
Importing Java Code into FAMIX

Alexandre Bergel
ADAM Project, INRIA, Lille, France

alexandre.bergel@inria.fr

1. INTRODUCTION
Moose is a collaborative platform for software analysis and infor-
mation visualization1. Moose promotes the FAMIX language in-
dependent meta model in which program source codes may be im-
ported. Analysis may be conducted over an imported program us-
ing the large set of available tools2.

A typical FAMIX importers embodies two distinct parts: (i) a parser
intended to convert a program source code into a set of abstract
syntax tree nodes, and (ii) a function that maps those nodes into
proper FAMIX abstractions. A number of importers are available
for Moose: Lisp, Python, Smalltalk, C++, JSP and MSE are proba-
bly the most used one. To this big picture, Java has been shrugged
off.

Several attempts have been made to increase the affinity between
Java and FAMIX. External tools such as Penumbra and Moose
Brewer directly operates as an Eclipse plugin to populate a FAMIX
metamodel or to generate MSE files. However, these solution ne-
cessitate the use of Eclipse which might not always a wanted thing.
This paper is about reconciling FAMIX/Moose with Java without
the adjunction of external converter that rely on a foreign technol-
ogy.

This paper describes Java4Moose, an extension of Moose to im-
port Java source code. Input is simply .java source files that are
parsed then translated into FAMIX, Moose’s meta model. Depen-
dencies between classes are extracted from class and type refer-
ences contained into method body, instance variable declaration,
method signatures, and interface implementation. This paper is or-
ganized as follows: Section 2 describes the general schema used
by Java4Moose to import Java code into FAMIX. Section 3 present
the critical points of the implementation. Section 4 offers a brief
overview of the related work. And finally, Section 5 concludes this
paper.

1http://moose.unibe.ch
2http://moose.unibe.ch/tools

2. IMPORTING JAVA CODE INTO FAMIX
Java4Moose is embodies two different components: (i) a parser
that produces a representation of the textual source code, and (ii) a
conversion function that maps elements of this representation into
FAMIX elements.

Code representation. Inherently tools built on top of Moose
operates on a rather high level view of a program code including
class structure and dependencies.

• JavaClassNode describes a Java class. It contains its name,
the name of its superclass, the variables, a set of methods
(instances of JavaMethodNode described below), the name
of the package that define it, a set of references that may be
contained in static part, and the set of implemented interfaces
(instances of JavaInterfaceNode described below).

• JavaInterfaceNode represents a Java interface. It contains a
name, the names of its super interfaces, a set of methods (de-
scribed below), a package names, and a set of static variables.

• JavaMethodNode contains a name, a return type, a reference
to the JavaClassNode that defines the method, its source code,
and a set of types that are referenced by this method.

Note that a type is represented by a simple string at that stage. After
the parsing phase, instances of the three classes mentioned above
are mapped into FAMIX elements. As an illustration, let us con-
sider the following Java class definition extracted from the AWT
Java library:

// File Checkbox.java
package java.awt;
public class Checkbox extends Component

implements ItemSelectable, Accessible {
static {

Toolkit.loadLibraries();
if (!GraphicsEnvironment.isHeadless()) {

initIDs();
}

}
private static final long serialVersionUID =

7270714317450821763L;
void setStateInternal(boolean state) {

this.state = state;
CheckboxPeer peer = (CheckboxPeer)this.peer;
if (peer != null) {

peer.setState(state);

1

http://moose.unibe.ch
http://moose.unibe.ch/tools


}
}
protected class AccessibleAWTCheckbox

extends AccessibleAWTComponent
implements ItemListener, AccessibleAction,

AccessibleValue
{

private static final long serialVersionUID =
7881579233144754107L;

}
}

Checkbox is represented as an instance of JavaClassNode having
the variables3:

className set to ’Checkbox’
superclassName set to ’Component’

variables refers to a collection with ’serialVer-
sionUID’ as its unique element

packageName set to ’java.awt’
typeReferences refers to a collection with ’Toolkit’ and

’GraphicsEnvironment’ as elements
interfaces refers to a collection containing ’ItemSe-

lectable’ and ’Accessible’
methods refers to a collection containing an instance

of JavaMethodNode as its unique element.
This instance has the name ’setStateInter-
nal’, the ’void’ return type, and the collec-
tion #(’boolean’ ’CheckboxPeer’) as refer-
enced types.

innerClasses refers to a collection containing an instance
of JavaClassNode to represent the inner
class AccessibleAWTCheckbox.

Mapping into FAMIX elements. The second phase of im-
porting Java files task consists in translating the code representation
described above into FAMIX elements. Because of the inherent
mutual dependencies between elements of the code representation,
this translation has to be performed in two steps. An example of
such mutual dependencies occurs when importing the Object and
String Java classes: the class String is a direct subclass from Object
and the class Object defines the method toString() that has String as
a return type. None of these classes can be fully imported into a
FAMIX model without the presence of the other classes. This sim-
ple situation exhibits the need of having a translation of Java code
representation into FAMIX in two steps.

First, an instance of FAMIXClass is created for each JavaClassNode
and JavaClassInterface. These instances are stored into a globally
accessible dictionary with the name of the corresponding Java ele-
ment as the key. These instances are almost empty at that stage: a
FAMIXClass has only a name, a flag saying whether it is an interface
or a class.

Then, a second iteration over JavaClassNode’s and JavaInterfaceN-
ode’s instances is performed to “fill” all the FAMIXClass’s instances.
At that stage, methods (instances of JavaMethodNode) are mapped
into instances of FAMIXMethod. It is very likely that when this map-
ping is being realized some type references are absent from the set
3We recall that the Smalltalk style of writing strings (i.e., ordered
set of characters) makes use of delimiting quote (’) as in ’this is a
string’.

of classes and interfaces that have been imported. All dependencies
external to the imported code defines libraries that may be part of
the runtime libraries (e.g., the class Object, the collection libraries).
The FAMIX class that represents such a type is set as stub.

3. IMPLEMENTATION
Java files are imported by triggering the method JavaImporter»importFile:
aFileName on an instance of the JavaImporter class. When the
name of folder is provided, a recursion is performed. Note that
only files having a suffix .java are imported. This help preventing
non java files such as package description (stored as HTML files)
to be processed. The importFile: methods only create a first repre-
sentation of the recursively attainable files. The import is complete
when a FAMIX model is effectively created. This is achieved by
invoking createModel on an importer.

SmaCC4 is in charge of parsing Java. One drawback of SmaCC is to
not produce abstract syntax tree. Java4Moose builds the code rep-
resentation using rules associated to the Java 1.5 grammar produc-
tion. Thanks to the excellent parser generator SmaCC, Java4Moose
offers satisfactory performance and scales up nicely. As an exam-
ple, importing the 652 classes and 4947 method of the whole Java
GUI library AWT takes only 8.8 seconds on a MacBook with 1 Gb
of memory.

4. RELATED WORK
A number of related works exist and are listed in this section. De-
pendencies between Java files are explicit in binary Java class files.
A simple analysis over .class files may recreate the graph of de-
pendencies [1]. Java4Moose operates directly on source code, in-
dependently whether the program under analysis may be compiled
or not.

There has been a lot of work on bridging Moose with the Java
world. The most two relevant projects are Moose Brewer and Penum-
bra. Moose Brewer is an Eclipse plugin to generate MSE file from
an Eclipse project. Penumbra5 is a Visualworks application that
makes the Eclipse application steerable within Smalltalk. Queries
toward Eclipse may be directly formulated in Smalltalk. Java4Moose
is a pure Smalltalk solution to directly import Java files.

5. CONCLUSION
Having left Java out of the range of supported languages by Moose
has probably repelled a number of potential users. This paper aims
at filling this gap by proposing a native Java importer. The import of
Java source code relies on two distinct steps: first a representation
of the source code is created, then a mapping to FAMIX element
is realized. As a future work, we envision a set of different vi-
sualizations of Java source code centered on Java concepts such as
generics, dissociation of class and types, inner classes. Java4Moose
is freely accessible from http://moose.unibe.ch/tools/
Java4Moose, its official website.

6. REFERENCES
[1] H. Melton and E. Tempero. An empirical study of cycles

among classes in java. Empirical Software Engineering,
12(4):389–415, 2007.

4http://www.refactory.com/Software/SmaCC/
index.html
5http://www.info.ucl.ac.be/~jbrichau/
penumbra.html

2

http://moose.unibe.ch/tools/Java4Moose
http://moose.unibe.ch/tools/Java4Moose
http://www.refactory.com/Software/SmaCC/index.html
http://www.refactory.com/Software/SmaCC/index.html
http://www.info.ucl.ac.be/~jbrichau/penumbra.html
http://www.info.ucl.ac.be/~jbrichau/penumbra.html

	Introduction
	Importing Java Code into FAMIX
	Implementation
	Related Work
	Conclusion
	References

