The Hidden Face of Execution Sampling

Alexandre Bergel, Vanessa Pena, Juan Pablo Sandoval

Department of Computer Science (DCC)
University of Chile, Santiago, Chile

ABSTRACT

Code profilers estimate the amount of time spent in each
method by regularly sampling the method call stack. How-
ever, execution sampling is fairly inaccurate. This inaccuracy
may give a false sense of CPU time distribution and prevents
profilers from being used to estimate the code coverage.
Multiplying the execution of the code to be profiled in-
creases the profiler accuracy. We show that the relation
between the number of iterations and the precision of the
profiles follows a well determined relation. We propose a
statistical model to determine the right amount of iterations
to reach a particular ratio of reported methods. We use this
model to estimate and increase the profiling accuracy.

1. INTRODUCTION

Precisely determining what is happening during the ex-
ecution of a program is difficult. Modern programming
environments provide code execution profilers to report on
the execution behavior. Code execution profilers for object
oriented programming languages are particularly useful at
estimating how much time is spent in what methods.

Execution sampling is a technique commonly employed
when profiling code execution. It has a low impact on the
executed program and is reasonably efficient to identify ex-
ecution bottleneck, despite its limitations [2, 7, 8]. As a
consequence execution sampling is commonly employed in
code execution profilers.

Execution sampling behaves relatively well on long and
focused program execution, however, it is fairly inaccurate
for short program execution. Software engineers address this
well known problem by executing the same code multiple
times [10]. This artificial increase of the execution time
produces a gain in the profiling accuracy. What is however
unclear, is the amount of necessary iterations to reach a
satisfactory profile.

The research question addressed in this paper is: Can the
number of multiple executions be related to the accuracy of
the execution sampling?

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

We answer this question by carefully measuring the amount
of reported methods in a profile. By executing multiple times
the code to profile, we measure the gain in the reported
method. We determined that this gain follows a logarithmic
curve. By establishing a regression model, we are able to
estimate the profiling precision based on a small number of
execution samples.

We first illustrate the impact on multiple execution on a
number of Smalltalk applications (Section 2). Subsequently,
we measure this impact and establish a statistical model
for it (Section 3). We compare the Pharo and VisualWorks
platforms (Section 4). We then review the related work
(Section 5) before concluding (Section 6).

2. CODE EXECUTION SAMPLING

2.1 Profiling example

Consider the Smalltalk expression XMLDOMParser parse:
xmlString. Evaluating this expression returns an abstract
syntax tree describing the provided XML content. We arbi-
trarily pick an XML string as the benchmark we thoroughly
use in this paper. Evaluating this expression for our particu-
lar XML content takes 156 ms on our machine®.
We profiled the XML parsing using MessageTally, the
standard profiler in Pharo, as follows:

MessageTally spyOn: [XMLDOMParser parse: xmlString |

Profiling an application increases the execution time. The
total execution reported by MessageTally is 168 ms. We
see an increase of (168 — 156)/156 = 7% of the execution
time. Lengthening the execution time by 7% for a time
profile is a compromise acceptable in our situation (i.e., non-
realtime operation, with a relatively thin interaction with
the operating system).

MessageTally reports for the absolute and relative time
spent in each method. Consider XMLTokenizer>>nextTag,
MessageTally reveals it takes 15% of the total execution:

15.5% {26ms} XMLTokenizer>>nextTag
10.1% {17ms} SAXDriver>>
handleStartTag:attributes:namespaces:
3.6% {6ms} XMLTokenizer>>nextEndTag

The method nextTag is reported to call two other methods,
handleStartTag:attributes:namespaces and nextEndTag.

! All the measurements with Pharo were realized using Pharo
1.4 with the VM 5.7b3 on a MacBook Pro, 8Gb of Ram, 2.26
GHz Intel Core 2 Duo

The source code nextTag is quite complex, and it sends
exactly 15 different messages. However, only two of them
are reported by MessageTally.

About 21 different methods defined in the XML package are
part of the profile (average from 20 runs). A careful tracing
of the XML parsing expression reveals that 258 methods
contained in the XML package are executed in total. This
means that only 21/258 = 0.08 = 8% of the methods involved
in parsing an XML content are reported by MessageTally.

1.00

0.75

0.50

0.32

- l . I I I
0

Merlin Regex Ring ProfStef Zinc ECompletion Shout

Figure 1: Ratio between reported methods and exe-
cuted methods (higher is better, average = 0.32).

To verify whether this effect is particular to our particular
expression or not, we run a similar experiment on 7 other
applications. We took 7 popular applications contained in
the standard Pharo image. We profiled the execution of the
unit tests for each of them twice, the first time using an
execution sampling profiler (MessageTally), and the second
time by instrumenting the methods (using Compteur [2]).

Using unit tests as benchmarks is reasonable in our case
since unit tests are not interactive. It has been shown that
traditional profilers, including MessageTally, are inefficient
to profile interaction scenarios [7].

By instrumenting the methods, we get an accurate amount
of methods involved in the execution. The average of the
ratio between reported methods and executed methods for
our 8 applications (including the XML parsing) is 0.32.

Merlin has the lowest ratio: only 1% of the executed meth-
ods are reported by MessageTally. The reason is probably
the extremely short execution of the unit tests (4 ms), mean-
ing that less methods will be caught by the profiler (the
sampling in Pharo is done every milliseconds). Shout has
the highest ratio (82%), but also the longest execution time
(6964 ms). This implies that more methods will be sampled
by the profiler.

The fact that some methods are missed by MessageTally
is a direct consequence to execution sampling, the strategy
used by most of the code execution profilers.

2.2 Execution sampling

Execution sampling approximates the time spent in an ap-
plication’s methods by periodically stopping a program and
recording the collection of methods being executed [9]. In
VisualWorks and Pharo, the code to profile is executed in a
new thread and the profiler runs in a thread at a higher prior-
ity [2]. When the profiling thread is activated, it inspects the
runtime method call stack (accessible via the thisContext
pseudo variable) of the observed thread. Per default, this

inspection happens every millisecond?.

Execution sampling has many advantages. Firstly, it has
a low impact on the overall execution. In Pharo, code is
between 5% and 12% longer to execute when being profiled.
This is reasonable in the large majority of cases developed
in Pharo. Secondly, execution sampling has no perceptible
impact on the profiled application semantics in the large
majority of cases: an application that is being profiled is
expected to do what it is supposed to do, only a bit slower.

However, as we have previously shown, sampling an exe-
cution can be quite inaccurate and incomplete.

2.3 Increasing the execution time

It is common to artificially increase the execution time to
gain accuracy when sampling the execution. This is easily
done by running the same code multiple times. Putting
the expression we are interested in a loop, also makes the
profiling more precise:

MessageTally spyOn: [
10 timesRepeat: [XMLDOMParser parse: xmlString | |

The consumption of nextTag is now reported as:

15.6% {260ms} XMLTokenizer>>nextTag
8.1% {135ms} SAXDriver>>
handleStartTag:attributes:namespaces:
3.1% {51ms} XMLTokenizer>>nextEndTag
2.0% {33ms} XMLTokenizer>>
nextAttributelnto:namespaces:

The call to nextAttributeInto:namespaces: is now re-
vealed which readjust the overall distribution, leading to a
better accuracy. The CPU share of handle. . .spaces: went
from 10.1% to 8.1% and nextEndTag went from 3.6% to 3.1%.

By repeatedly executing the same expression, the total
execution time increases, enabling (i) more methods to be
detected during a sampling and (ii) the CPU share of reported
methods is slimed down to gain in accuracy. 62 methods are
now reported by MessageTally. This makes the ratio go from
8% to 24%.

1.00

0.75

0.52
0.50

0.25

Merlin XML Regex Ring ProfStef Zinc ECompletion Shout

Figure 2: Ratio of reported methods with a loop of
10 iterations (higher is better, average = 0.52).

Figure 2 shows the applications for which we repeated 10
times their corresponding unit tests. The effect of the loop
is significant. The average ratio of reported methods is now
0.52.

We have arbitrarily chosen a loop of 10 iterations. For some
applications, the impact of using 10 iterations is stronger

2In Java systems, the profiling time sampling is usually 10
milliseconds [8].

than for others. For example, ProfStef has a ratio greater
than XML’s, however the ratio is lower with 10 iterations.
Iterating has a different impact on each application essentially
due from two reasons:

e Iterations stress the memory management. The num-
ber of full garbage collections is linear with the number
of iterations: increasing the number of iterations re-
sults in a linear increase of the number of full garbage
collections. However, this iteration is quite dispersed
around the trend line. This disparity makes that mul-
tiply executing the same expression has unpredictable
effects on the garbage collector.

e Methods with a very short execution time may remain
hidden from the profiler, even with a high number of
execution.

The following section discuss the impact of multiple exe-
cutions.

3. MEASURING THE GAIN

3.1 Regression line

To get a better understanding of the impact of multiple
executions, the following expression successively profiles the
XML parser:

#(1 11 21 31 41 51 ... 191) do: [:numberOflterations |
MessageTally spyOn: [
numberOflterations
timesRepeat: [XMLDOMParser parse: xmlString |]]

The effect of using numberOfIterations timesRepeat:
[... 1 artificially increase the execution time of the ex-
pression we are interested in. Naturally, we assume all the
executions are the same. The code we gave is a simplified
version of how we actually measured the profiles. We make
sure that before profiling we properly clean the memory by
running the garbage collector multiple times.

Ratio
1.00

0.75 +

0.50

0.25 +

0 50 100 150 200
lterations

Figure 3: Evolution of the ratio against multiple
execution.

Figure 3 shows our measurements. The horizontal axis
is the number of iterations for the XML parsing expression.

The number of times it is executed goes from 1 to 241, with
an increment of 10. The vertical axis is the ratio of reported
methods. It goes from 0.24 and tops at 0.81. Each cross
corresponds to a measurement (iteration, ratio).

The trendline is indicated with a continuous line and has a
logarithmic shape. The regression equation given by common
statistical tools [6] has the pattern y = a In(x) + b. In the
case of our XML parsing, a = 0.0974 and b = 0.2918. The
associated “test of goodness of fit”, R?, is 0.9514. A value
close to 1 means a good fit, i.e., the equation matches the
observed data. We will give an accurate definition of R? later
on (Section 3.3).

ProfStef

0 0
0 50 100 150 200 0 50 100 150 200
Ring Merlin
1.00 1.00
0.75 0.75
+
0.50 R2 =0.9941 0.50

R2 =0.9702

[
0 37.5 75.0 1125 150.0 0 50 100 150 200

Zinc

Figure 4: Evolution of the ratio.

We repeat the same analysis on our applications (Figure 4).
All the regression lines are logarithmic curves, with a R?
over 0.89.

The ratio of identified methods ranges from 0% to 100%.
Obviously, it cannot be greater than 1. In practice, getting
a ratio of 100% (i.e., determining all the methods that are
effectively used by sampling the execution) is hardly achiev-
able. Even for a high number of iterations, the ratio stalls
around 90% when we pick a high number of iteration. As a
consequence, the regression model y = a In(x) + b is valid
for values of x that produces a y lesser than 0.90.

In the following, we do not discuss any further about this
asymptotic behavior as we leave it for future work.

3.2 Determining « and »

We have seen that the regression line follows the pattern
y = a In(z) + b. For a given set of iterations (z), we can
determine the method ratio of the profiling (y) assuming
that we know about a and b.

As our measurement show, the value of a and b are proper

to the piece of code to be profiled. Since we are interested
in predicting the amount of iterations for a given ratio, we
need to determine a and b.

First, we need to get rid of the logarithm by writing X =
In(z) and Y = y. The equation becomes Y = aX + b, which
is much simpler to reason about. For a given set of (X, Y)
plots, a and b are easily determined using linear least squares
fit:

_ SSxvy _
biS’SXX a=Y —-bY
where
(EX(TY) (zy) 3 > (2X)?
SSxy =Y XY- SSxx =»_ X m

We further have n is the number of samples; SS stands for
“sum of squares”; X is the average of all the X values; Y is
the average of all the Y values.

Using our example of XML parsing, we already had

iterations (z) | ratio (y)
31 0.61
61 0.72
91 0.7
121 0.78

The values of X = In(z) are therefore {In(31), In(61),
In(91), In(121)}. By applying the formulas given above, we
find @ = 0.1097 and b = 0.2404.

The regression equation for the XML parsing is therefore
y = 0.1097 In(z) + 0.2404. This equation is pretty close to
what we have found in the previous section.

We can then deduce:

If we wish to obtain a ratio of 0.8 of our profile, then we
0.8—-0.2404
need e 01097 = 164 iterations. Our measurement shows

that the 0.8 ratio threshold is reached after 151 iterations.

3.3 How confident are we?

The previous section gives a model that binds the amount
of code iterations with the ratio of reported methods during
a profile. We use our model to “predict” the value of the
ratio for a given amount of iterations.

One piece in our analysis is however missing, which is
about the trust we can give in our prediction. In statistics,
the coefficient of determination R? tells about the amount of
variability in a data set. The more variable a data set is, the
higher R? is. The definition of R? that is commonly used is:

SSerr
SStot

where SSe = S (yi — f(x:))? and SSior = S (yi — 7).
SSiot is the total sum of squares. SSe,, is the sum of squares
of residuals. The modeled values are obtained with f(z) =
a In(x) +b.

When applied to the four (z,y) pair given previously, we
have R? = 0.84. Being close to 1 indicates that the regression
given previously is indeed an accurate model of the pair
values.

RP=1-

4. THE CASE OF VISUALWORKS

The measurement given above have been realized in Pharo
Smalltalk with a non-jitted virtual machine. To verify
whether the model we have previously described is particular
to Pharo or not, we take VisualWorks Smalltalk®, a popular
Smalltalk dialect, and run a similar set of experiences.

The executing environment and profiler of VisualWork
(VW) differ from the one of Pharo on two essential points:

e The virtual machine of VW is significantly faster than
the non-jitted one of Pharo.

e In VW, the sampling period is randomly selected in a
range [1,32] milliseconds. Using a random sampling
period leads to an increase of precision [8]. In Pharo
the sampling period is fixed.

o+
+ R2=0.8588

+ +
0 3750 7500 11250 15000 0 3750 7500 11250 15000

OSkStream

Mondrian

R2 =0.9404

£
& Re=0.4825

0
0 3750 7500 11250 15000 0 100000 200000 300000 400000

Figure 5: Evolution of the ratio on VisualWorks.

Figure 5 the evolution of the ratio for 4 applications. We
tried two industrial applications, noted X and Y, and two
open-source applications, Mondrian and OSkSubStream.

We profiled the two industrial applications on a Window
XP machine and the two open-source applications on a Linux
Ubuntu®.

The OSkSubStream measurements are weakly correlated.
We speculate that the cause is the presence of many short
methods. Interestingly, we experienced in our previous
work [2] a similar significant variation when profiling Pe-
titParser, a streaming and parsing framework in Pharo.

These four experiences confirm our previous finding: the
ratio between profiled methods and executed methods follows
a logarithmic curve. Our results strongly suggest that the
performance of the virtual machine, the just-in-time compiler
and the random sampling do not impact the ratio of reported
methods in a sampling-based profile.

S. RELATED WORK

Extracting accurate profiles from a software execution
is challenging. Several techniques have been proposed to

3http://www.cincomsmalltalk.com
4VisualWorks 7.7.1 on a PC Core i5 2.30GHz, 4Gb of Ram

http://www.cincomsmalltalk.com

increase the accuracy and reduce the overhead of execution
sampling.

Mytkowicz et al. evaluate and compare 4 profilers for Java.
They discovered that the produced profiles are different: the
hot methods identified by one profiler may not be the same
as the ones identified by another profiler. They then propose
a more accurate profiler that collects samples randomly and
it does not suffer from the above problems [8].

Fischmeister and Ba [5] propose theorems to determine
the sampling period in different scenarios, and heuristics to
extend the sampling period to reduce the overhead.

Our approach, however, shows that using a fixed or a
random sampling period produces similar result when using
multiple code execution

Whaley present a sampling-based profiler for Java Virtual
Machines. It is able to correctly identify calling context
without walking the entire stack and distinguish between
frequently-executed and long running methods. Also, the
profile data is extremely accurate [9].

Binder present a sampling-based profiling framework for
Java [4] based on custom profiling agents in pure Java. The
sampling is realized by counting bytecode instructions. It
offers a good trade-off between high accuracy of profiles
and reasonable overhead. The features of Binder profiler
can improve our overall impact. In this sense the ratio
between profiled methods and executed methods could be
more deterministic. As a future work, we plan to apply this
approach on counting messages [2].

Arnold and Ryder [1] present a framework to perform in-
strumentation sampling. Their framework duplicate method
bodies, and counter-based sampling to switch between in-
strumented (copy) and no-instrumented code. This reduce
the overhead but a relatively expensive process has to be
done first.

6. CONCLUSION & FUTURE WORK

The difficulty to properly monitor an application execution
imposes a severe compromise between what information can
be extracted and the cost to obtain it. In this paper we
have motivated and measured a simple way to increase the
accuracy of profiles based on execution sampling.

So far we have empirically determined a logarithmic re-
lation between the amount of iterations and the ratio of
identified methods. As a future work, we will investigate the
cause of this relationship by monitoring the evolution of the
call graphs.

The regression model that we determine follows a loga-
rithmic curve (y = a In(z) + b). However, we have found
that the produced ratio (y) is asymptotic in practice: y does
not go above a ratio (around 90%), even for a large z. As
future work, we plan to refine our model with this asymptotic
behavior for large number of iterations.

Most code execution profilers simply report what has been
detected, without giving any feedback about the quality of
the profile. As future work, we plan to integrate our model
into Kai [3], a fully fledged code execution profiler. This will
make Kai the very first profiler to provide feedback on the
profile quality.

Acknowledgments.

We gratefully thank Chris Thorgrimsson for the multiple
discussions and brainstormings we had. We thank Walter
Binder for reviewing an early draft. We also thanks Johan

Fabry and Romain Robbes for the discussion we had on the
statistical part.

This work has been partially funded by Program U-INICIA
11/06 VID 2011, grant U-INICIA 11/06, University of Chile,
and FONDECYT 1120094.

7. REFERENCES

[1] Matthew Arnold and Barbara G. Ryder. A framework
for reducing the cost of instrumented code. In
Proceedings of the ACM SIGPLAN 2001 conference on
Programming language design and implementation,
PLDI 01, pages 168-179, New York, NY, USA, 2001.
ACM.
Alexandre Bergel. Counting messages as a proxy for
average execution time in pharo. In Proceedings of the
25th European Conference on Object-Oriented
Programming (ECOOP’11), LNCS, pages 533-557.
Springer-Verlag, July 2011.
Alexandre Bergel, Felipe Ba nados, Romain Robbes,
and Walter Binder. Execution profiling blueprints.
Software: Practice and Experience, August 2011.
Walter Binder. Portable and accurate sampling
profiling for java. Softw. Pract. Ezper., 36(6):615-650,
2006.
Sebastian Fischmeister and Yanmeng Ba.
Sampling-based program execution monitoring. In
Proceedings of the ACM SIGPLAN/SIGBED 2010
conference on Languages, compilers, and tools for
embedded systems, LCTES 10, pages 133-142, New
York, NY, USA, 2010. ACM.
David Freedman, Robert Pisani, and Roger Purves.
Statistics, Third Edition. W. W. Norton & Company,
1997.
Milan Jovic, Andrea Adamoli, and Matthias Hauswirth.
Catch me if you can: performance bug detection in the
wild. In Proceedings of the 2011 ACM international
conference on Object oriented programming systems
languages and applications, OOPSLA ’11, pages
155-170, New York, NY, USA, 2011. ACM.
Todd Mytkowicz, Amer Diwan, Matthias Hauswirth,
and Peter F. Sweeney. Evaluating the accuracy of java
profilers. In Proceedings of the 81st conference on
Programming language design and implementation,
PLDI ’10, pages 187-197, New York, NY, USA, 2010.
ACM.
John Whaley. A portable sampling-based profiler for
java virtual machines. In Proceedings of the ACM 2000
conference on Java Grande, JAVA ’00, pages 78-87,
New York, NY, USA, 2000. ACM.
[10] Steve Wilson and Jeff Kesselman. Java Platform
Performance. Prentice Hall PTR, 2000.

[2

[3

[4

5

[6

7

8

9

	Introduction
	Code Execution Sampling
	Profiling example
	Execution sampling
	Increasing the execution time

	Measuring the gain
	Regression line
	Determining a and b
	How confident are we?

	The Case of VisualWorks
	Related work
	Conclusion & Future Work
	References

