
Performance Evolution Blueprint: Understanding the Impact of Software Evolution
on Performance

Juan Pablo Sandoval Alcocer, Alexandre Bergel
Department of Computer Science (DCC)

University of Chile, Chile
jsandoval@dcc.uchile.cl, abergel@dcc.uchile.cl

Stéphane Ducasse, Marcus Denker
RMoD team

INRIA- Lille Nord Europe, France
stephane.ducasse@inria.fr, marcus.denker@inria.fr

Abstract—Understanding the root of a performance drop or
improvement requires analyzing different program executions
at a fine grain level. Such an analysis involves dedicated
profiling and representation techniques. JProfiler and YourKit,
two recognized code profilers fail, on both providing adequate
metrics and visual representations, conveying a false sense of
the performance variation root.

We propose performance evolution blueprint, a visual sup-
port to precisely compare multiple software executions. Our
blueprint is offered by Rizel, a code profiler to efficiently
explore performance of a set of benchmarks against multiple
software revisions.

Keywords- visualization, profiling, software evolution,
software execution

I. INTRODUCTION

Software programs inevitably change to meet new require-
ments [1]. Unfortunately, changes made on source code may
cause unexpected behavior at run-time. It is not uncommon
to experience a drop in performance when a new software
version is released.

Consider the following situation that has been faced during
the development of Roassal, an agile visualization engine1.
Roassal displays an arbitrary set of data as a graph in
which each node and edge has a graphical representation
shaped with metrics and properties. Roassal has 218 different
versions for which most of them were implemented to either
satisfy new user requirements or fix malfunctions. Whereas
the range of offered features has grown and Roassal is now
stable, the performance of Roassal has slowly decreased. This
loss of performance is globally experienced by end users
and measured by the benchmarks of Roassal.

This situation is not anecdotal. A program that is used in
a real-world environment necessarily must change or become
progressively less useful in that environment [1], [2]. And
most of these changes could introduce a loss in performance.

Unfortunately, identifying which of the changes contained
in these versions are responsible for this performance drop is
difficult. The reason stems from the fact that state-of-the-art

1http://objectprofile.com/roassal-home.html

code execution profilers (e.g., JProfiler2 and YourKit3) are
simply inappropriate at addressing our performance drop in
Roassal due to4 performance variations having to be manually
tracked. These profilers do not offer relevant metrics, for
instance, they do not consider whether source code has been
modified or not. And a poor visualization is used to represent
the profile. Dedicated visualizations are efficient support to
analyze the execution [3], [4].

This paper proposes Performance Evolution Blueprint, a
new visualization to visualize the performance difference
between (i) one benchmark and two software versions or (ii)
two benchmarks and one software version. In addition, we
present Rizel, a code execution profiler that automatically
explores a two dimensional space (benchmark, software
version).

The performance evolution blueprint is summarized in
Figure 1. A blueprint is obtained after running two executions.
Each box is a method context. Edges are invocations between
methods (a calling method is above the called methods).
Height of a method is the difference of execution time
between the two executions. If the difference is positive
(i.e., the method is slower), then the method is shaded in red,
otherwise it is green. The width of a method is the absolute
difference in the number of executions, thus always positive.
Light red / pink color means the method is slower, but its
source code has not changed between the two executions. If
red the method is slower and the source code has changed.
Light green indicates a faster non-modified method. Green
indicates a faster modified method. Yellow indicates new
methods and gray indicates removed methods. Tooltip gives
an extended list of data for the particular methods, including
its name, its defining class and the numerical values of the
differences.

Our blueprint is offered by Rizel, a code execution profiler
for the Pharo programming language 5. We have successfully
used the blueprint and Rizel for understanding the cause of

2http://www.ej-technologies.com/products/jprofiler/overview.html
3http://www.yourkit.com
4Our work has been carried out in Pharo. It is however easy to figure out

how JProfiler and YourKit would be used if they were written in Pharo.
5http://pharo-project.org

http://objectprofile.com/roassal-home.html
http://www.ej-technologies.com/products/jprofiler/overview.html
http://www.yourkit.com

A

B

C

D E

Color

Δ # executions

Δ time

Border

A

B

A invokes B

Figure 1. Performance evolution blueprint

a major slow downs in Roassal, a non-trivial software.
The paper is structured as follows. Section II analyzes

two commercial profilers and discusses their limitations.
Section III details the performance evolution blueprint.
Section IV gives the principal characteristics of the Rizel
code execution profiler. Section V gives an overview of the
related work. Section VI concludes and presents future work.

II. MEASURING AND REPRESENTING DIFFERENCE OF
PROFILES

Consider JProfiler and YourKit, two popular commercial
Java profilers. Both support a comparison of profiles by
indicating the difference in absolute and relative CPU con-
sumption time of each method. Although useful in keeping
track of the overall performance, knowing the difference
between method execution times is often insufficient to
understand the reasons for the performance variation.

To illustrate the limitation of current profilers, we pick
a contrived, but representative example. The following
expression parses a large XML file:

1 new SAXBuilder().build(new File(”catalog.xml”));

Profiling this expression essentially outputs the following:

1 942{100%}BenchMark.main(String[])
2 942{100%}SAXBuilder.build(File)
3 942{100%}SAXBuilder.build(URL)
4 942{100%}SAXBuilder.build(InputSource)
5 495{53%}AbstractSAXParser.parse(InputSource)
6 404{43%}SAXBuilder.createParser()
7 34{4%}SAXBuilder.createContentHandler()
8 ...

The execution time is essentially distributed be-
tween the method parse(...), createParser(), and
createContentHandler().

We artificially introduce a performance drop by slowing
down the method build(InputSource). Profiling the new
expression produces the following call tree:

1 1905{100%}BenchMark.main(String[])
2 1905{100%}SAXBuilder.build(File)
3 1905{100%}SAXBuilder.build(URL)
4 1905{100%}SAXBuilder.build(InputSource)
5 1085{57%}SAXBuilder.parse proxy(...)*

6 699{36%}SAXBuilder.new method() *
7 385{20%}AbstractSAXParser.parse(InputSource)
8 784{41%}SAXBuilder.createParser()
9 36{2%}SAXBuilder.createContentHandler()

10 ...

The new nodes of the call context tree are designed with
a “*”. We see that total execution times went from 942 ms
to 1905 ms. We measured the slowdown using JProfiler and
YourKit.

Figure 2 shows the performance degradation of our expres-
sion using JProfiler. This figure is obtained by successively
executing the parsing expression with and without the
slowdown (in the following, we refer to these executions as
first and second execution).

Each line represents a method that has been executed in
both executions. The indentation represents the control flow.
The values before each method name indicate the differences
between the two executions. For example, main(...) is 104%
slower in the second execution and parse(InputSource)

is 100% faster. The percentage indicates the variation of
execution time. Some nodes have a red or green bar to
visually indicate this difference.

Figure 3 shows the performance degradation using
YourKit. The represented information is essentially the same
as with JProfiler. Each method comes with three values: the
difference of executions times, the old execution time and
the new one. When a method has been added or removed, a
0 is put in place.

JProfiler and YourKit presents a number of limitations,
listed below.

Performance variations have to be manually tracked. Ex-
ploration of the space (benchmarks, software versions) is
manually carried out. For each execution, the profiler has
to be manually configured to run a particular version. After
the run, the profile has to be saved on the file system. After
a second profiled run, the two profiles can be compared.
Each run comes with a fair load of manual actions. Manually
iterating over a large number of benchmarks and/or software
versions is tedious.

Relevant metrics are missing. JProfiler and YourKit do not
consider whether source code has been modified or not. As
a consequence, slowdown that occurs in unmodified methods
may distract the programmer from identifying code changes
that actually introduce the slowdown. Furthermore, profilers
that support profile comparison do not provide information
about which method is not called in the new/old version.

Current difference run-time metrics used by profilers are
not enough for this kind of analysis. The reason is that
variations of the execution time are meaningful when the
compared methods are present in both versions. They are
useless when a node simply appears in one of the two
executions, but not in both. For instance, the variation of the

Figure 2. Performance comparison with JProfiler

Figure 3. Performance comparison with Yourkit

execution time given by JProfiler uses an infinite value, +Inf
for a new node. Using such an infinite value means that a new
method is “infinitely slower” in the second execution than
in the first execution, which obviously has little meaning.

Inefficient visual representation. Both JProfiler and YourKit
use a textual table augmented with some icons to indicate
variations. It is known that textual listing are suboptimal in
identifying particular values or patterns [5]. Understanding
which performance drop stems from software changes
requires significant effort by the programmer. The visual
support used by profilers does not adequately represent
variation of a dynamic structure and multiple metrics.

III. PERFORMANCE EVOLUTION BLUEPRINT

Performance Evolution Blueprint visually associates soft-
ware changes with variation in execution performance. Fig-
ure 4 illustrates the same performance drop used earlier. The
figure compares two call context trees, each corresponding
to an execution of the same benchmark for a particular
software version. The method parseDocument is slower in
the second execution and its definition has been changed.
The artificially introduced method newMethod is responsible
for the slowdown.

This blueprint is a polymetric view [6], meaning shapes
and colors of visual elements indicate metric values and
properties of the software system considered.

Tree of nodes. Each box represents a node of the call context
tree (CCT). A node in a CCT represents a method and the
context in which the method is invoked [7]. Two nodes may
represent the same method if the method is executed in two
different contexts.

An edge between two nodes represents one or more
invocations between these two context methods: a calling
context method is above the called context method. Since
we show the difference between two context calling trees,
we always have a tree for which the root call is the the top
of the tree.

Colors and shapes. The color and the shape of a box tells
whether or not the method in that particular context is slower
or faster, whether it has been executed more often or not; or
whether it has been added or removed in the second execution.
The colors compare two executions that we refer to as first
and second executions. Red means the node is slower in the
second software execution and its method source code is
also different. Light red means the node is slower, but its
method has not been modified. A yellow node means the
corresponding method call is new in the second execution
(i.e., during the first execution the method has not been
executed at all or it has, in a different execution context).
Green means the node is faster and its method source code
has changed. Light green means the node is faster and its

XMLParser>>parseProxy

XMLParser>>newMethod XMLParser>>parseDocument

Color

Δ # executions

Δ time

Border

A

B

A invokes B

SAXHandler>>parseDocument

faster and modified method context
faster method context

new method context

slower method context

removed method context
slower and modified method context

Figure 4. Using Performance Evolution Blueprint to understand the root cause of performance slow down

method has not been modified. Gray indicates that the node
has been removed in the new version (i.e., the method was
executed in that particular context in the first execution, but
not in the second).

The shape of a node is given by two metrics, one for the
node’s height and another for its width.

The height of a box represents the redistribution of execu-
tion time between two software versions. This redistribution is
the percentage difference of execution time between versions.
The height is calculated as Hn = E2

n−E1
n, where E2

n is the
relative execution time of the method context n in the second
execution and E1

n from the first execution. We further have
E2

n = T 2
n/T

2 and E1
n = T 1

n/T
1, where T 2

n is the execution
time of node n in the second execution; T 1

n the execution
time in the first execution; T 2 the execution time of the
whole benchmark in the second execution; T 1 the execution
time of the whole benchmark in the first execution.

The height of a box is the absolute value (i.e., always
positive therefore) of Hn. A red tall node corresponds to
a method that consumes more of the CPU than in the first
version (i.e., Hn is negative). And a green tall node less
percentage in the new version (i.e., Hn is positive).

The width of a node indicates the difference of the number
of times in which it has been executed. It is given by Wn =
log(abs(Ex2

n−Ex1
n+1)), where Ex2

n is the amount of times
n was executed in the second execution; Ex1

n is the amount
of times n was executed in the first execution. Knowing
whether a method is executed more or less often is key
in understanding the root of a performance variation. A
logarithmic scale is used to cope with large variations. Adding
a value 1 is useful so as to not obtain an infinite value due
to the log.

In practice, a speedup is represented as a green node. A
green node is often associated with a reduction in its amount
of executions: Ex2

n is often less than Ex1
n when the method

is faster. Visually, one cannot see whether Ex2
n − Ex1

n is
positive or not. A tooltip gives all the numerical data.

The case of new method context. The width and the height
of a node is computed by comparing the metrics from the
second execution with the first execution. Comparing metric
value differences cannot be directly applied with a new or
removed method context since only values for one execution
are available. The naive approach is to use the value 0 for
missing metric values. However, as we have seen for JProfiler
and YourKit, this may convey a false sense of variation (e.g.,
a new method context is indicated as infinitely slower and
a removed method context as infinitely faster). Such odd
situations are avoided by determining the height and width
of a method context based on its children.

The height of a new node is obtained with Hn = E2
n −∑

n′∈children(n) E
1
n′ , where

• E2
n is the relative execution time of the method context

n in the second execution;
• children(n) is the set of children nodes of n;
• E1

n′ is the relative execution time of the method context
n′ in the first execution.

If the node does not have any children, then the height
is simply Hn = E2

n. Similarly, a method context that is
present only in the first execution (i.e., removed in the second
execution) is given by Hn = E1

n−
∑

n′∈children(n) E
2
n′ . This

definition of height has the property of representing a method
context as tall if it is directly responsible of a slowdown.

For instance, consider Figure 5 that shows two call context
trees a) and b) corresponding to first and second execution

A

B C D

A

B C

DE

F

a) b)

Figure 5. a) CCT of first execution b) CCT of second execution. Nodes E
and F are new nodes

respectively. In this figure the node E and F are new members
(added in the second execution), because they just appear in
the second call context tree. In the case of node E (an inner
new node) the height is the differences between the execution
time of this node in the second execution and the sum of
execution time of nodes B and C of first execution. Because,
if we imagine that node E exist in the first execution; we are
assuming that the execution time of E would be at least the
sum of the execution time of the nodes children of E. In the
case of the leaf node F the difference is made with 0.

The width of a new method context is given by Wn =
log(abs(Ex2

n − Ex1
parent(n) + 1)), where parent(n) is the

node parent of n. Since the amount of execution may greatly
vary among methods, a logarithmic scale conveys a visual
sense of the difference that remains exploitable. In case
a method has not been executed in both executions, the
logarithm should remain meaningful. This is the reason for
adding 1. A method with a width of 0 is visually represented
as 5-pixels wide and means that the method remains constant
in the amount of time it has been executed in both executions.

The thick black border of a box indicates that the node has
undisplayed children. A thin black border of a box indicates
that all children nodes have been displayed.

Consider our previous XML parsing example, given in
Figure 4. We applied the same artificial slowdown as with
the Java case by adding a slow method and a method that
simply calls it. The two methods are indicated in yellow in
the figure. The method parseDocument has been modified
accordingly, to introduce the call to parseProxy. This last
method calls newMethod, the slow method.

The method XMLParser>>parseDocument is indicated in
green since in the second execution its share of CPU
consumption is less than in the first execution.

Figure 4 shows that the method parseDocument is slower
and it has been modified due to the red color. The method
context parseProxy and newMethod are new in the second
execution.

IV. RIZEL

Rizel is a code execution profiler that uses advanced
profiling techniques and the performance evolution blueprint
to easily identify the cause of a performance drop. In
particular, Rizel innovates by supporting the following two
features:

Versions1.79 1.89 1.99 1.109 1.119

Execution
time

*

Figure 6. Illustration of a performance degradation: each line describes
the execution time of a benchmark across the versions of Roassal.

• automatically run a set of benchmarks over software
versions – By exploring the two dimensional space
of software versions and benchmarks, Rizel identifies
which versions introduce a performance drop.

• compare the execution of a benchmark over two software
versions – Based on the performance evolution blueprint,
Rizel offers a browser to navigate between execution
call flow, compare source code, highlight difference in
the amount of method executions and time distribution
along the call context tree.

The following sections elaborate on these two features.

A. Tracking performance failure across software versions

Rizel offers an API to script the execution of some
particular benchmarks over software versions. Consider the
following script:

1 Rizel new
2 setTestsAsBenchmarks;
3 trackLast: 100 versionsOf: 'Roassal';
4 run.

Rizel analyzes the last one hundred versions of Roassal
against a particular benchmark. Such a benchmark can be
externally provided. In this particular scenario, we use unit
tests as benchmarks. For each of these 100 versions, Rizel
profiles the execution of the unit tests. Only the tests that are
not modified during these 100 versions are compared. In this
particular case, unit tests are appealing since they represent
common execution scenarios of Roassal that are commonly
performed by end-users.

The result of the profiles may be handled in various forms,
including kept in memory to be processed later on using the
blueprint or exported to a CSV file.

Figure 6 shows the result of the test executions against
the last 100 versions of Roassal. The X-axis indicates the
incrementing software versions and the Y-axis indicates the
amount of time for a particular benchmark (i.e., execution
scenario in this particular case) to execute. Each graph
indicates the execution times of a benchmark. The graph gives

the execution time evolution a dozen of benchmarks. The
graph marked with a * indicates two jumps of the execution
time, which occurred at Version 1.97 and Version 1.108. This
graph corresponds to the test method testFixedSize. Each
of these jumps is a drop in performance.

This evolution of benchmarks over multiple software
versions gives a global overview of Roassal performance
variations. From that graph, an analysis of the two software
versions using the performance evolution blueprint may be
carried on.

B. Comparing two executions

To analyze the two performance drops, we need to compare
four executions of the benchmark testFixedSize, versions
1.97 - 1.98 for the first performance drop and versions 1.107-
1.108 for the second drop.

Rizel offers a second API to compare the profiles of
multiple executions. To understand from where the first
performance drop stems, the following script compares the
execution of testFixedSize method in version 1.97 and
1.98:

1 Rizel new
2 compareVersions: '1.97' and: '1.98' of: 'Roassal';
3 usingBenchmark:
4 [ROMondrianViewBuilderTest run:#testFixedSize];
5 visualize.

Performance Evolution Blueprint. Figure 7 shows the
difference between version 1.97 and 1.98 of Roassal, which
corresponds to the first drop of performance mentioned
earlier.

Consider the blueprint example in Figure 7 which compares
two executions of the benchmark testFixedSize during the
first drop in performance. The node ROAdjustSizeOfNesting

class>>on: is the tallest box and red, meaning this method
spends more time than its previous version in that context-call
and it has been modified in the new version. Figure 7 also
shows the difference between the source code of the old ver-
sion and the new version of method ROAdjustSizeOfNesting

class>>on:.
One reason for the slow down of ROAdjustSizeOfNesting

class>>on: is that this method executes twice the method
ROElement>>elementsNotEdge in the new version (yellow
boxes). One invocation is made directly for it and the
other one is through ROElement>>encompassingRectangle

method, that also was modified.
Calling the method elementsNotEdge twice is the root of

the first performance drop.
Note that the ROElement >>translateWithoutUpdating

ContainedElementsBy: method in previous version (gray
one) was invoked in different context than in the new
version (yellow one).

We now focus on the second performance drop, the one
that occurred between Version 1.107 and 1.108. Figure 8

compares the execution of the benchmark testFixedSize

method for these two versions.
In Figure 8, the tallest red node corresponds to the method

ROElement>>bounds. This color and shape indicates that
bounds takes longer to execute in Version 1.108 and its
definition is modified. The lower text pane of the Rizel
browser gives the changes made on the source code of this
particular method.

The new version of bounds is the root of the second
performance drop of Roassal.

Note that part of this performance loss is compensated with
an optimization made in the method translateWithout
UpdatingContainedElementsBy: (the only green
box). This method is faster in Version 1.108.

Interactions. A common problem to visualize call context
trees is the scalability. Rizel uses an expandable tree layout
in which only relevant nodes are expanded. Rizel provides a
number of interactions actionable by the end-user to reduce
the amount of information in the visualization, in particular:
show delta hot paths (i.e., the path from the root node to the
leaves that has the greater execution time variation); showing
up children nodes; recursively showing up all children nodes;
recursively hiding all children nodes. These interactions are
displayed as a popup-list by right-clicking on a node. The
lower part of the Rizel window compares the source code of
the two versions of the selected method.

Rizel indicates via a contextual flyby help some data about
the variation of the performance for that particular method
context node.

The visualizations presented in this section use the inter-
actions described above to highlight relevant call paths. A
Rizel visualization solely shows the path from the root node
to the leaves that has the greatest execution time variation.

At the beginning Rizel shows the path from the root node
to the leaves that has the greater execution time variation,
as default. We expand the children nodes of red and yellow
nodes by right-clicking on these nodes.

V. RELATED WORK

Offering a visual support to compare calling-context trees
eases the understanding of a low-level aspect of the execution.
Zimmer et al. [20] compare the effect of the recompilation
effort on the performance: the color of a node indicates
whether the method has not been recompiled at all (blue),
or whether its recompilation paid off (green) or not (red).
By clicking at a node of the graph the user can get detail
information about the corresponding method.

Many approaches have been proposed to compare software
versions from a syntactical, semantic, and structural point of
views [8], [9], [10], [11]. However, these approaches differ
from our work since our purpose is to compare performances
obtained from executions. Comparing execution is highly
relevant since execution comparison is commonly applied

Color

Δ # executions

Δ time

Border

A

B

A invokes B

ROMondrianViewBuilder>>nodes:

ROElement>>add:

ROElement>>elementsNotEdge

ROElement>>translateWithoutUpdatingContainedElementsBy:

ROElement>>encompassingRectangle
faster and modified method context
faster method context

new method context

slower method context

removed method context
slower and modified method context

Figure 7. Comparing the execution of testFixedSize test method in version 1.97 and 1.98

ROShape>>extentFor:

ROAbstractEndingShape>>extentFor:

ROElement>>translateWithoutUpdatingContainedElementsBy:

Figure 8. Comparing the execution of testFixedSize test method in version 1.107 and 1.108

to isolate performance failures induced by a program input
or a program update [12], [13]. Given two executions of a
program, a developer may compare and contrast the variation
in order to better understand how and why the program
behaved differently [14]. This section positions our work
against a number of techniques that compare executions
using call context trees and call graphs.

Shasha et al. propose the Tree Transformation algorithm to
compare two ordered trees. An ordered tree is a tree in which
the children of each node have total order. Given two trees,
the algorithm finds a sequence of insert, delete and rename
operations that, when applied to one tree, transforms it to
the other. This algorithm was originally designed for abstract
trees. However, it was used by Zhuang [15] to compare two
call context trees of the execution of a same benchmark
in two different platforms or with different inputs. They
use the number of operations required to transform one call
context tree (CCT) to another, as difference metric. The main
disadvantage is the way that the algorithm matches nodes;
relying solely on the node label and its post-order in the tree.
It ignores the context of the nodes (path from root to the
node).

Mostafa et al. [16] proposed a technique to compare two
call context trees, each obtained from a particular software
version. They present PARCS, an offline analysis tool that
automatically identifies differences between the execution
behavior of two revisions of an application. They use as the
base the common tree matching algorithm to compare two
call context trees. This algorithm uses a node equivalence
definition that considers the method, the context and the order
to make sure that two nodes of both trees are equivalent.
The problem with the definition is strongly constraining
with respect to the node ordering. Mostafa et al. propose a
variation of this definition called relaxed node equivalence
definition. This definition is more flexible with regard to
ordering. They use the call-site information of each invocation
as a metric to determine if two nodes are equivalents instead
of the order of the invocations.

However, this approach can not detect new inner nodes.
Consider a CCT corresponding to first execution and the only
difference with the second CCT is a new node added at the
root of the tree. This approach will consider that both trees
are totally different since all children nodes of the second
execution will have different contexts regarding nodes of
the first execution. Our approach has a more flexible node
equivalence definition regarding call context nodes. Two
nodes are equivalent if the call context of one of them (the
list of nodes from root to the node) is a sub-sequence of
the call context of the other one. It made possible to detect
added or deleted inner nodes. Detecting possible added or
deleted nodes is useful in understanding the real impact in
performance of a new node.

Adamoli et al. [17] present Trevis, an extensible framework
for visualizing, comparing, clustering, and intersecting call

context trees. They use call context ring charts to handle
large trees [18]. Trevis provides an approach to compute a
representative exemplar of a set of context trees. They have
implemented two mechanisms to compute such an exemplar:
context tree union and context tree intersection. They base
the corresponding operations for context trees on the notion
of common tree matching. However, their approach does not
consider source code metrics.

Bergel et al. proposed Behavioral Evolution Blueprint,
with its goal of comparing the profiles over two software
versions. The blueprint shows runtime information as a call
graph, where nodes are methods and edges are method
invocations [19]. Each node in the call graph is rendered
as a box and an invocation is a line that joins two boxes
(upper methods invoke lower ones). However, this blueprint
only considers whether or not a method spent more or less
execution time than its previous version. We improve on this
blueprint by adding more metrics, highlighting difference
execution amounts and time distribution along the call graph
as well as structural differences. This blueprint also does not
consider methods call context, making the analysis difficult.
For instance, if a method is slower and it is invoked from
different changed methods, it is difficult to know which
change is responsible for the slow down.

VI. CONCLUSION

This paper presents performance evolution blueprint, a
visual approach to understanding the root of a performance
slowdown. The blueprint compares the performance of
two executions. The blueprint uses a simple metaphor:
large red methods are methods that consume the CPU
the most, whereas large green methods indicate where the
improvements lie.

Our blueprint is a visual and interactive support to track
performance variation across software versions. It visually
presents a number of run-time metrics to determine the
reason for slow execution at a fine grained level. Rizel, a
code execution profiler that implements the performance
evolution blueprint, has been successfully used to understand
and remove the cause of negative performance variations.

As future work, we plan to categorize execution patterns
that represent the relationship between source code changes,
call context tree variations and performance.

ACKNOWLEDGMENT

Juan Pablo Sandoval Alcocer is supported by a Ph.D.
scholarship from CONICYT and AGCI, Chile. CONICYT-
PCHA/Doctorado Nacional/2013-63130199. This work has
been partially funded by Program U-INICIA 11/06 VID 2011,
grant U -INICIA 11/06, University of Chile, and FONDECYT
project 1120094. This work has been partially funded by
ESUG, the European Smalltalk User Group. We thank the
support of Inria for the associated Team Plomo.

REFERENCES

[1] M. Lehman and L. Belady, Program Evolution: Processes of
Software Change. London: London Academic Press, 1985.
[Online]. Available: ftp://ftp.umh.ac.be/pub/ftp infofs/1985/
ProgramEvolution.pdf

[2] F. P. Brooks, “No silver bullet,” IEEE Computer, vol. 20, no. 4,
pp. 10–19, Apr. 1987.

[3] J. Trümper, J. Döllner, and A. Telea, “Multiscale visual
comparison of execution traces,” in Proceedings of the 21st
International Conference on Program Comprehension. IEEE
Computer Society, 2013.

[4] C. Zhao, K. Zhang, J. Hao, and W. E. Wong, “Visualizing
multiple program executions to assist behavior verification,”
in Proceedings of the 2009 Third IEEE International
Conference on Secure Software Integration and Reliability
Improvement, ser. SSIRI ’09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 113–122. [Online]. Available:
http://dx.doi.org/10.1109/SSIRI.2009.26

[5] E. R. Tufte, The Visual Display of Quantitative Information,
2nd ed. Graphics Press, 2001.

[6] M. Lanza and S. Ducasse, “Polymetric views—a lightweight
visual approach to reverse engineering,” Transactions on
Software Engineering (TSE), vol. 29, no. 9, pp. 782–795, Sep.
2003. [Online]. Available: http://scg.unibe.ch/archive/papers/
Lanz03dTSEPolymetric.pdf

[7] G. Ammons, T. Ball, and J. R. Larus, “Exploiting hardware
performance counters with flow and context sensitive profiling,”
in Proceedings of the ACM SIGPLAN 1997 conference on
Programming language design and implementation, ser. PLDI
’97. New York, NY, USA: ACM, 1997, pp. 85–96. [Online].
Available: http://doi.acm.org/10.1145/258915.258924

[8] T. Apiwattanapong, A. Orso, and M. J. Harrold, “A
differencing algorithm for object-oriented programs,” in
Proceedings of the 19th IEEE international conference on
Automated software engineering, ser. ASE ’04. Washington,
DC, USA: IEEE Computer Society, 2004, pp. 2–13. [Online].
Available: http://dx.doi.org/10.1109/ASE.2004.5

[9] D. Jackson and D. A. Ladd, “Semantic diff: A tool for
summarizing the effects of modifications,” in Proceedings
of the International Conference on Software Maintenance,
ser. ICSM ’94. Washington, DC, USA: IEEE Computer
Society, 1994, pp. 243–252. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=645543.655704

[10] J. Laski and W. Szermer, “Identification of program mod-
ifications and its applications in software maintenance,” in
Software Maintenance, 1992. Proceerdings., Conference on,
1992, pp. 282–290.

[11] E. W. Myers, “An o(nd) difference algorithm and its variations,”
Algorithmica, vol. 1, pp. 251–266, 1986.

[12] H. Cleve and A. Zeller, “Locating causes of program failures,”
in ICSE’05: Proceedings of the 27th International Conference
on Software Engineering, 2005, pp. 342–351.

[13] A. Zeller, “Isolating cause-effect chains from computer
programs,” in SIGSOFT ’02/FSE-10: Proceedings of the
10th ACM SIGSOFT symposium on Foundations of software
engineering. New York, NY, USA: ACM Press, 2002, pp.
1–10.

[14] W. N. Sumner, T. Bao, and X. Zhang, “Selecting
peers for execution comparison,” in Proceedings of
the 2011 International Symposium on Software Testing
and Analysis, ser. ISSTA ’11. New York, NY, USA:
ACM, 2011, pp. 309–319. [Online]. Available: http:
//doi.acm.org/10.1145/2001420.2001458

[15] X. Zhuang, S. Kim, M. i. Serrano, and J.-D. Choi, “Perfdiff:
a framework for performance difference analysis in a virtual
machine environment,” in CGO ’08: Proceedings of the
6th annual IEEE/ACM international symposium on Code
generation and optimization. New York, NY, USA: ACM,
2008, pp. 4–13.

[16] N. Mostafa and C. Krintz, “Tracking performance across
software revisions,” in PPPJ ’09: Proceedings of the 7th
International Conference on Principles and Practice of Pro-
gramming in Java. New York, NY, USA: ACM, 2009, pp.
162–171.

[17] A. Adamoli and M. Hauswirth, “Trevis: a context tree
visualization analysis framework and its use for classifying
performance failure reports,” in Proceedings of the 5th
international symposium on Software visualization, ser.
SOFTVIS ’10. New York, NY, USA: ACM, 2010, pp. 73–
82. [Online]. Available: http://doi.acm.org/10.1145/1879211.
1879224

[18] P. Moret, W. Binder, A. Villazón, and D. Ansaloni, “Exploring
large profiles with calling context ring charts,” in Proceedings
of the first joint WOSP/SIPEW international conference on
Performance engineering, ser. WOSP/SIPEW ’10. New
York, NY, USA: ACM, 2010, pp. 63–68. [Online]. Available:
http://doi.acm.org/10.1145/1712605.1712617

[19] A. Bergel, R. Robbes, and W. Binder, “Visualizing dynamic
metrics with profiling blueprints,” in Objects, Models, Com-
ponents, Patterns, ser. Lecture Notes in Computer Science,
J. Vitek, Ed., vol. 6141. Springer Berlin / Heidelberg, 2010,
pp. 291–309.

[20] S. Zimmer and S. Diehl, “Visual amortization analysis of
recompilation strategies,” 2010 14th International Conference
Information Visualisation, vol. 0, pp. 509–514, 2010.

ftp://ftp.umh.ac.be/pub/ftp_infofs/1985/ProgramEvolution.pdf
ftp://ftp.umh.ac.be/pub/ftp_infofs/1985/ProgramEvolution.pdf
http://dx.doi.org/10.1109/SSIRI.2009.26
http://scg.unibe.ch/archive/papers/Lanz03dTSEPolymetric.pdf
http://scg.unibe.ch/archive/papers/Lanz03dTSEPolymetric.pdf
http://doi.acm.org/10.1145/258915.258924
http://dx.doi.org/10.1109/ASE.2004.5
http://dl.acm.org/citation.cfm?id=645543.655704
http://dl.acm.org/citation.cfm?id=645543.655704
http://doi.acm.org/10.1145/2001420.2001458
http://doi.acm.org/10.1145/2001420.2001458
http://doi.acm.org/10.1145/1879211.1879224
http://doi.acm.org/10.1145/1879211.1879224
http://doi.acm.org/10.1145/1712605.1712617

	Introduction
	Measuring and Representing Difference of Profiles
	Performance Evolution Blueprint
	Rizel
	Tracking performance failure across software versions
	Comparing two executions

	Related Work
	Conclusion
	References

