
Memory Profiling Blueprint

Alexandre Bergel1, Mariano Abel Coca2, Gabriela Arevalo3, Dale Henrichs4,
Jannik Laval5

1 Pleiad Lab, Computer Science Department (DCC), University of Chile,
Santiago, Chile

2 Universidad Tecnológica Nacional, Buenos Aires, Argentina

3 Universidad Nacional de Quilmes, Buenos Aires, Argentina

4 Gemstone, USA

5 INRIA Lille Nord Europe, France

www.bergel.eu
gabriela.b.arevalo@gmail.com

dhenrich@vmware.com
jannik.laval@inria.fr

Abstract

Keeping track of the memory consumption along the execution of an application
is a difficult and delicate operation. In this paper, we present an innovative
visual representation of the memory consumption and the execution time at the
method granularity. Our visualizations were effective to identify an important
resource consumption issue in Metacello, a widely used package mechanism for
Pharo. We were able to easily fix this issue. Our visualization are implemented
in Memory Profiler.

Keywords: Smalltalk, Pharo, Mondrian, memory profiling

1. Introduction

Nowadays, keeping track of the memory consumption in systems is not a
trivial task. Considering object-oriented ones, there are essentially two reasons
for this problem. Firstly, code execution profiling tools found in common plat-
forms usually focus on the method execution time and extracting the method
call graph. Memory consumption is not a main analysis issue. Specifically in
Smalltalk platforms, reflective methods such as Behavior>> allInstances are com-
monly called to the rescue. However, the number of instances of a given class
is rather a crude information which is difficult to exploit. Tools, such as Spac-

Preprint submitted to Enter journal name November 10, 2010

http://www.bergel.eu
mailto://gabriela.b.arevalo@gmail.com
mailto://dhenrich@vmware.com
mailto://jannik.laval@inria.fr

eTally1 in Pharo helps getting information about system space usage. However,
it is rather slow to operate since the whole memory is scanned for each class
under analysis. Reflection and SpaceTally have a global scope, meaning that no
distinction is made between an object created by the programming environment
or the application under investigation. Secondly, it is difficult to identify the
actions required to reduce the memory usage. Reducing the object creation
frequency is not always that easy.

The need to reduce the memory consumption is usually perceived by a soft-
ware developer only when the usage of the application is compromised with
the slow response when, for example, the application execution is overwhelmed
with garbage collector activations. Thus, we have designed a general approach
to keep track of memory consumption.

In this paper, we describe a simple but effective profiler that keeps track of
memory consumption at the method granularity level. The profiling operates on
any arbitrary Smalltalk expression. Profiling information is graphically rendered
to easily spot methods responsible for larger memory consumption.

The application to profile is first instrumented to capture runtime execu-
tion. For each method execution, the amount of memory before and after the
execution is computed. The memory consumption of each method is computed
along the application execution. After the application execution, the collected
information is easily rendered using the Mondrian visualization engine2.

Our profiler has been validated on Metacello3. We identified a number of
issues related to memory consumption. Several methods were responsible for
high memory consumption. We significantly reduced the memory needed by
Metacello by introducing a number of memory caches.

An implementation is freely available4 for the Pharo Smalltalk under the
MIT license.

2. Memory Profiling

2.1. Memory profiling in a nutshell

As most code execution profiler, our memory profiler works with four se-
quential steps:

1. Instrumentation of the application to profile – A meta-object is associated
to each method of the application to profile. This meta-object is responsi-
ble to keep track of its memory consumption. The meta-object intercepts
a method execution and computes the consumed memory by subtracting
the amount of free memory after and before the method execution.

1SpaceTally is a tool implemented as a unique class, available in every distribution of
Pharo.

2http://moosetechnology.org/tools/mondrian
3http://code.google.com/p/metacello
4http://www.squeaksource.com/Spy.html

2

http://moosetechnology.org/tools/mondrian
http://code.google.com/p/metacello
http://www.squeaksource.com/Spy.html

2. Application execution – In addition to keeping track the memory con-
sumption, identifying methods that are constant on their return value
gives good hints on where to insert memory cache.

3. Uninstalling the profiling instrumentation – Once the application execu-
tion has finished, the profiled application is de-instrumented.

4. Visualization of the profiling result – The information collected is rendered
via a polymetric view [1] in Mondrian5. The metrics we are focussing on
are memory usage and execution time for each method.

Our profiler runs on any standard Pharo virtual machine.

2.2. Memory blueprints

The information obtained during the application execution is suitably ex-
ploited using two visualizations:

• Structural Distribution Blueprint represents the distribution of the mem-
ory consumption along the application structure, expressed in terms of
classes and methods;

• Behavioral Distribution Blueprint depicts the distribution along the method
call graph of the application.

Metacello. The experiment described in this paper is driven by the need for
optimization we faced when building the metacello browser. Metacello is a
package management system for Pharo. The expressiveness and flexibility of its
domain specific language quickly propelled Metacello within a few months as
the main package system of Pharo, Squeak and Gemstone. However, Metacello
remains quite greedy on memory and relatively slower than one would expect. In
this paper, we will use Metacello as our motivating and running example. The
blueprints presented in this paper were all obtained evaluating the following
expression:

MemoryProfiler
viewProfiling: [(1 to: 10) collect: [:i | ConfigurationOfMetacello project currentVersion]]

The message viewProfiling: takes a block closure as argument. We perform
10 iterations to artificially increase the resources consumption. The experiment
described in this paper is based on Version 1.0-beta.27.2 of Metacello.

5http://www.moosetechnology.org/tools/mondrian

3

http://www.moosetechnology.org/tools/mondrian

legend for methods

Yellow =
constant

return
value

consumed memory

execution
time

currentVersion

MetacelloProject

sortedAndFilteredVersions

extractVersionImportPragmas
MetacelloVersionConstructor

versionImportPragmasVerifiedDefinedIn:

Figure 1: Structural memory distribution blueprint on Metacello.

Structural Distribution. The evaluation of the expression generates the memory
distribution structural view (Figure 1). This visualization is intended to imme-
diately spot methods that are greedy in memory. The visualization is structured
according to the program static structure, in terms of classes and methods. The
width and height of a method box represents the number of allocated bytes
and the total excecution time, respectively. Figure 1 shows that asking for the
current version of a Metacello project is costly both in time and memory since
the method is represented as a tall and wide box. In addition, it is constant on
its return value. We define by being constant when for each method execution
the return value is equal (i.e., answers true to the message =) with the return
value of its previous execution.

Figure 1 also shows that some other methods have a high memory consump-
tion. This is the case for example of the methods extractVersionImportPragmas

and versionImportPragmasVerifiedDefinedIn: of the MetacelloVersionConstructor class
and sortedandFilteredVersions of MetacelloProject.

Invocations between methods are represented by changing the border color
of the boxes that represent the methods calling and called by the selected
method. It shows us that extractVersionImportPragmas is invoked by versionIm-

portPragmasVerifiedDefinedIn:.
The specification of this view is given by the table below:

4

MetacelloProject>>
currentVersion

MetacelloProject>>
sortedAndFilteredVersions

Figure 2: Behavioral memory distribution blueprint on Metacello.

Memory structural distribution blueprint

Scope full system execution

Edge class inheritance (upper is superclass of below)
Layout tree layout for outer nodes and gridlayout for inner nodes

(inner nodes are ordered by increasing height)
Metric scale linear
Node outer node is a class, an inner node is a method

Inner node color Yellow indicates a method constant on its return value;
Gray otherwise

Inner node height total execution time of a method
Inner node width number of allocated bytes
Example Figure 1

5

extractVersionImportPragmas
versionImportPragmasVerifiedDefinedIn:

Figure 3: Second behavioral memory distribution blueprint.

Behavioral distribution. Right clicking on the method currentVersion of the class
MetacelloProject, it opens the behavioral memory distribution, a complementary
view that shows the consumption along the method call graph. Figure 2 depicts
the call graph that involves the methods currentVersion and sotedAndFilteredVer-

sions identified in the previous blueprint.
Figure 3 provides a further example of the behavioral blueprint by show-

ing the call graph that involve extractVersionImportPragmas and versionImportPrag-

masVerifiedDefinedIn:.
The specification of the blueprint is defined as:

Memory behavioral distribution blueprint

Scope full system execution

Edge method invocation sequence
Layout tree layout
Metric scale linear (except for node width)
Node method

Node color Yellow indicates a method constant on its return value;
Gray otherwise

Node height total execution time of a method
Node width number of allocated bytes
Examples Figure 2, Figure 3

6

3. Optimizing Metacello

The methods in yellow in the previous blueprints are good indicator on where
to optimize Metacello.

To keep track of our progress, we first measure the metrics we are likely to
improve.

ConfigurationOfMetacello project currentVersion

repetitions time taken (ms) memory consumed (bytes)
5 7, 096 2, 914, 700
10 14, 241 4, 790, 860
15 21, 801 7, 091, 124

The execution time has been obtained using timeToRun. The memory con-
sumption is obtained with:

Smalltalk garbageCollect.
(MPMemoryConsumptionSnapshot

during: [
| project |
project := ConfigurationOfMetacello project.
(1 to: X) collect: [:i | project currentVersion]]) numberOfAllocatedBytes

Note that MPMemoryConsumptionSnapshot is a class part of our memory pro-
filer.

From executing 10 times the expression ConfigurationOfMetacello project cur-

rentVersion, we measured the amount of time taken and the amount of memory
used for the four methods we mentioned previousluy:

method time (ms) memory (bytes)
currentVersion 12912 111, 276
sortedAndFilteredVersions 20 34, 076
versionImportPragmasVerifiedDefinedIn: 20 112, 476
extractVersionImportPragmas 20 95, 240

The memory distribution blueprints (Figure 1 and Figure 2) clearly indicate
that getting the current version of a configuration project is costly, both in
memory and in time. As indicated by the blueprints, currentVersion is the culprit
method. This is not a surprise considering the algorithm used to compute a
project version number. The “best” version number is determined according to
the version of each individual installed packages.

The source code of this method is:

MetacelloProject>> currentVersion
| cacheKey |
cacheKey := self configuration class.
ˆMetacelloPlatform current

stackCacheFor: #currentVersion
at: cacheKey
doing: [:cache | |cv versions |
...
].

7

MetacelloProject>> currentVersion
MetacelloVersion>> =

Figure 4: Structural distribution after the optimization.

Apparently, a rudimentary cache mechanism has been provided. However, it
seems to be ineffective for the benchmark we are interested in. We augmented
the class MetacelloProject with a new instance variable currentVersionCache. The
currentVersion is then rewritten as:

MetacelloProject>> currentVersion
| cacheKey |
currentVersionCache ifNotNil: [ˆcurrentVersionCache].
cacheKey := self configuration class.
ˆcurrentVersionCache := MetacelloPlatform current

stackCacheFor: #currentVersion
at: cacheKey
doing: [:cache | | cv versions |
...
].

For a given project object, calling twice currentVersion executes the whole
body just once. We now have to make sure that asking multiple times a con-
figuration for a project return the same object. The project method is defined
as:

ConfigurationOfMetacello classproject
ˆself new project

We have rewritten this method into:

ConfigurationOfMetacello classproject
project ifNotNil: [ˆ project].
ˆproject := self new project

Where project is a class variable of ConfigurationOfMetacello.
The new blueprint realized after these small changes is eloquent compared

to the original excecution times:

8

ConfigurationOfMetacello project currentVersion

repetitions time taken (ms) memory consumed (bytes)
5 1, 469 1, 644, 964
10 1, 477 1, 647, 252
15 1, 508 1, 723, 792

Executing 10 times the expression ConfigurationOfMetacello project currentVer-

sion produces the following measurement:

method time (ms) memory (bytes)
currentVersion 1, 292 6, 000
sortedAndFilteredVersions 1 0
versionImportPragmasVerifiedDefinedIn: 1 0
extractVersionImportPragmas 1 0

Metacello performances have been significantly improved. The time taken to
compute the current version of a Metacello configuration is now almost constant
in time and in memory.

4. Conclusions

This short paper describes a real situation where excessive memory con-
sumption and execution time were perceived as a critical issue in Metacello, a
widely used mechanism to manage Pharo packages. As far as we are aware of,
State of the Art code profilers are good at identifying what the problem is, but
fixing the situation requires tremendous effort to understand what the situation
is and how to address is. To that very purpose, we propose two visual represen-
tations of the program execution that relate the memory consumption with the
execution time. Indication about the side effect is further provided.

We used our visualization to successfully address a serious memory consump-
tion issue in Metacello. Our implementation is freely available for the Pharo pro-
gramming language and is available on Squeaksource, the Pharo source forge6.

References

[1] M. Lanza and S. Ducasse. Polymetric views—a lightweight visual ap-
proach to reverse engineering. Transactions on Software Engineering (TSE),
29(9):782–795, Sept. 2003.

6http://www.squeaksource.com/Spy.html

9

http://www.squeaksource.com/Spy.html

	Introduction
	Memory Profiling
	Memory profiling in a nutshell
	Memory blueprints

	Optimizing Metacello
	Conclusions

