
A dynamic virtual machine for the support of interoperable
programming languages

J. Baltasar García Perez-Schofield
Faculty of Computer Science, University of Vigo

Edificio Politécnico, s/n, Campus As Lagoas
32004 Orense(Spain)

+34 988 36 88 91

jbgarcia@uvigo.es

Francisco Ortín Soler
Technical School of Computer Science, Oviedo

Department of Computer Science, Calvo Sotelo s/n.
33007. Oviedo (Spain)

+34 985 10 31 72

ortin@lsi.uniovi.es
ABSTRACT
In this paper, the Zero project, a persistent, prototype-based
programming system, is discussed. Zero has been in continuous
development since 2003, and in use in advanced subjects at the
University of Vigo, Computer Science faculty. Its main
characteristic is that it has been designed with multi-language
support in mind from the beginning. Its approach is based in a
dynamic, flexible virtual machine with native persistence
capabilities, which can support programming languages of
different natures in regard to their type systems: static, dynamic or
even hybrid.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifications -
extensible languages, object-oriented languages.

D.3.3 [Programming Languages]: Language Contructs and
Features – abstract data types, polymorphism, control structures.

General Terms
Algorithms, Performance, Design, Languages, Persistence.

Keywords
Dynamic programming languages, static programming languages,
type systems.

1. INTRODUCTION
In this paper, we the authors use the terms static and dynamic very
often. The context in which these terms are used is important,
since both of them are used in many different areas of research.
The use of static in regard to programming languages refers here
to those languages that have a strong type verification at compile
time. Some of these programming languages even support
introspection. For example, C++ supports a very limited
introspection mechanism called RTTI (Run-Time Type
Identification) [8], while Java [1] or C# [3] fully support it. On
the other hand, dynamic programming languages typically do not
carry out any type checking at compile time. In many cases (such
as Self [9], or Prowl [5] itself, discussed later), there are even no
classes nor types. The most widely-known reference is currently
Python [6].

The main advantage of static programming languages is that
performing type checking at compile time, reveals many errors
that could have been originated even in a simple identifier
spelling. The main advantage of dynamic programming languages
is what is known as structural reflection: the program itself is
modifiable at run-time. Thus, even some kind of maintenance
tasks can be carried out without having to stop the application.

In very recent years, various attempts to close the gap between
static and dynamic languages have been performed. One widely-
known reference is probably IronPython [4]: it is an
implementation of a dynamic programming language in a
statically-typed virtual machine such as the .NET CLR (Common
Language Runtime). However, this programming language has the
undesirable characteristic of being unable to share the created
classes and objects with other programming languages supported
by the .NET CLR, such as C# or Visual Basic. This is due to its
impossibility of using the CTS (Common Type System) of the
.NET framework, because of the lack of support for structural
reflection within the .NET CLR. Classes must be represented by
special structures that resemble the ones that the Python virtual
machine (CPython) must have to maintain in memory during
program execution, which obviously have nothing to do with
native CLR classes.

Other attempts, even in classical languages such as C++, or more
modern ones such as C#, include a very limited kind of type
inference (the recycled keyword auto in C++, or var in C#). This
means that, in the specific context of declaration of references, the
type of the reference does not have to be given, when this
possibility is used it is taken from the type of the object (the r-
value) at compile time.

1.1 Background
Our main projects of research are Reflective Rotor [7] and Zero
[5] (the one in which this paper is centered). The first one is a
severe modification of the SSCLI (the shared source version of
the .NET CLR) in order to make it accept structural reflection.
Although this project was concluded successfully, we learned
about the difficulties related to the modification of an existing
VM (virtual machine): a) it is difficult to express something that is
not native, leading to the need of very tricky hacks, which b) are
extremely complex to maintain, and c) they are difficult to simply
update them for new versions of the VM.

Zero is a programming system which does not provide types nor
classes. There are prototypical objects which can be assumed to
be classes (more or less the kind of distinction Python does), and
from which derive the instances themselves. For example, all text
strings derive from the object String, which derives from the

object DataType, which itself derives from Object, the root of the
hierarchy. All method calls are implemented as of the late-binding
kind, since, due to its support of structural reflection, the message
can be sent to a method that does not exist at compile time, but
that will exist later at run-time.

Zero supports two programming languages: Prowl, which is the
most native one, and J--, a subset of the Java programming
language, with strong type verification.

1.2 Motivation
As discussed before, both approaches have their advantages and
disadvantages: the main disadvantage of static languages comes
from its lack of flexibility, while the main disadvantage of
dynamic languages comes from its lack of any kind of type
checking at compile time. However, it is known that dynamic
languages such as Self, Prowl, etc., can model the possibilities of
the static ones, while the reverse is not true. Their design uses
prototypes instead of classes, which have more express power
[10]. The motivation of the authors is to effectively provide a
common substrate for different kinds of programming languages,
and as future work, design a type system that can be added on
demand to the common back-end for all of them, za.

The rest of this position paper is structured as follows: firstly the
zero programming system is discussed, specially in its features of
multi-language support, and finally the conclusions and future
work are shown.

2. The Zero Programming System
The core of the system is za and zvm. The first one is the back-end
for the available compilers in the system, and it understands Zero
assembler as text. The assembler converts the mnemotechnic
words in assemblies (as shown in Figure 1), while also carrying
out all optimization techniques possible. Given that Zero is a
register-based VM, the main optimization is to reduce the use of
local references in methods, taking advantage of the four general-
purpose registers available (__gp1 to __gp4), as well as the
accumulator (__acc) in which the reference to the object result of
the last message is stored. The zvm unit is the virtual machine. It
reads assemblies, checks their integrity, and executes them. All
objects are, or can be, persistent (there are no files for data storage
nor any other purpose), so it takes care of the persistent store as
well.

The available programming languages are Prowl and J-- (there is
even a macroassembler, zm, allowing a higher level of abstraction
for programming than the one za offers). All of them produce
Zero assembler, which is consumed by za. Prowl is not
problematic since it just represents the semantics of the VM
(prototype-based, dynamic and no type checking at compile time),
while J-- is the strong-typed one (static, class-based and with type
checking at compile time). Zero1 is not limited to only these two
programming languages, but both are the ones implemented at the
time of writing this paper, being able to share the same
computational model. Their abstractions can be translated to the
needs of the Zero VM and executed transparently.

The main difficulty is to be able to extract types in a type-agnostic
ecosystem (in this section, the word type is abused, as the J--
programming language needs types, while the VM does not know
anything about that concept). The J-- programming language can
compile its own programs without difficulties by means of
applying regular type checking. However, it still persists the need
of knowing types in other assemblies. This need is actually central
for the compiler: it involves the standard library, for instance. The
compiler needs to load the “external” assembly and analyze it
using introspection, and only then type-checking can be carried
out at compile time.

The interesting point about both programming languages is that
the data stored by means of Prowl in the persistent store is
transparently accessible from J-- and viceversa, as shown in

1 Available on-line at http://webs.uvigo.es/jbgarcia/prjs/zero

class Point extends Object {
 public int x;
 public int y;
 //void setX(String xx) // compile-time error
 void setX(int xx)
 {
 x = xx;
 }
 void setY(int yy)
 {
 y = yy;
 }
 String toString()
 {
 String toret = x.toString();
 toret += ", ";
 toret += y.toString();
 return toret;
 }
}
class ChkInteropWrite extends ConsoleApplication
{
 public static void doIt()
 {
 Point p = new Point();
 PersistentStore ps =

 System.getPersistentStore()
;

 Container root = ps.getRoot();
 p.setX(100); // compile-time error
 p.setY(200);
 root.addRenamedObject(p, “p1”);
 }
}

Figure 2: A class Point declared in the J-- programming
language.

Figure 1: Schematics summarizing the Zero
programming system.

http://webs.uvigo.es/jbgarcia/prjs/zero

Figures 2 and 3. Firstly, a J-- program creates a class Point, as
well as an object Point (referenced by the local reference p),
which is finally stored as p1 in the main container [5] of the
persistent store. Finally, a second program, written in Prowl, uses
the Point class (which has been translated into a prototype) in
order to create a new object by means of copying the Line
prototype, using the point stored as origin, and a new one as end.
Finally, the information about the line object is shown on the
standard console.

The only disadvantage for this process is the extra compilation
time needed to carry out the introspective analysis of other
assemblies. The compiler could store in a cache already inspected
assemblies (such as the so common standard library), and analyze
them just in case of modification; however, this compilation
overhead would still persist for assemblies not used before.

3. Conclusions and future work
In this paper, the Zero programming system and the already
available programming languages, Prowl and J-- have been
presented. Though both languages are absolutely different (they

could be thought as the extremes of the dynamic/static spectrum),
they can a) share the same ecosystem in which types are actually
not recognized; they also can b) share data of any kind; objects
can be read and written by both languages; due to c) a transparent,
language-independent persistence system. The persistence system
of Zero, as a transparent representation of objects, is mandatory in
order to achieve the objectives shown here.

As future work, it would actually be very interesting to be able to
apply that type checking technique not only for programs written
in J--, but also to programs written in Prowl. In other words,
move the introspective analysis to the the common back-end: za,
using type inference at assembly level. For example, it could be
activated by a command switch, and therefore be used or not on
demand, exposing, for example, spelling errors that obviously do
not have their origin in any use of the flexibility provided. This
would actually mean the use of a common pluggable type system
[2]. The challenge of this proposal would be to provide
understandable error messages when necessary, as the back-end,
as discussed before, works at assembly level.

4. REFERENCES
[1] Arnold, K.; Gosling, J. The Java(TM) Programming

Language. Prentice Hall; 4th edition (August 27, 2005).
ISBN 978-0321349804.

[2] Bracha G. Pluggable Type Systems. OOPSLA04 Workshop
on Revival of Dynamic Languages. October 17, 2004.

[3] Heljsberg, A.; Wiltamuth, S.; Golde, P. The C#
Programming Language. Addison-Wesley Professional
(October 30, 2003). ISBN 978-0321154910

[4] Hugunin, J. IronPython: A fast Python implementation for
.NET and Mono. Proceedings of PyCon. Python Software
Foundation, March, 2004

[5] García, B.; Ortín, F.; Roselló, E.; Pérez, C. Visual Zero: A
persistent and interactive object-oriented programming
environment. Journal of Visual Languages & Computing,
n19, pp 280-398, 2008

[6] Lutz, M.; Learning Python: Powerful Object-Oriented
Programming. O'Reilly Media; 4th edition (September 24,
2009). ISBN 978-0596158064

[7] Ortin. F.; Redondo, J.M.; García, B. Efficient virtual
machine support of runtime structural reflection. Science of
Computer Programming, Volume 74, Issue 10, pp. 836-860.
Elsevier, August 2009. DOI =
http://doi.acm.org/10.1016/j.scico.2009.04.001

[8] Stroustrup, B.; The Design and Evolution of C++. Addison-
Wesley Professional (April 8, 1994). ISBN 978-0201543308

[9] Ungar, D.; Smith, R. B. Self: The Power of Simplicity. ACM
SIGPLAN Notices 22(12), December 1987. Notices. DOI =
http://doi.acm.org/10.1145/38807.38828

[10] Wolcko, M., Agesen, O., and Ungar, D. 1996. Towards a
Universal Implementation Substrate for Object-Oriented
Languages. Sun Microsystems Laboratories.

object Line
attribute + org = PSRoot.Point;
attribute + end = PSRoot.Point;
method + setOrg(o)
{

org = o;
return;

}
method + setEnd(e)
{

end = e;
return;

}
method + toString()
{

reference toret = org.toString();
toret += “ to “;
toret += end.toString();
return toret;

}
endObject
object ChkInteropRead

method + doIt()
{

reference p2 =
PSRoot.Point.copy(“”)

;
p2.setX(110);
p2.setY(220);
reference line = Line.copy(“”);
line.setOrg(PSRoot.p1);
line.setEnd(p2);
System.console.writeLn(line);
return;

}
endObject

Figure 3: A small program in Prowl uses the Point class
stored before in the PS with J--

http://doi.acm.org/10.1016/j.scico.2009.04.001
http://doi.acm.org/10.1145/38807.38828

	1. INTRODUCTION
	1.1 Background
	1.2 Motivation

	2. The Zero Programming System
	3. Conclusions and future work
	4. REFERENCES

