Analyzing Software Process Models with AVISPA

Julio A. Hurtado Alegria
Computer Science Dept.
Universidad de Chile
IDIS Research Group
University of Cauca
jhurtado@dcc.uchile.cl

ABSTRACT

Software process models are sophisticated and large speci-
fications aimed at organizing and managing software devel-
opment. Their formal specification demands an enormous
effort, but once specified there are few approaches and even
fewer tools that aid the process engineer to analyze the qual-
ity of the process. For the last five years we have aided soft-
ware companies in specifying their software processes and we
have found a series of error patterns that indicate the po-
tential presence of misconceptions or misspecifications. This
paper presents these patterns, characterizes the kinds of er-
rors they potentially reveal, and details how errors could be
localized within a software process model. To assist process
engineers to analyze the quality of their processes, we pro-
vide AVISPA, a tool that graphically renders different aspects
of a process model and highlights potential errors as intu-
itive and comprehensible indicators. The approach and the
supporting tool are illustrated by applying them for analyz-
ing the software process models of three Chilean software
companies.

Categories and Subject Descriptors

D.2.9 [Software Engineering]: Management—software pro-
cess models; D.2.8 [Software Engineering]: Metrics—soft-
ware process quality

General Terms

Management, Verification

Keywords

Software process models, quality assessment, model-driven
engineering

1. INTRODUCTION

Counting on a well defined software process model is de-
terminant for achieving software quality and process produc-
tivity. Therefore, many companies have undertaken software

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICSSP ’11, May 21-22, 2011, Waikiki, Honolulu, HI, USA

Copyright 2011 ACM 978-1-4503-0580-8/11/05 ...$10.00.

Maria Cecilia Bastarrica
Computer Science Dept.
Universidad de Chile
cecilia@dcc.uchile.cl

Alexandre Bergel
Computer Science Dept.
Universidad de Chile
abergel@dcc.uchile.cl

process specification and improvement as a priority project.
However, conceptualizing the software process model de-
mands an enormous effort for making explicit common prac-
tices and defining practices that do not exist within the com-
pany yet. Standards such as ISO/IEC15504 [11] and matu-
rity models such as CMMI [21] are generally used as guide-
lines for defining this process. But there are still no stan-
dard wide-spread mechanism for determining the quality of
the specified process, and thus the return-of-investment of
software process definition is not always clear.

For the last five years we have worked in aiding small
software companies in Chile to define their development pro-
cesses in an effort to improve national industry standards?®.
As part of this practical experience, we have found that there
are some typical recurrent errors in software processes, some
of them due to conceptual errors in the process design and
other errors introduced during process specification. But
none of them are easily identified, let alone localized, be-
cause of the enormous amount of process elements involved,
multiple views, and informal notations that may sometimes
introduce ambiguity.

In a previous work, we have proposed process model blue-
prints [10] as a means for visualizing and analyzing differ-
ent perspectives of a software process model. The three
blueprints considered (ROLE BLUEPRINT, TASK BLUEPRINT,
and WORK PRODUCT BLUEPRINT) are applied to software
process models defined using SPEM 2.0 [16], the OMG stan-
dard notation for process specification. The process blue-
prints we proposed enable the identification of exceptional
entities [4], i.e., exceptions in the quantitative data col-
lected. Blueprints were successfully used to identify a num-
ber of flaws in an industrial process model, but a lot of
experience from the process engineer is required for identi-
fying these flaws. Since then, we have assessed several other
industrial process models, and we discovered a set of recur-
rent patterns ranging from suboptimal modeling to miscon-
ceptions and misspecifications.

This paper is about presenting, formalizing and validating
these recurrent error patterns. We rigorously define recur-
rent errors appearing in software process models, and we ex-
plain their potential consequences. We also show how each
of these error patterns can be identified within a software
process blueprint.

'Tutelkén: Achieving High Quality in
Software Industry by Applying Reference
(www.tutelkan.org).

National
Processes

We have built AvISPA (Analysis and VIsualization for Soft-
ware Process Assessment)?; a tool that builds blueprints and
highlights error patterns. Counting on this tool, the pro-
cess engineer only needs to analyze highlighted elements,
demanding less experience and also less previous knowledge
for effective process model analysis, and adding usability as
well.

Software Process Model

Figure 1: AviISPA in localizing software process model
improvement opportunities

Using visualization to identify error patterns is not new.
A large body of research use visual patterns to identify pos-
itive or negative properties of software systems [12,19, 25].
However, none of the related work we are aware of elabo-
rated on visual patterns for identifying problems in software
process models.

Figure 1 depicts the pile of technologies involved in our
proposal. Software process models specified in SPEM 2.0
are assumed to exist. We consider SPEM 2.0 for our work
since it is the standard of OMG, and it has also been pro-
moted within the Chilean software industry by the Tutelkan
project. On top of them we define a series of software pro-
cess metrics that will be used for identifying errors and im-
provement opportunities. Software process blueprints are
built using these metrics. Error patterns are identified as
those elements or constructs within blueprints whose values
for certain metrics satisfy some constraints. The identified
elements are visually highlighted using AVISPA.

We have applied AVISPA for analyzing the process models
defined in three different Chilean software companies. We
have been able to find several of the defined error patterns,
and most of them resulted in actual errors, giving support
to our intuition that a formal tool that helps the process
engineer is useful. AVisPA has been highly welcomed in all
companies we have worked with, and process engineers also
pointed out that it is relevant for them to count on AVISPA
for maintaining their software process model, an application
we have not envisioned before. We report some of these
experiences.

The rest of the paper is structured as follows. Section 2
presents a description of empirically found recurrent errors,
as well as a description of their implications, and how they

2http://www.moosetechnology.org/tools/ProcessModel.
AVISPA is freely available under the MIT license.

look in AvispA. A detailed description of the AVISPA tool
is included in Sect. 3 and its application for localizing er-
ror patterns in three industrial software process models is
reported in Sect. 4. Related work is discussed in Sect. 5.
Finally, some conclusions and further work are presented in
Sect. 6.

2. PROCESS MODEL ERROR PATTERNS

For the past five years we have conducted applied research
in the area of software process models in small software com-
panies in Chile [8,23] and Iberoamerica [20,24] as part of
the Tutelkdn and Competisoft projects. Along this work we
have identified a number of common errors and problematic
situations in software process model specifications, either
due to misconceptions or misspecifications. In this section
we report a series of these patterns, how they may be identi-
fied in AvispA, and mainly how we are able to automatically
highlight them as part of the blueprint where they appear.
In this work, we say that there is a misspecification in the
software process model if the development process is well
designed but its specification does not necessarily reflect the
actual practices, e.g., there exist some guidance for a role
but it is not specified as part of the model. We say that
there is a misconception whenever there is a flaw in the soft-
ware process design, e.g., a task produces a work product
that neither a task nor a role needs.

Section 2.1 is a summary of our previous work [10] on pro-
cess model blueprints. It is necessary to introduce it since we
augmented blueprint visualizations with new information to
identify error patterns. Readers familiar with Process Model
Blueprints may safely skip Sect. 2.1. Section 2.2 presents the
error patterns we have identified.

2.1 Process Model Blueprints

ROLE BLUEPRINT, TASK BLUEPRINT and WORK PROD-
UCT BLUEPRINT are three graphical views of a software pro-
cess model. Each of them focuses on a particular aspect
of the process model, namely roles, tasks and work prod-
ucts. Each blueprint is depicted as a polymetric view [12],
a lightweight software visualization technique enriched with
software metrics information, that has been successfully used
to provide software maps.

In the ROLE BLUEPRINT, nodes are roles whose size rep-
resents the number of tasks in which they are involved, and
edges between two nodes indicate role collaboration (two
roles working together in a task). Figure 3 shows an exam-
ple of a ROLE BLUEPRINT.

In the TASK BLUEPRINT, nodes are tasks whose height
and width represent the number of input and output work
products of the task, respectively. Edges between two nodes
represent precedence: a task T1 precedes another task T2 if
there is an output work product of T1 that is an input work
product of T2. Figure 2 depicts a TASK BLUEPRINT.

In the WORK PRODUCT BLUEPRINT nodes represent work
products whose dimensions represent the number of tasks
that write and read the work product, respectively. An
edge between two work products WP1 and WP2 implies
that there is a task that consumes WP1 and produces WP2.

2.2 Potential Errors

There is a number of anomalies in software process spec-
ifications that we have realized that are fairly frequent. We
here describe some of them along with their consequences

eoe Task Blueprint
ap a .
Tc O . - E—

o D - Ta

D[I EI DDUD
= 11

)
— .-,_'_--':”:I Process Element: Task
.DD Number of produced Work
7 Products
(1d e
Number Number of
of involved consumed
Roles Work
Products

I

a Order
D Dependence
1'3 ooogd
D Ta: Requirements review
oo Th: Plan changes identification
o Tc: Change request reception
|:JI Td: User requirements definition

Figure 2: TASK BLUEPRINT where potential errors are suggested but not localized

and how they would look in the blueprint where they may
be found. We also provide a tentative quantification for how
bad may be considered too bad, so that it serves as a basis
for automating their localization.

Overloaded roles. If a role is involved in a large number
of tasks, it becomes a risk: if it fails, all the associated tasks
within the process will fail as well. This is a clear anomaly
in the process model conception. Better choices would be
either specializing the role by dividing its responsibilities, or
reassigning some tasks to other roles. We would say that a
role is overloaded if it is more than one standard deviation
larger than the average size. This error pattern is computed
as part of the ROLE BLUEPRINT, and we highlight overloaded
roles in red. In Fig. 3 we can see that the Developer role is
much larger than the others, and thus it may be overloaded.

0006 Role Blueprint =
)

Project { f

Manéger . ‘ :
1
Engineer
Manager

Developer
-]
Client [

Figure 3: ROLE BLUEPRINT

Isolated roles. There may be certain tasks that a role ex-
ecutes by itself, but it is not frequently right to have a role
that never collaborates in any task with other roles. In gen-
eral, this kind of error pattern shows a misspecification: a

role should have been assigned to take part of certain task
but appears to be left apart. This error pattern is also ap-
parent in the ROLE BLUEPRINT, and we highlight isolated
roles in green. In Fig. 3, the Client role is isolated.

Roles, Tasks and Work Products without guidance.
If a role, task or work product has no guidance about how
to be executed, there is a big chance that it will not be
properly done. This error is generally a misspecification,
meaning that there should have been certain guidance as-
sociated with each element. In the respective Blueprint we
highlight elements without guidance in blue.

Multiple purpose tasks. A process where tasks have too
many output work products may reveal that these tasks are
not specified with the appropriate granularity as may be
the case of Ta and Tb in Fig. 2. A task with too many
output work products may be too complex since its goal is
not unique. This may reflect a misconception in the process
model. This pattern is seen in the TASK BLUEPRINT where
we highlight wide nodes (too many output work products)
in red. We consider a task to be too complex if it is wider
than one standard deviation from the average task width.

Work products required for too many tasks. Work
products required for a high number of tasks may cause
serious bottlenecks when they are not available, and thus
it could reveal a misconception. This situation is seen in the
WOoORK ProODUCT BLUEPRINT where we highlight in yellow
nodes whose width (number of tasks that require it as an
input) is more than one standard deviation from the average.

Independent subprojects. In a TASK BLUEPRINT and a
WoRrkK ProbpucT BLUEPRINT, tasks and work products are
related with edges indicating precedence. Considering that
the process model specifies the way to proceed when work-
ing on one unique project, it is conceptually odd to have
disconnected subgraphs, both in the TASK BLUEPRINT and
the WORK PRODUCT BLUEPRINT. In general, these situa-
tions arise due to underspecifications, when work products
have not been specified as input or output work products
for certain tasks when they should have been. We repre-
sent each subgraph with a different color in both, the TASK

Table 1: Error patterns identified by Avispa

Error pattern | Description [Localization

Identification

No guidance
associated

An element with no guidance
associated.

any blueprint

A blue node.

Overloaded role A role involved in too many

tasks.

ROLE BLUEPRINT

Nodes over one deviation larger
than the mean.

Isolated role A role that does not collaborate.

ROLE BLUEPRINT

A node that is not connected with
an edge.

Multiple purpose | Tasks with too many output

TASK BLUEPRINT

Nodes whose more than one deviation

tasks work products. wider than the mean.

Demanded Work | Work products required for too WORK PrRODUCT BLUEPRINT | Nodes more than one deviation higher
products many tasks. than the mean.

Independent Independent subgraphs. TASK BLUEPRINT or Subgraphs that are not connected with
subprojects WORK PRODUCT BLUEPRINT | edges.

BLUEPRINT and the WORK PRODUCT BLUEPRINT, in order
to identify the existence of independent subprojects. So hav-
ing a graph with more than one color nodes indicates that
there are independent subprojects specified.

Table 1 summarizes the error patterns that have been
identified so far.

3. LOCALIZING ERRORS WITH AVISPA

This section sketches the internals of the implementation
of AvisPA. The scripts for implementing two of the error
patterns are subsequently offered as examples of the way
errors are computed. Finally, a description of the tool from
the user point of view is provided.

3.1 Implementation of AVISPA

MooseEntity

PMObiject

| PMRole |M| PMTask Iul PMArtifact |

* * *

| PMRoleGroup | | PMTaskGroup | |PMArtifactGroup

v

detailled view

PMTask [PMTaskGroup |
| viewTaskBlueprintOn: |

followingTasks
numberOfArtifactOutputs
numberOfArtifactMandatorylnputs
deviationToMeanInputArtifacts: double
deviationToMeanOutputArtifact: double

Figure 4: The AvispA metamodel (gray classes be-
long to FAMIX)

The SPEM 2.0 error patterns presented in the previous
section are implemented in AVISPA extending the MOOSE
platform. As Fig. 4 shows, AvVISPA extends the FAMIX

family of metamodels of MOOSE? by subclassing MooseEn-
tity and MooseGroup. The names of the classes that be-
long to AVISPA begin with PM, standing for Process Model.
PMObject contains operations and attributes common to all
SPEM elements (essentially a particular identifier). PMRole,
PMTask and PMArtifact describe elementary components of
SPEM 2.0. Each of these classes offers methods for comput-
ing metrics and navigating through a model. For example,
each task is aware of its following tasks (i.e., tasks that far-
ther need to be completed) and its associated artifacts. A
group of roles, tasks and artifacts are expressed as instances
of PMRoleGroup, PMTaskGroup and PMArtifactGroup, respec-
tively. The purpose of offering specialized collections is to
enable dedicated visualization to be defined on these groups.
For example, the method viewTaskBlueprintOn: is defined on
PMTaskGroup which defines the enhanced task blueprint de-
scribe below.

AVISPA is visualized using the Mondrian visualization en-
gine? [15]. Mondrian operates on any arbitrary set of values
and relations to visually render graphs. As exemplified be-
low, visualizations are specified with the Mondrian domain
specific language.

3.2 Error Pattern Implementation in AVISPA

We illustrate the implementation of two error patterns:
independent projects and multiple purpose tasks, i.e., tasks
involving too many output work products. We provide the
script for each of them, and the rationale in each implemen-
tation. The implementation of the other error patterns is
conceptually similar to these ones.

Independent subprojects.

This kind of error is seen, for example, when the TASK
BLUEPRINT has disconnected subgraphs. Thus, each inde-
pendent subgraph is colored differently, and having a TASK
BLUEPRINT with more than one color means that there are
some missing dependencies. On the other hand, if the TASK
BLUEPRINT is all the same color, this will mean that there
are no independent subprojects, and therefore the process
will be fine with respect to this error pattern. The following
script builds a colored TASK BLUEPRINT where independent
subprojects are identified. Independent subproject always
reveal an error in the process model specification.

PMTaskGroup>> view TaskBlueprintOn: view
| ds components orderedComponents normalizer cycleColor |

3http://www.moosetechnology.org/docs/famix
“http://www.moosetechnology.org/tools/mondrian

“Compute disjoint sets”

ds := MalDisjointSets new.

ds nodes: self.

ds edges: self from: #yourself toAll: #followingTasks.
ds run.

components := ds components.
orderedComponents := Dictionary new.
components doWithIndex: [:roles :index |
roles do: [:role |
orderedComponents at: role put: index]].

“Assign a color to each set”
normalizer := MONIdentityNormalizer new.

(1 to: (components size * 10)) do: [:v | normalizer moValue: v].

cycleColor := [:v | normalizer moValue:
((orderedComponents at: v) + 10)].

“Display the blueprint”
view shape rectangle
borderColor: Color black;
borderWidth: 1;
fillColor: [:v | cycleColor value:v];
width: [:each | each numberOutputs * 10];
height: [:each | each numberlnputs * 10].
view nodes: self.
view shape arrowedLine.
view edges: self from: #yourself toAll: #followingTasks.
view treelayout

First a cycle is computed so that edges of connected sub-
graphs are painted with the same color. Then, individual
nodes are built assigning them a size and a color. Tasks are
represented as rectangular nodes whose color is that of the
subgraph it belongs to. Their width is related to the number
of output work products, and the height shows the number
of input work products. Arrows between two nodes exist if
they are related with the followingTasks relationship. The
whole blueprint is shown as a tree.

Multiple Purpose Tasks.

Here again the error will be seen in the TASK BLUEPRINT,
but now nodes that are wider than one standard devia-
tion from the average number of output work products will
be highlighted as potential errors. Highlighted tasks reveal
complexity in the task specification, but they are not nec-
essarily errors. One standard deviation in a normal distri-
bution function was the empirical value calibrated from a
preliminar analysis.

A serie of metrics are precalculated so that the script can
be executed. numberOutputs; is the number of output work
products of task ¢ in the process. Then, considering that
there are n tasks in the process, we can calculate the mean
number of output work products for the whole process as
follows:

>, numberOutputs;

MeanOutW P = (1)

n

And then, the standard deviation can be calculated as
follows:

sigmaOut — \/Z?Zl(numberOutputsi — MeanOutW P)?
n

Also, the distance from the mean value to MeanOut WP is
calculated as follows:

distToM eanOutW P; = numberOutputs; — MeanOutW P (3)

These metrics are used as part of the script in order to
determine the color of each node in the TASK BLUEPRINT.

view TaskWarningBlueprintOn: view
view shape rectangle
fillColor: [:each | (each distToMeanOutWP >
self myModel sigmaOut)
ifTrue: [Color red]
ifFalse:[Color white]];
borderColor: Color black;
width: [:each | each numberOutputs * 10];
height: [:each | each numberlnputs * 10].view nodes: self.
view shape arrowedLine.
view edges: self from: #yourself toAll: #followingTasks.
view treeLayout.
view root interaction item:
"inspect group’ action: [:v | self inspect]

The main part of the script is devoted to determining
the color of each node according to its relative size. If the
distance from the number of output work products to the
mean is larger than one standard deviation, then the node
will be red. Otherwise, the node will be white. Edges will be
drawn according to the followingTasks set that should have
been precalculated. The whole blueprint is presented as a
tree.

Obtaining a TASK BLUEPRINT that is all white means that
all tasks have similar complexity with respect to the number
of output work products. Several red tasks clearly suggests
a poor design because the purpose of the tasks is not always
uniquely defined.

3.3 AVISPA User Interface

[SJ&)S) Moose Panel =)
LI @S
tutelkan.xr

tutelkan.xml - PMModel

W Properties | Evaluator |

Tasks from tutelkan.xml| - PMTaskGroup

W Properties | Evaluator |

Activities from tutelkan.xml (39 PMActivities | aceptar_producto_y_o_servicio]
Artifacts from tutelkan.xml (62 PMArtifacts) actualizar_asignacion_de_roles
Roles from tutelkan.xml (22 PMRoles)

actualizar_especificacion_de_ambiente
actualizar_especificacion_de_requerimient
actualizar_linea_base_de_requerimientos
actualizar_planes

actualizar_planes_y otros_artefactos

(, Inspect
Mondrian »
Open in Mondrian Easel
Open in Moose
Utilities 13

Visualize

actualizar_riesan: “

Distribution Map for these elements d
Distribution Map for these parts
Name Cloud

Task Warning Blueprint

Figure 5: The AviSPA main user interface

AvISPA has become a useful tool to import and visualize
SPEM 2.0 based process models. It is built on top of Moose
and the Pharo programming language®, and so it benefits
from a large toolset for navigation and visualization. Fig-
ure 5 shows the main user interface. The Tutelkdn model has
been loaded and it is ready to be analyzed. The navigation
panel shows four entry points to begin an analysis: activities,
artifacts, roles and tasks. Navigation is realized through the

Shttp://www.pharo-project.org

information available in the metamodel (see Sect. 3.1). Al-
though not depicted, metrics and other specific information
(e.g., descriptions and annotations) are also available under
the properties tab.

4. APPLYING AVISPA TO REAL WORLD
SOFTWARE PROCESS MODELS

AvisPA was applied on three Chilean software compa-
nies: Amisoft, BBR Engineering and DTS. First, we briefly
present the context of each company, and then we describe
the results of applying AVISPA to analyze the process mod-
els defined in each of them. In order to be able to compare
results we choose to analyze the three processes according
to the same error patterns: disconnected subgraphs in the
TAsk BLUEPRINT and tasks with too many output work
products. Also, disconnected subgraphs could have been
analyzed in the WORK PRODUCT BLUEPRINT. The process
models used in this research were developed in the last two
years; these models were obtained from the respective li-
braries using the exporter feature of EPF. The process mod-
els were analyzed in the MaTE (Model and Transformation
Engineering Group) Laboratory and then the results were
discussed with the respective process engineers.

4.1 Application Scenarios

Amisoft is around ten years old and it is formed by thir-
teen qualified employees. Its main goal has been to deliver
specialized and quality services. Its development areas are:
client/server architecture solutions, enterprise applications
based on J2EE and Systems integration using TCP/IP and
MQ Series. Amisoft has started its software process im-
provement project in 2009, and it is currently implementing
the ISO9001:2008 standard and the CMMI model. Its soft-
ware process model has been inspired by OpenUP.

BBR Engineering is one of the main software factories
of BBR, an international consulting company since 1994.
It is formed by twenty four employees specialized in differ-
ent roles including architects, project managers, developers,
quality assurance specialists and analysts. BBR Engineering
has developed solutions mainly in the area of retail; specif-
ically, its main areas are: points of sale, payment systems,
communications and interfaces, e-business, and integration.
The company has started its software process improvement
project in 2009 using the Tutelkdn Reference Process as a
reference for its implementation.

DTS started business around 1990 from a joint venture be-
tween a Chilean Aeronautic company, EANER and ELTA
Electronics Industries. DTS works in solutions for military
and civil technology. It has 250 employees, including engi-
neers, certified technicians, operation workers and managers.
DTS started to define its software process model in 2008,
using the Rational Unified Process as a reference. In DTS
there is no specific software process improvement project;
its effort has been oriented toward recovering the software
process actually applied in the organization, in order to for-
malize it, analyze it, and eventually improve it.

4.2 Results

Amisoft. In this study case, AvispA helped to identify
5 instances of the pattern independent subprojects corre-
sponding to the nodes with a color different than blue in
Fig. 6. These nodes represent the tasks: Configuration Items

Update, Non-Compliant Communications, Delivery Docu-
ment Generation and Sending, Getting Configuration Items
and Ezecute Unitary Test to Interfaces and Communica-
tions. These disconnected subgraphs (in this case discon-
nected tasks) represent a high risk because the configuration
management process could be chaotic (everybody needs to
know how to get and put configuration items) and the test-
ing of interfaces and communications could be forgotten just
when it is required the most. Looking for independent sub-
projects in the WORK PRODUCT BLUEPRINT is a dual case:
whenever there are errors in one, there are also errors in
the other. Independent projects based on the WORK PROD-
uCcT BLUEPRINT facilitates to find isolated work products:
Directory Structure, Case Test Template, Client Satisfac-
tion Survey and Glosary. These work products are not ad-
equately linked with the rest of the process elements being
this ambiguous for the process users.

The multiple purpose task pattern was applied on Amisoft
Proces Model (red nodes in Fig. 7). In this case the result
was 9 potential errors of multiple purpose tasks out of 93
tasks in total (9.7%). However, reviewing these tasks, many
of them refer to management tasks where different inputs are
required to evaluate the project advance or to make some
decisions, and as result these tasks modify many work prod-
ucts. So, the granularity cannot be finer, but more guidance
could be added. However, the task Document Requirements
could have been better decomposed into two different tasks
separating abstraction levels (concerns covered or users of
the requirements). On the other hand the task Measure
Data Collection is shown as a multipurpose task and really
it is, because the measurement results are not available di-
rectly in a unique work product; instead of this, the data
is available in many work products according to the metrics
established in the measurement plan.

BBR Engineering. Similarly, we have applied AvisPA
for finding disconnected graphs and multiple purpuse tasks
to the process model of BBR Engineering, and the results
are shown in Figs. 8 and 9, respectively. Many tasks were
found disconnected, 29 out of 79 (36.7%), and this situation
shows that the process presents many underspecifications,
increasing the risk of not applying it as intended. Most of
the problems are related to project management and config-
uration management. The configuration management issues
reveal the process immaturity in BBR Engineering contrary
to project management. However, both process components
must be specified with more precision. Nevertheless, there
are some tasks underspecified which could be problematic
when the process is instanciated: User Needs Understand-
ing, Requirements Priorization, Measure Data Collection,
Unit Data Base Testing, Unit Component Testing and Inter-
faces and Communication Testing. When the independent
projects pattern was also applied on the WORK PRODUCT
BLUEPRINT using AVISPA, similar problems arose on project
management, but excluding these general problem, the prob-
lematic work products were: User Interface Model, Integra-
tion Plan and Design Document. This process would inject
many technical problems at instanciation time because it
includes many imprecisions in tasks and work products of
requirements, technical solution, testing and project man-
agement areas.

The process in BBR includes 79 tasks, and 9 of them are
identified as problematic (11.4%) according to the multiple
purpose task pattern (red nodes in Fig. 9). Similarly to the

Figure 9: TAsk BLUEPRINT for localizing tasks involved with too many work products in BBR Engineering.

previous case study, the project management task defines
many outputs and for the same reasons cannot be changed.
However, the tasks Data Base Design and Component De-
sign could be decomposed to reach a homogeneous process
model definition.

DTS. AvispA was also applied to the process of DTS
for identifying and localizing both kinds of error patterns
(see Figs. 10 and 11). Only two tasks were found discon-
nected showing a careful specification job: Identify Require-
ments Provider and Change Requirements Reception. These

tasks are critical to manage requirements change, so this
part of the process would not be instanciated adequately at
projects.

The process in DTS includes 57 tasks, and 6 of them were
found to be multi purpose tasks (10.5%) painted in red in
Fig. 11. Similar to the previous cases, most of these tasks are
part of the project management and this characteristic can-
not be changed. But, the Generating Implementation Docu-
ment and Requirements Review tasks could be decomposed,

-
s [F
“ g

L0

HHHDHDDD:‘DU = ||
[gl

[

DDDDD
A |
oo &
 E—

Figure 10: TAsK BLUEPRINT for localizing disconnected subgraphs in DTS.

v
= 07

D- HDDH ISP

k|

I

]
(

O
O
o g b

a4

il

[{J] -

DDDDD o

Figure 11: TAsk BLUEPRINT for localizing tasks involved with too many work products in DTS.

whereas Help Diagram Development could be specialized for
each specific help diagram to be designed.

5. RELATED WORK

Software process model quality can be addressed from dif-
ferent approaches: metrics [2], testing [11,21], simulation [7],
or formal verification [6]. Metrics work fine for data of the
overall software process model, but metrics for partial por-
tions of the process or individual process elements are usu-
ally not a suitable presentation for a reviewer. Process test-
ing is an effective way to evaluate a process model; asses-
ments and audits are based on data of executed projects,
but executing the process is expensive. Our approach pro-
vides a means for a priori evaluation of the software process
quality. Cook and Wolf [3] present a formal verification and
validation technique for testing and measuring the discrep-
ancies between process models and actual executions. The
main limitation of testing is that it can only be carried out
once the process model has already been implemented, tai-
lored and enacted. Simulation has a shorter cycle, but it still

requires enactment data to be reliable. Formal checking is
effective too but it presents semantic limitations [26]. In
AVISPA we use metrics as a basis for building two visualiza-
tion layers that help process engineers to localize problems
in the models. We propose a complementary approach to
analyze software process models in an early way, based on
reviewing the architectural views of a software process model
defined as Software Process Blueprints [10]. There, each
blueprint is built following a model-driven strategy where
the process model is separated in a set of partial views that
may be more illustrative for finding errors. However, the
usability and complexity of process model blueprints was
threatened when dealing with large and complex process
models. According our practical experience with AVISPA,
it has improved usability by identifying a set of common er-
ror patterns, and highlighting them, but more importantly
it encapsulates specialize knowledged of an expert software
process engineer for identifying improvement opportunities
and thus requiring less experienced process engineers.

As stated by Osterweil [17], software processes are soft-
ware too, so techniques that apply to software programs can
be also applied in process models. Finding error patterns in
source code has been fairly successful [5,13], so following a
similar approach we have been able, based on a vast empiri-
cal experience, to automatically identify and localize a series
of error patterns in software process models. The classical
domain for software visualization is software source code.
There has been a great deal of work on visualizing classes
and methods [12], software architecture [14], and even source
code annotations [1]. The work presented in this paper has
the same rationale: providing concise information about an
engineering artifact in order to maintain and improve it. By
taking some of these ideas and applying them to analyze
software process models, the analysis obtained similar ben-
efits to those achieved with other software artifacts.

Osterweil and Wise [18] demonstrated how a precise def-
inition of a software development process can be used to
determine whether the process definition satisfies some of
its requirements. A definition of a Scrum process written
in the Little-JIL process definition language is presented to
motivate their contributions. We developed a similar analy-
sis [9] to Scrum process model using AvisPA where we found
a number of specification problems. In general both ap-
proaches show the advantages of a precise specification of
the process. Applying AvisPA implies also to import a EPF
process, measure it and to generate a set of views with in-
teractive instances of the patterns. So, the process engineer
can analyze the software process quality. Soto et. al. [22]
present a case study that analyzes a process model evolution
using the history of a large process model under configura-
tion management with the purpose of understanding model
changes and their consequences. The goal of Soto et. al. is
oriented toward the impact of the changes in the software
process models whereas our approach is oriented to early
analyzing a new or changed process model just before the
model is used in a specific project. Soto’s approach also an-
alyzes the changes on the process elements using many XML
files.

6. CONCLUSIONS

In this paper we have presented a set of error patterns, im-
plemented as part of AVISPA, a tool for process model anal-
ysis that localizes a set of identified potential errors within
a process model specified in SPEM 2.0. These errors may
come either from process conceptualization or from misspec-
ifications. We describe how each of the error patterns iden-
tified are found in the appropriate process blueprint, and we
made AVISPA highlight them.

The process models of some of the Chilean companies we
were working with for the last years have been analyzed
using AVISPA. Some errors were found, as well as some im-
provement opportunities, showing the effectiveness of the
patterns and the tool. These errors were not foreseen by pro-
cess engineers, but they agreed they wer real improvement
opportunities. We have also applied AvispA for analyzing
the publicly available process model of Scrum® [9]. The er-
rors found in this case are consistent with other reported
analyses.

6Scrum: http://www.eclipse.org/epf/downloads/scrum/scrum

downloads.php

The quality of the analysis highly depends on the quality
of the definition of the error patterns. Even though the error
patterns presented in this paper have shown to be effective
in finding improvement opportunities, there is some room
for fine tuning them. For example, determining that a task
is too complex if it is more than one standard deviation
from the mean, may not help discriminating really badly
specified elements, and maybe two standard deviations is
a better measure. We may also define the error pattern as
parametric in the number of standard deviations considered.

The tool is targeted to those software process models for-
mally specified in SPEM 2.0. This may be one of its main
limitations since it is hard and expensive to formally define
a complete process mainly for small software organizations.
However, if a company decides it is worth the effort, then
AvispPA provides an added value to this investment assuring,
at least partially, the quality of the specified process.

As part of our ongoing work, we are defining a set of so-
lution patterns that the tool will suggest, so that each error
pattern found could be solved in an assisted manner. In this
way, the round trip for software process improvement will be
complete. Therefore, we will be ready to apply AVISPA to
ten Chilean software enterprises as part of ADAPTE, a large
government funded project.

Acknowledgments

This work has been partly funded by project Fondef D0911171
of Conicyt, Chile. The work of Julio A. Hurtado has been
also partially funded by a scholarship of NIC Chile.

7. REFERENCES

[1] A. Brithlmann, T. Girba, O. Greevy, and
O. Nierstrasz. Enriching reverse engineering with
annotations. In International Conference on Model
Driven Engineering Languages and Systems, volume
5301 of LNCS, pages 660—674. Springer-Verlag, 2008.

[2] G. Céanfora, F. Garcia, M. Piattini, F. Ruiz, and C. A.
Visaggio. A family of experiments to validate metrics
for software process models. Journal of Systems and
Software, 77(2):113-129, 2005.

[3] J. E. Cook and A. L. Wolf. Software process
validation: quantitatively measuring the
correspondence of a process to a model. ACM
Transactions On Software Engineering Methodology,
8(2):147-176, 1999.

[4] S. Demeyer, S. Ducasse, and O. Nierstrasz.
Object-Oriented Reengineering Patterns. Morgan
Kaufmann, 2002.

[5] J. Durées and H. Madeira. Emulation of Software
Faults: A Field Data Study and a Practical Approach.
IEEE Transactions on Software Engineering,
32(11):849-867, 2006.

[6] J. Ge, H. Hu, Q. Gu, and J. Lu. Modeling Multi-View
Software Process with Object Petri Nets. ICSEA
2006, 0:41, 2006.

[7] V. Gruhn. Validation and verification of software
process models. In Proc. of the Software development
environments and CASE technology, pages 271-286,
1991.

[8] J. A. Hurtado and M. C. Bastarrica. Tutelkdn
Implementation Process: Adapting a Reusable
Reference Software Process in the Chilean Software

[13]

[14]

[15]

Industry. Technical Report TR/DCC-2010-4,
Computer Science Department, Universidad de Chile,
June 2010.

J. A. Hurtado, A. Bergel, and M. C. Bastarrica.
Analyzing the Scrum Process Model with AVISPA. In
Proceedings of the SCCC’2010, Antofagasta, Chile,
November 2010. To Appear.

J. A. Hurtado, A. Lagos, A. Bergel, and M. C.
Bastarrica. Software Process Model Blueprints. In
Proceedings of the International Conference on
Software Process, volume 6195 of LNCS, pages
273-284, July 2010.

ISO. /TEC 15504 : Information technology - software
process assessment and improvement. Technical
report, Int. Organization for Standardization, 1998.
M. Lanza and S. Ducasse. Polymetric Views-A
Lightweight Visual Approach to Reverse Engineering.
Transactions on Software Engineering, 29(9):782-795,
Sept. 2003.

B. Livshits and T. Zimmermann. Dynamine: finding
common error patterns by mining software revision
histories. SIGSOFT Softw. Eng. Notes, 30(5):296-305,
2005.

M. Lungu and M. Lanza. Softwarenaut: Exploring
Hierarchical System Decompositions. In Proceedings of
the 10" FEuropean Conference on Software
Maintenance and Reengineering, pages 351-354, 2006.
M. Meyer, T. Girba, and M. Lungu. Mondrian: an
agile information visualization framework. In
Proceedings of the ACM 2006 Symposium on Software
Visualization, SOFTVIS, pages 135-144. ACM, 2006.
OMG. Software Process Engineering Metamodel
SPEM 2.0 OMG. Technical Report ptc/08-04-01,
2008. Object Managemente Group.

L. J. Osterweil. Software Processes Are Software Too.
In International Conference on Software Engineering,
pages 2-13, 1987.

L. J. Osterweil and A. E. Wise. Using Process
Definitions to Support Reasoning about Satisfaction of
Process Requirements. In J. Miinch, Y. Yang, and

W. Schéfer, editors, ICSP, volume 6195 of LNCS,
pages 2-13. Springer, 2010.

F. Perin, T. Girba, and O. Nierstrasz. Recovery and
analysis of transaction scope from scattered
information in Java enterprise applications. In
Proceedings of International Conference on Software
Maintenance 2010, Sept. 2010.

F. J. Pino, J. A. H. Alegria, J. C. Vidal, F. Garcia,
and M. Piattini. A process for driving process
improvement in VSEs, international conference on
software process, icsp 2009 vancouver, canada, may
16-17, 2009 proceedings. In ICSP, volume 5543 of
Lecture Notes in Computer Science, pages 342—-353.
Springer, 2009.

SEI. CMMI for Development, Version 1.2. Technical
Report CMU/SEI-2006-TR~008, Software Engineering
Institute, 2006.

M. Soto, A. Ocampo, and J. Miinch. Analyzing a
software process model repository for understanding
model evolution. In Proceedings of the International
Conference on Software Process: Trustworthy Software

23]

[24]

25]

[26]

Development Processes, ICSP ’09, pages 377-388,
Berlin, Heidelberg, 2009. Springer-Verlag.

G. Valdés, H. Astudillo, M. Visconti, and C. Lépez.
The Tutelkdn SPI Framework for Small Settings: A
Methodology Transfer Vehicle. In Proceedings of the
17" BuroSPI, volume 99, pages 142-152, Grenoble,
France, September 2010. Communications in
Computer and Information Science.

R. Villarroel, R. Fajardo, and O. Rodriguez.
Implementation of an Improvement Cycle using the
Competisoft Methodological Framework and the
Tutelkdn Platform. CLEI Electronic Journal, 13(1),
April 2010.

R. Wettel, M. Lanza, and R. Robbes. Software
systems as cities: A controlled experiment. In
Proceedings of ICSE’11, 2011. to appear.

I.-C. Yoon, S.-Y. Min, and D.-H. Bae. Tailoring and
Verifying Software Process. In 8th Asia-Pacific
Software Engineering Conference (APSEC 2001),
pages 202—209, Macau, China, 2001.

