
Scoping Changes with Method Namespaces

Alexandre Bergel

ADAM Project, INRIA Futurs
Lille, France

alexandre.bergel@inria.fr

Abstract. Size and complexity of software has reached a point where modular
constructs provided by traditional object-oriented programming languages are not
expressive enough. A typical situation is how to modify a legacy code without
breaking its existing clients.
We propose method namespaces as a visibility mechanism for behavioral refine-
ments of classes (method addition and redefinition). New methods may be added
and existing methods may be redefined in a method namespace. This results in
a new version of a class accessible only within the defining method namespace.
This mechanism, complementary to inheritance in object-orientation and tradi-
tional packages, allows unanticipated changes while minimizing the impact on
former code.
Method Namespaces have been implemented in the Squeak Smalltalk system and
has been successfully used to provide a translated version of a library without ad-
versely impacting its original clients. We also provide benchmarks that demon-
strate its application in a practical setting.

1 Introduction

Managing evolution and changes is a critical part of the life cycle of all software sys-
tems [BMZ+05, NDGL06]. In software, changes are modeled as a set of incremental
code refinements such as class redefinition, method addition, and method redefinition.
Class-based object-oriented programming languages (OOP) models code refinements
with subclasses that contain behavioral differences. It appears that subclassing is well
adapted when evolution is anticipated. For example, most design patterns and frame-
works rely on class inheritance to express future anticipated adaptation and evolution.
However, subclassing does not as easily help in expressing unanticipated software evo-
lution [FF98a, BDN05b].

The work presented in this paper is a revival of selector namespace implemented in
Smallscript1 by Dave Simmons.

In recent years, researchers have produced numerous constructs and languages ex-
tensions to better modularize software changes. Class extensions à la CLOS, Smalltalk
enable and ObjectiveC method addition and redefinitions by a package different from
the package that defined the method’s class. This mechanism has been recently adopted
by AspectJ. However, the visibility of those extensions is global which lead to conflict-
ing situations between concurrently developed extensions. This visibility problem is the
focus of this paper.

1 www.smallscript.net

mailto:alexandre.bergel@inria.fr
http://www.smallscript.net

2 A. Bergel

This paper presents Method Namespaces, a modular construct for OOP languages
that consists a single parent namespace and a set of method definitions. When a method
is defined, an associated annotation identifies its namespace. Method definitions in a
namespace are accessible only within the defining namespace and its children. Since a
method namespace has one parent namespace, a set of namespaces is structured as a
tree. Method namespaces enable several versions of the same method to coexist with
minimal confusion as to which version will be invoked.

The runtime semantics of method namespaces is driven by its pellucid property: the
system behaves as if methods defined in an ancestor namespaces were directly defined
in the child namespace. Thus, a method namespace represents the scope for a particular
version of a group of methods.

By encapsulating a set of method implementations, a namespace has the ability to
define a software refinement that may crosscut several classes. Such a refinement is
visible only within the method namespace in which it is defined and in its descendent.
Thanks to the scoping mechanism, conflicts between namespaces are eliminated.

The paper is structured as follows: Section 2 illustrates the issues encountered by
the community around the Squeak Smalltalk when translating its libraries. Section 3
describes the method namespace model and its properties. It also shows how the issues
related to the translation are solved. Section 4 presents the implementation of Method
Namespaces in the Squeak Smalltalk system. Section 5 presents the related work. Fi-
nally, Section 6 concludes this paper and outlines our future work.

2 The Need for Scoping Changes

Multilingual support. Managing unanticipated software evolution has been a software
engineering problem that attracts a large interest [MFH01, FF98b, TB99, BMZ+05].
This section describes a situation that the Squeak2 [IKM+97] community has encoun-
tered when adding a multilingual support.

Before this translation effort, English was ubiquitous in all object descriptions and
tool implementations. For example, the class Object defines a method printOn: aStream
as follows:

Object>>printOn: aStream
”Append to the argument, aStream, a sequence of characters that
identifies the receiver.”

| title |
title := self class name.
aStream

nextPutAll: (title first isVowel ifTrue: [’an ’] ifFalse: [’a ’]);
nextPutAll: title

This method simply prepends an article before the name of the object’s class. Print-
ing an object into a stream invokes this method. For example, the printing of an instance
of a Car class returns a Car and an instance of Object returns an Object.

2 www.squeak.org

http://www.squeak.org

Scoping Changes with Method Namespaces 3

Multilingual support is achieved by invoking the message translate on each used
string. For example, a multilingual version of printOn: aStream contains ’an ’ translated
and ’a ’ translated instead. This translate method is defined on the String class and per-
forms a lookup into a global translation dictionary; ’a ’ and ’an ’ will translate into ’un ’
for a French translation.

Need for coexisting versions. Parts of Squeak were refactored by adding such translate
message send to strings. Whereas this mechanism may be sufficient for menus and win-
dows title, it fails whenever a particular convention or sentence structure has to be taken
into account. For example, the method Date>>fromString: aString is used to convert a
textual date representation into an instance of the Date class. A typical illustration is
Date fromString: ’August 12, 2007’. The parameter of fromString: aString may match
different patterns such as ’8/12/2007’. The parameter aString has to follow the Ameri-
can english way of writting dates (month followed by the day, then the year). In most
European countries, a date starts with the day followed by the month and the year as in
12/8/2007. Implementing a multilingual mechanism cannot be achieved by translating
strings only. A different parsing for dates has to be employed instead. A similar situa-
tion occurs with reading and printing of time. Hours range from 0 and 23 or from 1 and
12.

The two fromString: aString methods defined on Date and Time have to be rewrit-
ten in order to have a proper French translation. However, the Squeak runtime makes a
heavy use of those methods. Parts related to the system event logging and source code
change versioning rely on the original version of the Date and Time classes. For exam-
ple, the DPRecentlyModified class augments the system code browser by informing the
programmer about the recently modified methods. Determining whether a method is re-
cent is achieved by comparing method time stamps. Those time stamps are extracted as
a string from the list of changes separately stored in a file. Next, instances of Date and
Time are obtained using the fromString: aString conversion methods defined in those
classes. As a consequence, replacing the American English version of fromString: aS-
tring with the French version will not correctly handle legacy time stamps that are stored
(using the American English format) since a method modified on January 12 has been
stored under the ’1/12/2007’ in the list of changes. When read back by the DPRecent-
lyModified class, this time stamp appears to be December 1st using the French format.
The list of recently modified methods will therefore be incorrect.

This example demonstrates the difficulty of updating parts of a system while pre-
serving original system behavior. A complete multilingual version of Squeak must han-
dle different time and date formats properly. However the Squeak core implicitly as-
sumes that the format of already stored time stamps follows the American English con-
version methods, which is not the case if modifications to Date and Time are universally
visible.

Limitation of class inheritance. Creating two new classes FrenchDate and FrenchTime
that would subclass Date and Time, respectively, is not satisfactory since all references
to those classes will have to be reviewed and possibly updated to reference the new
subclasses. For example, among the 5002 classes present in the development version of

4 A. Bergel

the Squeak system3, Date is referenced 80 times and Time 236 times. Subclassing these
two classes will imply heavy rewritings to make the French subclasses used by some,
but not all of the legacy code. This limitation of inheritance to express incremental re-
finements has been extensively described in the literature [FF98a, BDN05b].

Problem analysis. The solution to address the issue described above will have to exhibit
four properties:

– Coexistance of multiple implementations. Adding a multilingual support as de-
scribed above is a typical situation where at least two implementations for a same
method must coexist: one needed by the Squeak runtime to deal with system noti-
fication and logging and another to be used by the client program.

– Scoping of implementations. Incorporating the French translation in the Squeak
system is not practical because of the global impact this translation has. The French
version of methods should be scoped in order to avoid any unanticipated impact on
the base system.
The application user that requires the French translation should run in a scope
where the changes related to the translation are effective. Outside this scope, those
changes should not be in effect: the Squeak versioning and changes logging mecha-
nisms should stick to the American English way of storing dates and times to avoid
confusion with the legacy data.

– Class identity and class refinement. As we have seen, subclassing is not satisfactory
because a newly created class cannot be used by legacy code. Refining a class by
adding new versions for its methods should preserve the identity of the class.
There are almost 8000 instances of the Date and Time classes living in the Squeak
runtime image. A large part of those instances define the time stamps of existing
methods. Ideally, these instances would be displayed accordingly to the wanted
language (i.e., American English or French). Living instances should benefit from
refinement defined on their classes.

– Method implementation and scope. A scope should define one unique implementa-
tion for a given method. Having more than one method implementations accessible
in the same scope requires one to decide at runtime which implementation to choose
upon message sending, a problem that method namespaces nicely avoids.
Our previous experience [BDN05b] shows that having more than one accessible
version of a method in a given scope brings a significant amount of complexity
resulting in a system that may be difficult to understand and runtime slowdown.
Allowing only one version of a method in a given scope enables the graph of scope
to be flattened, thus making it easier to understand.

3 Method Namespaces

This section presents Method Namespaces, a language construct to scope behavioral
class refinements such as addition and redefinition of methods. A refinement consists
of a group of methods, in which each method may either replace a previous method

3 Squeak 3.10 - 7130dev07.07.1

http://damien.cassou.free.fr/squeak-dev/

Scoping Changes with Method Namespaces 5

implementation, or add to the interface of the refined class. Method Namespaces are
a mechanism orthogonal and complementary to class inheritance and package mecha-
nisms.

3.1 Method Namespaces as Container of Refinements

A method namespace is a container for class refinements (i.e., method addition and
redefinition). It encapsulates a set of incremental class refinements and limits the impact
of those refinements to a well delimited part of the software program considered.

Method namespaces are an extension of the object-orientation paradigm intended
to provide a refinement capability, which complements the specialization offered by
inheritance along classes and packaging offered by package systems.

A method namespace encapsulates class refinements by defining a set of method
implementations. Such a namespace has a single parent namespace (except for Default
which has no parent). Default is always present. Each method implementation belongs
to a namespace.

A method namespace defines a scope in which code may be executed. The behavior
of this code is defined by the method implementations provided in this scope and its
ancestors. A namespace may hide implementations provided by its ancestors by simply
redefining them. A namespace has one parent at the most.

As described in the subsequent sections, the rational to have only one parent is to
give namespaces the ability to be compiled away without requiring complex composi-
tion operators.

Example. Figure 1 makes use of a method namespace to contain the refinements re-
lated to the French translation of the system. In the default method namespace, dates
representation follows the MM-DD-YYYY format, hours range from 1 to 12, and an
instance of Object is printed as ’an Object’. In the French namespace dates follow a
DD-MM-YYYY format, hours range from 0 to 23, and an instance of Object is printed
as ’un Object’. Figure 1 illustrates how a method namespace allows multiple versions of
a system to coexist. The result of an expression such as Object new printString depends
on the namespaces in which it is evaluated.

Definition of method namespaces. A namespace is defined by providing a new name
and the name of the parent namespace:

MethodNamespace
create: #French
parent: #Default

Classes do not belong to a namespace, however their methods do. For example, the
class Date is defined as4:

4 To keep the description short, definition Date is shortened by removing class variables and
pool declarations.

6 A. Bergel

Default method namespace

printString()
Object

printString
printOn: aStream

Date"MM-DD-
YYYY"

aStream nextPutAll:
self printString

printString
printOn: aStream

Time "1<= hours
<= 12"

getTimeStamp
Compiler

^ Date new printString,
Time new printString

Object new printString => 'an Object'
Date new printString => '08/31/2008'
Time new printString => '01:22'
Compiler new getTimeStamp => '08/31/2008 01:22'

^ 'an ' + self
class name

French method namespace

printString()
Object

printString
Date"DD-MM-

YYYY" printString
Time

"0<= hours
<= 23"

Object new printString => 'un Object'
Date new printString => '31/08/2008'
Time new printString => '13:22'
Compiler new getTimeStamp => '31/08/2008 13:22'

^ 'un ' + self
class name

method
namespacerefinementClassName

Legend A is the
parent of BA B

Fig. 1. A set of refinements with Method Namespaces.

Object subclass: #Date
instanceVariableNames: ’start duration’
category: ’Kernel-Chronology’

Date compile: ’printString
”Return a string that follows the MM-DD-YYYY pattern”
ˆ... ’
namespace: #Default

Date is defined as a subclass of Object and has two instance variables. It belongs to
the category Kernel-Chronology5.

The method printString is defined in the class Date. This method belongs to the
Default namespace. In the French namespace, this method is redefined:

Date compile: ’printString
”Return a string that follows the DD-MM-YYYY pattern”
ˆ... ’
namespace: #French

5 Class category is a rudimentary classification mechanism for classes provided by Smalltalk.

Scoping Changes with Method Namespaces 7

Default method namespace

printString()
Object

printString
printOn: aStream

Date
printString
printOn: aStream

Time
getTimeStamp

Compiler

French method namespace

printString()
Object

printString
Date"DD-MM-

YYYY" printString
Time "0<= hours

<= 23"

^ 'un ' + self
class name

MoonCalendar method namespace

isStartingMonth
Date

convert
Time

Fig. 2. The MoonCalendar namespace refines Date and Time futher.

Locality of refinements. Refinements are local to the method namespace in which they
are defined. We refer to this property as the locality of refinements. Outside a method
namespace, refinements are not accessible.

3.2 Method namespace at runtime

printString()
Object

printString
printOn: aStream
isStartingMonth

Date"DD-MM-
YYYY"

aStream nextPutAll:
self printString

printString
printOn: aStream
convert

Time "0<= hours
<= 23"

getTimeStamp
Compiler ^ Date new printString,

Time new printString

^ 'un ' + self
class name

Fig. 3. Pellucid view from the MoonCalendar namespace.

Defining a namespace child allows for further refinements on its parent by adding
or redefining methods. Figure 2 proposes a variant of the example in which the French
namespace is further refined by MoonCalendar which augments Date with a isStarting-
Month method and Time with a convert method.

Control flow and namespace. A thread may be created in a method namespace. As a
consequence, threads define the granularity of the scope of a namespace. One or more

8 A. Bergel

Method namespace A

printString
printOnStream
hash

Object

printString
Date

stream write: (self printString) printString
hash

Object

Date

1

3

4

Method namespace B

2 5

Object new printString ==> .
Object new printOnStream ==> .

Object new hash ==> .

Date new hash ==> .
Date new printString ==> .

Date new printOnStream ==> .

1
1
2

2
3
3

Object new printString ==> .
Object new printOnStream ==> .

Object new hash ==> .

Date new hash ==> .
Date new printString ==> .

Date new printOnStream ==> .

4
4
5

5
3
3

Fig. 4. The method lookup algorithm goes through the import link before inheritance.

threads may live in the same namespace. This enables a set of threads to share the same
version of a system.

Pellucid property. Conceptually, methods defined along the chain of parent namespaces
may be inlined in the namespace that will be used at runtime. Within one thread, it is as
if namespaces are compiled away. Import links between namespaces defines an order-
ing: refinements of a namespace override the definitions in parent namespaces. Figure 3
shows the result of a flattening of the MoonCalendar namespace. This figure is the
namespace compiled-away version of Figure 2.

Import has precedence over inheritance. A method lookup is triggered at each message
sent. If the current namespace does not provide an implementation for the selector, then
the lookup will be repeated (recursively) in the parent namespace.

Figure 4 illustrates this situation. On the left hand side, invocations of printString
and printOnStream use the implementation provided by namespace 1. On the right hand
side, invocations of printOnStream on an instance of Object leads to an execution of the
new version of this method (provided by namespace 2). Invoking printString on a date
uses the implementation of namespace 1 since printString is overridden in Date, its su-
perclass.

Object creation. An object is intrinsically associated to the class it was created from.
However, the object is not associated to a particular version of this class, even in pres-
ence of multi-threading. Objects may be shared between different threads that live in
different namespaces. In that case, the same object may behave differently according to
which thread it is used in.

Scoping Changes with Method Namespaces 9

4 Implementation

Method namespaces are implemented in Squeak [IKM+97], an open-source Smalltalk
dialect. This section describes the key implementation aspects of this work. Whereas
most of the presented code follows the syntax of Squeak, we hope this will not hamper
the reader from understanding the general approach.

4.1 The Squeak execution model

Smalltalk promotes a ubiquitous reification of most important aspects of the runti-
me [Riv96]. For example, classes, dictionaries of methods, and method definitions are
each first-class objects making them subject to standard object compositions and ma-
nipulations rules.

A compiled method is an ordered collection of bytecode instructions. It is the ele-
mentary support for runtime execution in Smalltalk. The behavior of a class is defined
by a set of associations selector → compiled method. In the Smalltalk terminology, a
selector is a symbol (à la Lisp) is a method name. When a message is sent to an object,
the Squeak virtual machine (VM) looks up selector in the receiver’s class’s method dic-
tionary (and so on to superclasses). If the selector is found, the associated compiled
method is executed by the VM.

4.2 Dynamic dispatch

One feature of the Squeak virtual machine is that it reifies a message whenever a plain
object has replaced a compiled method in a method dictionary. When a method has
been fetched, the virtual machine checks whether the retrieved association’s value is a
compiled method. If it is not a compiled method, then the message run:with:in: is sent
to the retrieved object [BD06]. Our implementation of method namespaces is based on
this message reification. The idea consists of using a dispatcher that looks up a method
version according to the encapsulating method namespace.

In Figure 5, the class Object is refined with a second version of printString. The left
hand side of the figure describes this situation from a conceptual point of view, whereas
the right hand side presents the memory organization. The Object class is an object that
references a method dictionary, which represents the behavior of this class. Object is
extended with two methods, printString is redefined and description is a new method.
The method dictionary has 3 entries therefore:

– printOnStream is associated with a compiled method since this method is defined in
the default namespace and has not been redefined. No dispatcher needs to be used
since the default namespace is the top most parent of all namespaces, therefore
always accessible.

– Since two versions of printString are coexisting, a dispatcher is employed to select
the right version of printString upon invocation.

– One single version of description is present, however a dispatcher has to be used to
restrict invocations of description to the French namespace.

10 A. Bergel

Default method namespace

printOnStream
printString

Object

French method namespace

printString
description

Object

Conceptual model Memory

Object
class

printOnStream
printString

description

compiled
method

dispatcher

compiled
method 1

compiled
method 2

French

method
dictionary

dispatcher

compiled
method

Default

French

Fig. 5. Coexistance of method versions uses a dispatcher.

4.3 Method version lookup

The version selection process of a particular method is performed after a message invo-
cation has been looked up. This is achieved by the dispatcher. The method run:with:in:
is in charge of the method version selection:

Dispatcher>>run: sel with: arguments in: receiver
| currentNamespace cm |
currentNamespace := Processor activeProcess namespace.
cm := currentNamespace

retrieveCompiledMethodFromSelector: sel inClass: theClass.
cm ifNil: [ˆ receiver

perform: sel
withArguments: arguments
inSuperclass: theClass superclass].

ˆ cm valueWithReceiver: receiver arguments: arguments

As mentioned in Section 3.2, the control flow of an application is associated with a
namespace. A thread, called process in the Smalltalk terminology, knows which names-
pace it was triggered in. The expression Processor activeProcess namespace returns
the namespace of the current process. Processor is a reification of the process scheduler
and activeProcess returns the one currently active.

The method retrieveCompiledMethodFromSelector:inClass: walks over the import
chain of namespaces until a method version is found. It returns nil if none has been
found. If no implementor for the selector is found, the method is resent, starting from
the superclass. Note that ˆ is the return statement. If an implementation is found, the
compiled method is evaluated with the appropriate arguments and receiver. (Note that
’self’ in this method refers to the dispatcher, and not to the receiver of the message and
self-references contained in the compiled method refer to the object receiver, the object
on which the message has been invoked.)

Scoping Changes with Method Namespaces 11

Object
class

printOnStream
printString

description dispatcher

compiled
method 1

compiled
method 2

French

method
dictionary

Default

...

...

Before invoking printString

After invoking printString

Object
class

printOnStream
printString

description

dispatcher

compiled
method 1

compiled
method 2

French

method
dictionary

Default
...

...

compiled
method 2'

caching bytecode

Fig. 6. Caching effect when invoking printString from the French namespace.

4.4 Caching strategy

Message reification as described above is relatively costly. Reifying a message is roughly
5 times slower than invoking a message directly. We have developed a namespace
caching strategy that consists of prepending the necessary set of bytecode instructions
at the beginning of a scoped method to check whether this method is invoked from
the thread it has been previously cached from. The assumption favored by this caching
strategy is a method will most of the time be invoked from the same method namespace.

After a message reification, a copy of the compiled method is prepended with
the caching bytecode. Then, this new compiled method replaces the dispatcher in the
method dictionary. Figure 6 illustrates this situation. The Default and French names-
paces each have their own version of printString, compiled method 1 and compiled
method 2, respectively. Assuming an invocation in French, a copy of compile method 2
is created, then the caching bytecode is added at the beginning of it. This new method
is inserted in the method dictionary of Object.

The cache become invalidated when printString is invoked from a method compiled
inDefault namespace and compiled method 2 is removed from the method dictionary.

The caching bytecode corresponds to the compiled version of the following code:

(Processor activeProcess namespace == <namespace>) not
ifTrue: [

<myClass> methodDictionary at: <methodName> put: <dispatcher>.
ˆ<dispatcher> run: <methodName> with: <args> in: self]

<namespace>, <myClass>, <methodName>, <dispatcher>, <methodName> are
replaced when the cache is created by the current method namespace, the class that con-
tains the method, the name of the method, and the dispatcher, respectively.

12 A. Bergel

The length of this cache is about 32 bytecode instructions, however only 6 bytecode
instructions are executed when the cache is valid. In our implementation, this cache
is generated with ByteSurgeon [DDT06], a framework to operate on the bytecode in
Squeak.

4.5 Benchmarks

We have measured the time overhead over several benchmarks.

Micro-benchmark. Since the length of the cache code is constant in size (32 bytecode
instructions), prepending it on a very short method results in an expensive invocation.
The extreme case is when a method returns the self value. A method, like yourself,
that simply returns an immediate value is optimized in the Squeak virtual machine by
tagging the method:

Object>>yourself
ˆself

In the original Squeak, this method does not contain any bytecode. In the version of
Squeak supporting method namespace this method is 32 bytecode instructions long.

On a MacBook6, the virtual machine (version 3.8.12beta4U) executes the yourself
method 19,379,844 times per second. The number of executions per second is 4,061,738
in the Method Namespaces aware version of Squeak. A factor of 4.77 reflects the over-
head of Method Namespaces for this particular method.

As a second micro-benchmark, let us consider a method that is not a tagged method.
The method callYourself calls yourself. The complexity of the computation of the method
is relatively low since it simply sends yourself to self:

Object>>callYourself
ˆself yourself

The number of executions per seconds of callYourself is 7,639,419 in the original
Squeak. In the Method Namespaces aware version of Squeak the number of calls per
second rises to 2,068,680. A factor of 3.69 reflects the overhead of Method Namespaces
for this particular method.

As a third and the last micro-benchmark, we evaluate the cost of Method Names-
paces on an “average” method. The average number of lines of code is Smalltalk is
about 7 lines of code. The method dismissButton on the class AllScriptsTool is a typical
example. This method is executed 2793 times per second. In the Method Namespaces
aware version of Squeak it is executed 2729 times per second in the average. For this
particular method the overhead is about 2%. Although we cannot draw any conclu-
sion from this third example, this examples shows that the cost of the version selection
performed by the dispatcher is at negligible cost of the time taken to perform the com-
putation of the method.

6 1.83 GHz Intel Core 2 Duo with 1 GB 667 MHz DDR2 SDRAM

Scoping Changes with Method Namespaces 13

Without method
namespaces

With method
namespaces

Fig. 7. Printing objects translated in French (with method namespace) versus in Amer-
ican English (without method namespaces) .

Macro-benchmark. We have translated Squeak as described in previous sections. The
overhead when displaying the French translation vs. the American English version is
depicted by Figure 7. The X-axis represents the number of times printString message is
performed, and the Y-axis represents the time necessary to performs those printings in
milliseconds.

The benchmark consists of displaying a large set of objects on the screen. The up-
per curve represents the time spent in displaying them in French, and the lower curve in
American English using the original non modified Squeak (where the two peaks proba-
bly stem from the garbage collection activity). Figure 7 shows the overhead of method
namespace in an activity that involves a large part of the streaming and collection library
of squeak. The ration between using and not using method namespaces is 1.34.

5 Related Work

Aspect-oriented programming. AOP is a programming technique where concerns that
cut across a software system can be described in clear statements so that the underlying
design intent remains clear in the source code. Separation of cross-cutting concern is
achieved through the use of a set of pointcut and advice descriptions.

With its notion of inter-type, AspectJ allows class members to be separated from
the class definition by being defined in an aspect. Whereas with method namespaces a
class can be refined in two namespaces with two methods having the same name, with
Aspect/J conflicts are not allowed: two aspects cannot define two methods having the
same name on the same class. This kind of extension does not allow redefinition and
consequently does not help in supporting unanticipated evolution.

Virtual classes. Virtual classes were originally developed for the language BETA
[KMMPN87], primarily as a mechanism for generic programming rather than for ex-
tensibility [MMP89]. Keris [Zen02], Caesar [AGMO06], and gbeta [Ern99] offer such
a mechanism, where method and class lookup are unified under a common lookup al-
gorithm. In a similar way that a method is looked up according to an instance, a class is
looked up according to an instance (i.e., an encapsulating class). With such a unification
of method and class lookup, the role of a class is overloaded with semantics of packages

14 A. Bergel

and objects constructor. With namespace, we keep the original meanings of class and
package separate.

Open classes. MultiJava [MRC03] is an extension of Java that supports open classes
and multiple method dispatch. An open class is a class to which new methods can be
added. Method redefinitions are not, however, allowed: an open class cannot have one
of its existing methods refined.

ECMAScript and Smallscript. A notion of namespace similar to Method Namespace
has been recently added to ECMAScript7 and Smallscript8. This mechanism is intended
to ease the evolution of intensively used libraries. A new version of a method may be
defined in a namespace. A version is statically associated to a method invocation. The
version is the one provided by the namespace where the call occurs. As a consequence,
new method versions cannot be used from legacy code. We qualify this behavior as
non-reantrant [BDN05a].

This is a major difference with Method Namespace and Classboxes: former code
may benefit from new version of methods.

Expanders. Expanders [WSM06] is an extension of the OO paradigm that support ob-
ject adaptation. It allows classes to be non-invasively updated with new methods, fields
and interfaces. By importing a set of expanders, a client may ’adapt’ some classes to its
particular need.

Expanders rely exclusively on static type annotation. It has to be statically deter-
mined whether a feature invocation makes use of an expander or not. Expanders follow
a different philosophy from Method Namespaces since we mainly focus on dynamically
typed languages.

Classboxes. A classbox [BDN05b] is a module containing scoped definitions and im-
port statements. Classboxes define classes, methods and variables. Imported declara-
tions may be extended, possibly redefining imported methods.

Classboxes gives a new semantic to the method lookup algorithm to achieve the
method version selection for a given set of interacting classboxes. Our experience with
Classboxes suggests that such a lookup tends to be complex since several versions of a
same class may have to be accessible within the same classbox.

By proposing a pellucid property, complexity of Classboxes has been removed in
Method Namespace.

Context-oriented programming. ContextL [CH05] is an extension to the Common Lisp
Object System provides means to associate partial class and method definitions with
layers and to activate and deactivate such layers in the control flow of a running pro-
gram. When a layer is activated, the partial definitions become part of the program until
the later is deactivated.

7 http://wiki.ecmascript.org
8 http://www.smallscript.net

http://wiki.ecmascript.org
http://www.smallscript.net

Scoping Changes with Method Namespaces 15

ContextL’s Layers cannot be flattened, the pellucid property is therefore not sup-
ported. The effect is that no assumption can be statically made upon the dynamic se-
lection of a method version. As an example, let us assume a set of layers where each
provides an implementation of a method display-object. When a programmer writes
(display-object myObject), which sends the message display-object to myObject, it may
not be possible to statically determine which version of display-object will be invoked
since no assumption can be made upon the current control flow.

This is pretty much the same situation with polymorphism and with Classboxes.
Our experience with Classboxes showed that this dynamic selection of method (added
to polymorphism) lowers the comprehensibility of the overall system.

View-oriented programming. CorbaViews [MMS02] promotes the view-oriented pa-
radigm that considers application objects as a core functionality to which state and
behavior (views) are added and retracted on demand during run-time. A view may be
added and removed during run-time, making objects support different interfaces while
an application is executing.

View-oriented programming does not employ a scoping mechanism to limit a view
and operates at the level of the object, instead of the class. Views are individually at-
tached to objects. Methods Namespaces enables classes to be refined under a specified
scope without affecting the instantiation mechanism. As a result, Views would give a
more complex and more invasive solution to our translation example.

6 Conclusion

Method Namespaces are a programming language construction aimed to scope behav-
ioral changes such as method additions and redefinitions. Such a namespace is a con-
tainer for method definitions and versions. A method may be invoked only within the
namespace in which it is defined and in children namespaces. Outside those namespace,
the method cannot be invoked.

Our work is motived by having a non-invasive translated version of a set of classes.
We have presented Method Namespaces as an elegant solution to solve this problem in
a non-invasive way (without implying costly refactoring). We also have demonstrated
that Method Namespace can be put in practice with an overhead factor of 1.34, suitable
to a large range of application domains.

As a future work, we plan to widen the range of domain application of Method
Namespace to security and interoperability between Smalltalk dialects.

Acknowledgements. We would like to thank Marcus Denker for his help in implement-
ing the method caching with ByteSurgeon. We also thank James Foster for the extensive
discussion we had and his comments on this paper. We acknowledge Mathieu Suen for
his review on an earlier draft, Yann-Gaël Guéhéneuc, Robert Hirschfeld and Houari
Sahraoui for their comments on the idea described in this paper.

16 A. Bergel

References

[AGMO06] Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann. An overview
of CaesarJ. Transactions on Aspect-Oriented Software Development, 3880:135 –
173, 2006.

[BD06] Alexandre Bergel and Marcus Denker. Prototyping languages, related constructs
and tools with Squeak. In Proceedings of the Workshop on Revival of Dynamic
Languages (co-located with ECOOP’06), July 2006.

[BDN05a] Alexandre Bergel, Stéphane Ducasse, and Oscar Nierstrasz. Analyzing module
diversity. Journal of Universal Computer Science, 11(10):1613–1644, November
2005.

[BDN05b] Alexandre Bergel, Stéphane Ducasse, and Oscar Nierstrasz. Classbox/J: Control-
ling the scope of change in Java. In Proceedings of OOPSLA’05, pages 177–189,
2005. ACM Press.

[BMZ+05] Jim Buckley, Tom Mens, Matthias Zenger, Awais Rashid, and Günter Kniesel. To-
wards a taxonomy of software change. Journal on Software Maintenance and Evo-
lution: Research and Practice, pages 309–332, 2005.

[CH05] Pascal Costanza and Robert Hirschfeld. Language constructs for context-oriented
programming: An overview of ContextL. In Proceedings of the Dynamic Lan-
guages Symposium (DLS) ’05, October 2005. ACM Press.

[DDT06] Marcus Denker, Stéphane Ducasse, and Éric Tanter. Runtime bytecode transfor-
mation for Smalltalk. Journal of Computer Languages, Systems and Structures,
32(2-3):125–139, July 2006.

[Ern99] Erik Ernst. gbeta — a Language with Virtual Attributes, Block Structure, and Prop-
agating, Dynamic Inheritance. PhD thesis, Department of Computer Science, Uni-
versity of Aarhus, Århus, Denmark, 1999.

[FF98a] Robert Bruce Findler and Matthew Flatt. Modular object-oriented programming
with units and mixins. In Proceedings of the third international conference on
Functional programming, pages 94–104. ACM Press, 1998.

[FF98b] Matthew Flatt and Matthias Felleisen. Units: Cool modules for hot languages.
In Proceedings of PLDI ’98 Conference on Programming Language Design and
Implementation, pages 236–248. ACM Press, 1998.

[IKM+97] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. Back to the
future: The story of Squeak, A practical Smalltalk written in itself. In Proceedings
of OOPSLA ’97, pages 318–326. ACM Press, November 1997.

[KMMPN87] Bent Bruun Kristensen, Ole Lehrmann Madsen, Birger Moller-Pedersen, and Kris-
ten Nygaard. The BETA programming language. In B. Shriver and P. Wegner,
editors, Research Directions in Object-Oriented Programming, pages 7–48. MIT
Press, Cambridge, Mass., 1987.

[MFH01] Sean McDirmid, Matthew Flatt, and Wilson Hsieh. Jiazzi: New age components
for old fashioned Java. In Proceedings of OOPSLA 2001, pages 211–222, October
2001.

[MMP89] Ole Lehrmann Madsen and Birger Moller-Pedersen. Virtual classes: A powerful
mechanism in object-oriented programming. In Proceedings of OOPSLA ’89, vol-
ume 24, pages 397–406, October 1989.

[MMS02] Hafedh Mili, Hamid Mcheick, and Salah Sadou. Corbaviews – distributing objects
that support several functional aspects. Journal of Object Technology, 1(3):207–
229, August 2002.

[MRC03] Todd Millstein, Mark Reay, and Craig Chambers. Relaxed multijava: balancing
extensibility and modular typechecking. In Proceedings of OOPSLA’03, pages
224–240. ACM Press, 2003.

Scoping Changes with Method Namespaces 17

[NDGL06] Oscar Nierstrasz, Marcus Denker, Tudor Gı̂rba, and Adrian Lienhard. Analyzing,
capturing and taming software change. In Proceedings of the Workshop on Revival
of Dynamic Languages (co-located with ECOOP’06), July 2006.

[Riv96] Fred Rivard. Smalltalk: a reflective language. In Proceedings of REFLECTION
’96, pages 21–38, April 1996.

[TB99] Lance Tokuda and Don Batory. Automating three modes of evolution for object-
oriented software architecture. In Proceedings of COOTS ’99, May 1999.

[WSM06] Alessandro Warth, Milan Stanojević, and Todd Millstein. Statically scoped object
adaptation with expanders. In Proceedings of OOPSLA’06, pages 37–56. ACM
Press.

[Zen02] Matthias Zenger. Evolving software with extensible modules. In International
Workshop on Unanticipated Software Evolution, Malaga, Spain, June 2002.

	Scoping Changes with Method Namespaces
	Alexandre Bergel

