 kB up to 4,096 kB. This
goal differs from FlowTalk’s, where platforms may support
amounts of memory 1000 times smaller than the amount
intended to be used with SunSPOT.

However, studying the API11 remains interesting.
The Java API used to program SunSPOT employs
asynchronous and synchronous calls to talk to
physical components located on the motherboard. For
example, EDemoController.accelerometerScaleChanged(int
newScale) is called by the runtime when a variation
is detected by the accelerometer. This method has
to be overridden in subclasses. ILightSensorCon-
troller.getLightSensorValue(...) is a blocking operation.
ITemperatureInput.addITemperatureInputThresholdListener(...)
adds a specified temperature sensor threshold listener to
receive callbacks from a temperature sensor. This method
is used to register a callback, which is an instance of
ITemperatureInputThresholdListener. Alternatively, a user
mays ask for the temperature value in a synchronous fashion
with ITemperatureInput.getCelsius().

11. http://www.sunspotworld.com/docs/javadoc

15

http://www.sunspotworld.com/docs/javadoc

7.7 Synchronous languages

Synchronous languages [20] provide primitives for achieving
a kind of parallelism based on the hypothesis of perfect
synchronism. This hypothesis assumes that a computation is
performed instantaneously. Esterel [4] is probably the most
famous synchronous language. Esterel translates a program
into a finite-state machine.

Reactive objects [34], [35] assimilate every object as an
autonomous unit of execution. An object is either executing the
sequential code of exactly one method, or passively maintain-
ing its state. Reactive objects impose a restriction on method
execution by ensuring that methods do not block execution
indefinitely.

Assumptions in FlowTalk are different than the ones of syn-
chronous languages. Whereas FlowTalk is meant to produce
software that is “reactive enough” to be synchronized with
the current environment, it does not provide a guarantee about
the duration such operations might take. Moreover, it is the
responsibility of the programmer to ensure the computation to
be deterministic. FlowTalk helps in modelling an application
control flow in a resource restrained context, whereas syn-
chronous languages focus on expressing synchronization and
parallelism.

8 CONCLUSION

With the growing complexity of embedded devices, it is
becoming necessary to use current software engineering tech-
niques and methodologies to increase software productivity.
Object modeling and design is a widely-known methodology
intended to satisfy software portability, maintainability, and to
shorten development time.

This paper presents FlowTalk, a new programming language
aimed at making the programming of sensor-embedded de-
vices easier by providing an efficient mechanism to express an
application control flow. In order to cope with the asynchrony
that may occur between different electronic components on
the host, FlowTalk provides a technique named controlled
disruption.

A fault management mechanism is currently lacking in
FlowTalk. The majority of the examples and experiments
were conducted in a closed environment with adequate bat-
tery power supply. In order to meet industrial and real-
life situations, it is planned to stress the expressiveness of
FlowTalk in different situations that can result from movement
or environmental factors (e.g., effect of the wind on the radio
transmission). The choice of a particular error management
policy is dependent on the ambient external environment.
These policies should be easily added and interchangeable and
as they are likely to crosscut an embedded application, the use
of aspect-oriented techniques in this area is promising [19].
Finally, it is planned to use simulation and tracing techniques
to obtain knowledge about the dynamic execution, in order to
ease restriction on instances variables.

The FlowTalk compiler is freely available and the distribu-
tion contains every application mentioned in this paper and
many more.

Embedded devices and sensor networks have been in
constant evolution. However, corresponding programming
techniques and methodologies for this particular field have
not equally evolved. We hope the work presented in this
paper is a positive step towards a better way of programming
very small embedded devices.

Acknowledgments. FlowTalk is the result of an intense re-
search effort that begun in 2006. This work was supported,
in part, by Science Foundation Ireland grant 03/CE2/I303 1
to Lero - the Irish Software Engineering Research Centre
(www.lero.ie).

We also would like to thank Shane Brennan, Raymond
Cunningham, Stéphane Ducasse (for suggesting “FlowTalk”),
David Gay, Ron Goldman, Oscar Nierstrasz, Andreas Polze
and his research group, Lukas Renggli and Aline Senart for
their valuable comments. We also would like to thank Marcin
Karpinski for his precious help with TinyOS. Several technical
problems had to be faced when experimenting. Our thanks go
to Alain Fargue, Greg Guche, and all the POPS INRIA Project
Team.

REFERENCES
[1] J. R. Andersen, L. Bak, S. Grarup, K. V. Lund, T. Eskildsen, K. M.

Hansen, and M. Torgersen. Design, implementation, and evaluation of
the resilient smalltalk embedded platform. In Proceedings of ESUG
International Smalltalk Conference 2004, Sept. 2004.

[2] C. Andreae, Y. Coady, C. Gibbs, J. Noble, J. Vitek, and T. Zhao. Scoped
types and aspects for real-time Java. In Proceedings ECOOP ’06,
volume 4067 of LNCS, pages 124–147. Springer-Verlag, July 2006.

[3] J. Baker, A. Cunei, C. Flack, F. Pizlo, M. Prochazka, J. Vitek, A. Arm-
buster, E. Pla, and D. Holmes. A real-time Java virtual machine for
avionics. In Proceedings of the 12th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS 2006). IEEE Computer
Society, 2006.

[4] G. Berry. The foundations of Esterel. In G. Plotkin, C. Stirling, and
M. Tofte, editors, Proof, Language and Interaction: Essays in Honour
of Robin Milner. MIT Press, 1998.

[5] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shucker,
C. Gruenwald, A. Torgerson, and R. Han. Mantis os: an embedded
multithreaded operating system for wireless micro sensor platforms.
Mob. Netw. Appl., 10(4):563–579, 2005.

[6] E. Brewer, D. Culler, D. Gay, P. Levis, R. von Behren, and
M. Welsh. nesC: A programming language for deeply networked
systems. http://nescc.sourceforge.net.

[7] D. Caromel. Programming abstractions for concurrent programming. In
TOOLS Pacific ’90, pages 245–253, Sydney, Australia, Nov. 1990.

[8] P. Chandrasekaran, C. L. Conway, J. M. Joy, and S. K. Rajamani.
Programming asynchronous layers with clarity. In ESEC-FSE ’07:
Proceedings of the the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering, pages 65–74, New York, NY, USA,
2007. ACM.

[9] E. Cheong and J. Liu. galsc: A language for event-driven embedded
systems. In DATE ’05: Proceedings of the conference on Design,
Automation and Test in Europe, pages 1050–1055, Washington, DC,
USA, 2005. IEEE Computer Society.

[10] M. E. Conway. Design of a separable transition-diagram compiler.
Commun. ACM, 6(7):396–408, 1963.

[11] J. Dedecker, T. V. Cutsem, S. Mostinckx, T. D’Hondt, and W. D.
Meuter. Ambient-oriented programming in ambienttalk. In D. Thomas,
editor, Proceedings of the 20th European Conference on Object-Oriented
Programming (ECOOP ’06), volume 4067, pages 230–254. Springer-
Verlag, 2006.

[12] R. P. Draves, B. N. Bershad, R. F. Rashid, and R. W. Dean. Using
continuations to implement thread management and communication in
operating systems. In SOSP ’91: Proceedings of the thirteenth ACM
symposium on Operating systems principles, pages 122–136, New York,
NY, USA, 1991. ACM Press.

16

http://www.lero.ie

[13] S. Ducasse, A. Lienhard, and L. Renggli. Seaside: A flexible environ-
ment for building dynamic web applications. IEEE Software, 24(5):56–
63, 2007.

[14] S. Ducasse, O. Nierstrasz, N. Schärli, R. Wuyts, and A. Black. Traits: A
mechanism for fine-grained reuse. ACM Transactions on Programming
Languages and Systems (TOPLAS), 28(2):331–388, Mar. 2006.

[15] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali. Protothreads: simplifying
event-driven programming of memory-constrained embedded systems.
In SenSys ’06: Proceedings of the 4th international conference on
Embedded networked sensor systems, pages 29–42, New York, NY,
USA, 2006. ACM.

[16] J. Fischer, R. Majumdar, and T. Millstein. Tasks: language support
for event-driven programming. In PEPM ’07: Proceedings of the 2007
ACM SIGPLAN symposium on Partial evaluation and semantics-based
program manipulation, pages 134–143, New York, NY, USA, 2007.
ACM.

[17] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler.
The nesC language: A holistic approach to networked embedded sys-
tems. In PLDI ’03: Proceedings of the ACM SIGPLAN 2003 conference
on Programming language design and implementation, pages 1–11, New
York, NY, USA, 2003. ACM Press.

[18] R. Gummadi, N. Kothari, R. Govindan, and T. Millstein. Kairos: a
macro-programming system for wireless sensor networks. In SOSP ’05:
Proceedings of the twentieth ACM symposium on Operating systems
principles, pages 1–2, New York, NY, USA, 2005. ACM.

[19] R. Gummadi, N. Kothari, T. Millstein, and R. Govindan. Declarative
failure recovery for sensor networks. In AOSD ’07: Proceedings of the
6th international conference on Aspect-oriented software development,
pages 173–184, New York, NY, USA, 2007. ACM.

[20] N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer
Academic Publishers, Norwell, MA, USA, 1992.

[21] P. Haller and M. Odersky. Event-based programming without inversion
of control. In In Proceedings of Join Modular Programming Languages
(JMLC), volume 4228, pages 4 – 22, Sept. 2006.

[22] M. Karpinski and V. Cahill. High-level application development is
realistic for wireless sensor network. In In Proceedings of Fourth Annual
IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc
Communications and Networks SECON 2007. IEEE, June 2007.

[23] B. Kernighan and D. Ritchie. The C Programming Language. Prentice
Hall Software Series, 1978.

[24] N. Kothari, R. Gummadi, T. Millstein, and R. Govindan. Reliable
and efficient programming abstractions for wireless sensor networks.
In PLDI ’07: Proceedings of the 2007 ACM SIGPLAN conference on
Programming language design and implementation, pages 200–210,
New York, NY, USA, 2007. ACM.

[25] S. Krishnamurthi. Programming Languages: Application and Interpre-
tation. Shriram Krishnamurthi, 2007.

[26] P. Levis and D. Culler. Maté: a tiny virtual machine for sensor networks.
In ASPLOS-X: Proceedings of the 10th international conference on Ar-
chitectural support for programming languages and operating systems,
pages 85–95, New York, NY, USA, 2002. ACM.

[27] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson.
Wireless sensor networks for habitat monitoring. In WSNA ’02:
Proceedings of the 1st ACM international workshop on Wireless sensor
networks and applications, pages 88–97, New York, NY, USA, 2002.
ACM Press.

[28] K. Matheus, R. Morich, C. Menig, A. Lübke, B. Rech, and W. Specks.
Car-to-car communication - market introduction and success factors. In
In the Proceedings of the 5th European Congress and Exhibition on
Intelligent Transport Systems and Services (ITS’05), 2005.

[29] J. Matthews, R. B. Findler, P. Graunke, S. Krishnamurthi, and
M. Felleisen. Automatically restructuring programs for the web. Auto-
mated Software Engineering: An International Journal, 2003.

[30] J. C. B. Mattos, E. Specht, B. Neves, and L. Carro. Making object
oriented efficient for embedded system applications. In SBCCI ’05:
Proceedings of the 18th annual symposium on Integrated circuits and
system design, pages 104–109, New York, NY, USA, 2005. ACM Press.

[31] Y. Ni, U. Kremer, A. Stere, and L. Iftode. Programming ad-hoc
networks of mobile and resource-constrained devices. SIGPLAN Notice,
40(6):249–260, 2005.

[32] O. Nierstrasz, G. Arévalo, S. Ducasse, R. Wuyts, A. Black, P. Müller,
C. Zeidler, T. Genssler, and R. V. D. Born. A component model for field
devices. In Proceedings First International IFIP/ACM Working Confer-
ence on Component Deployment, pages 200–209, Berlin, Germany, June
2002. ACM.

[33] J. Noble and C. Weir. Small Memory Software: Patterns for systems
with limited memory. Addison-Wesley Professional, Nov. 2000.

[34] J. Nordlander. Reactive Objects and Functional Programming. PhD
thesis, Chalmers University of Technology, Götebord, Sweden, May
1999.

[35] J. Nordlander, M. P. Jones, M. Carlsson, R. B. Kieburtz, and A. Black.
Reactive objects. In In Proceedings of the 5th IEEE International
Symposium on Object-oriented Real-time distributed computing, Crystal
City, Virginia, USA, Apr. 2002.

[36] C. Queinnec. Inverting back the inversion of control or, continuations
versus page-centric programming. SIGPLAN Not., 38(2):57–64, 2003.

[37] U. P. Schultz, K. Burgaard, F. G. Christensen, and J. L. Knudsen.
Compiling Java for low-end embedded systems. SIGPLAN Notice,
38(7):42–50, 2003.

[38] D. Simon, C. Cifuentes, D. Cleal, J. Daniels, and D. White. Java on the
bare metal of wireless sensor devices: the squawk java virtual machine.
In VEE ’06: Proceedings of the 2nd international conference on Virtual
execution environments, pages 78–88, New York, NY, USA, 2006. ACM
Press.

[39] TinyOS: An open-source OS for the networked sensor regime.
http://www.tinyos.net.

[40] B. L. Titzer. Virgil: objects on the head of a pin. In OOPSLA ’06:
Proceedings of the 21st annual ACM SIGPLAN conference on Object-
oriented programming systems, languages, and applications, pages 191–
208, New York, NY, USA, 2006. ACM.

[41] B. A. Warneke and K. S. Pister. Exploring the limits of system
integration with smart dust. In Proceedings of IMECE’02, ASME
International Mechanical Engineering Congreee & Exposition, Nov.
2002.

[42] O. Zendra. Memory and compiler optimizations for low-power and -
energy. In Workshop on Implementation, Compilation, Optimization of
Object-Oriented Languages, Programs and Systems (ICOOOPLPS’06),
co-located with ECOOP’06, July 2006.

[43] Y. Zhang and R. Gupta. Data compression transformations for dynami-
cally allocated data structures. In Proceedings of the 11th International
Conference on Compiler Construction (CC’02), volume 2304 of LNCS,
pages 14–28. Springer-Verlag, 2002.

[44] T. Zhao, J. Noble, and J. Vitek. Scoped types for real-time Java. In RTSS
’04: Proceedings of the 25th IEEE International Real-Time Systems
Symposium (RTSS’04), pages 241–251, Washington, DC, USA, 2004.
IEEE Computer Society.

Alexandre Bergel is Assistant Professor
at the University of Chile. He obtained his
PhD in 2005 from the University of Berne,
Switzerland, under the supervision of Prof.
Nierstrasz and Prof. Ducasse. His thesis
focused on a new module system to ease
software evolution and extension for large

software systems. He was a post-doc at Trinity College
Dublin. In 2007 he went to Germany and became a Research
Fellow at the Hasso-Plattner-Institut, Potsdam. Until May
2009 he was Permanent Researcher at INRIA, a French based
research institute. He worked on defining new programming
language constructs and the Moose reengineering platform
to ease evolution of program source code. Contact him at
bergel.eu.

William Harrison is an SFI Research
Professor in the School of Computer Science
and Statistics, Trinity College, Dublin. He
heads a group researching programming
language fundamentals for creating more
malleable software. His was previously on
the Research Staff of IBM’s Thomas J.

Watson Research Center exploring software for software
development, initially on programming languages and
program analysis and optimization and later on software
development environments. He is one of the founding

17

http://bergel.eu

researchers in what has come to be called “Aspect-Oriented
Software Development”. He was a member of the IBM
Academy of Technology and an IEEE Distinguished Lecturer
on Software Environments, and has been a member of IEEE
since 1973. Contact him at www.cs.tcd.ie/Bill.Harrison.

Vinny Cahill holds a Personal Chair
in Computer Science at Trinity College
Dublin where he also serves as Head of
the Department of Computer Systems and
Director of Research for Computer Science
and Statistics. His research addresses many

aspects of distributed systems, in particular, middleware and
programming models for pervasive and mobile computing
with application to intelligent transportation systems and
management of critical infrastructure. He has a particular
interest in self-organising systems. He has published over 100
peer-reviewed publications in international conferences and
journals. Contact him at www.dsg.scss.tcd.ie/∼vjcahill.

Siobhán Clarke is a Senior Lecturer and
Fellow of Trinity College Dublin, where she
leads the Distributed Systems Group and
is a Research Area Leader in Lero: The
Irish Software Engineering Research Centre.
Her research interests are design and pro-

gramming models for advanced, adaptable distributed sys-
tems. She received her BSc and PhD degrees in Com-
puter Science from Dublin City University. Contact her at
www.cs.tcd.ie/Siobhan.Clarke.

18

https://www.cs.tcd.ie/Bill.Harrison
http://www.dsg.scss.tcd.ie/~vjcahill
https://www.cs.tcd.ie/Siobhan.Clarke/

	Introduction
	Long-Latency Operations and their Asynchrony
	Disruption in the Application Control Flow
	Illustration with nesC

	FlowTalk
	FlowTalk in a Nutshell
	Sensing Application in FlowTalk
	Controlled Disruption

	Discussion
	Implementation
	Memory and Battery Consumption
	Related Work
	Programming languages
	Concurrency
	Component model
	Global programming
	Reducing memory consumption
	Hardware
	Synchronous languages

	Conclusion
	References

