
Over-exposed Classes in Java: An Empirical Study

S. Vidala,c, A. Bergelb, J. A. Dı́az-Pacea,c, C. Marcosa,d

aISISTAN, Tandil, Argentina
bDepartment of Computer Science (DCC), University of Chile, Chile

cCONICET, Argentina
dCIC, Argentina

Abstract

Java access modifiers regulate interactions among software components. In par-
ticular, class modifiers specify which classes from a component are publicly
exposed and therefore belong to the component public interface. Restricting
the accessibility as specified by a programmer is key to ensure a proper software
modularity. It has been said that failing to do so is likely to produce main-
tenance problems, poor system quality, and architecture decay. However, how
developers uses class access modifiers or how inadequate access modifiers affect
software systems has not been investigated yet in the literature.

In this work, we empirically analyze the use of class access modifiers across
a collection of 15 Java libraries and 15 applications, totaling over 3.6M lines
of code. We have found that an average of 25% of classes are over-exposed,
i.e., classes defined with an accessibility that is broader than necessary. A
number of code patterns involving over-exposed classes have been formalized,
characterizing programmers’ habits. Furthermore, we propose an Eclipse plugin
to make component public interfaces match with the programmer’s intent.

Keywords: Class accessibility, modularity, over-exposed classes, Java systems

1. Introduction

The need to support modularity in software systems can be traced back to
Parnas [1], and encapsulation has been emphasized by Scott [2] in his seminal
book as follows:

“Encapsulation allows the implementation details of an abstraction5

to be hidden behind a simple interface.”

Many constructs offered by programming languages are designed to manage the
accessibility of routines/functions, which guide code reuse and extensions. The

Email addresses: svidal@exa.unicen.edu.ar (S. Vidal), abergel@dcc.uchile.cl (A.
Bergel), adiaz@exa.unicen.edu.ar (J. A. Dı́az-Pace), cmarcos@exa.unicen.edu.ar (C.
Marcos)

Preprint submitted to Elsevier April 28, 2016

Java language offers rich linguistic constructs to define accessibility of classes.
The accessibility of a class is specified via the absence or the presence of a par-10

ticular keyword (public, protected, private). Class access modifiers play an
important role in achieving modularity as they regulate inter-module interac-
tions. Despite its relevance in promoting modularity, the use of accessibility
modifiers in Java programs has received scant attention in the literature. Un-
derstanding how developers assign a particular accessibility to their classes is15

relevant to address several design aspects that are sensitive to modularity. First,
class accessibility reflects assumptions and decisions made by the developer: a
public class is part of the public interface of its containing package and might
be considered as an entry point by other developers who wish to use the pack-
age. For example, public classes are listed in automatically-generated Javadoc20

documentation and suggested by code completion tools in programming environ-
ments. Second, programming environments (IDEs), such as Eclipse, Netbeans,
and IntelliJ assist programmers when creating classes in their projects. Relying
on programming environments is highly important for developers in terms of
productivity and quality code. However, current IDEs sometimes make subop-25

timal “default” decisions about class accessibility that programmers might be
unaware of, which can have a negative impact on the overall system modularity.
Although method accessibility has been the topic of a number of works [3, 4, 5],
to the best of our knowledge the usage of class access modifiers has not been
yet investigated. Moreover, this article is a continuation (and an improvement)30

of a prior study on method accessibility [4].
We have conducted an extensive study on the use of class access modifiers.

This article reports our findings from a collection of 30 Java applications (15
libraries and 15 plain applications). We have identified a code anomaly called
class over-exposure that applies to classes. This anomaly refers to a class that is35

unnecessarily accessible (to other classes), therefore we qualify it as being over-
exposed. Over-exposed classes might have their accessibility reduced without
affecting the program behavior while increasing the modularity of the system.
For example, if a class is accessed from other packages than its own, the class
has to be public. In contrast, if a class C is solely referenced from classes defined40

in the same package of C, then C should likely be private to the package. We
investigated different aspects of this phenomenon, namely: ratio of public classes
in different types of applications, ratio of over-exposed classes, and evolution
of access modifiers of classes across several program versions, among others.
Naturally, it might happen that a class is voluntary exposed to meet future45

client requirements. We carefully consider this situation in our analysis.
The article addresses the following research questions:

• RQ1 - Do plain applications declare less public classes than libraries /
frameworks? If plain applications exhibit a different profile than libraries
and frameworks, then they should be treated differently in the analysis of50

over-exposure.

• RQ2 - How many classes are actually over-exposed? Understanding to

2

what extent this code anomaly is present in source code is important to
gauge the severity of the anomaly.

• RQ3 - Do over-exposed classes address future client requirements? A55

premise to have a public class, with no actual public usage (yet), is that the
class should be used by third-party components in the future. Answering
this question can shed light on whether this expectation is fulfilled.

• RQ4 - Are classes over-exposed since their first implementation, or do they
become so over time? This research question is important to figure out60

how over-exposed classes evolve over time.

• RQ5 - Do over-exposed classes negatively impact the general software health?
Determining whether there is a perceptible degradation of the overall
source code quality is relevant to formulate an adequate response to this
phenomena.65

Answering the questions above provides a great insight on how developers
use access modifiers. We found out that libraries define more public classes
than applications. Also, we observed that applications and libraries/frameworks
have on average more than 25% of their classes over-exposed which could be
detrimental for system modularity. Moreover, we found that around 90% of70

these classes are over-exposed since their first implementation. Also, we found
that most over-exposed classes defined in libraries are not used by third-party
applications. Moreover, we observed that while over-exposed classes are a latent
risk they do not always negatively impact on the software health.

Additionally, in order to assist the detection of over-exposed classes, we have75

developed an Eclipse plugin that automatically identifies over-exposed classes
and makes suggestions to the developer to remove unnecessary class exposure.

The article is structured as follows. Section 2 provides background infor-
mation about class accessibility in Java. Section 3 analyzes and compares the
accessibility modifiers of classes in plain applications and libraries/frameworks.80

Section 4 defines the notion of over-exposed class. Section 5 compares the
number of over-exposed classes in plain applications and libraries/frameworks.
Section 6 analyzes if over-exposed classes address future client requirements in
libraries. Section 7 speculates on the origin of over-exposed classes and dis-
cusses their evolution. Section 8 presents our plugin for dealing with class85

over-exposure. Section 9 presents the threats of validity of our study. Section
10 discusses related work. Section 11 gives the conclusions and outlines future
lines of work.

2. Background

This section outlines the terminology used in the article (Section 2.1) and90

briefly describes the Java class modifiers (Section 2.2). People familiar with
Java class modifiers might safely skip Section 2.2.

3

2.1. Terminology Related to Class Accessibility

We adopt the following terminology in order to ease the reading of the ar-
ticle. We refer to a non-nested class as a class or a plain class. We make no95

difference between a generic and a class since genericity is orthogonal to the
concepts we are dealing with in this article. We refer to a nested class as a
class that is syntactically embedded into a parent (static or non-static) class. A
nested non-static class is often referred to as an inner class. We refer to the en-
capsulating class of an inner class C as the class that contains C. For example,100

in the code public class C1 { private class C {}}, the public class C1 is
encapsulating the private inner class C.

We refer to an accessibility modifier as the syntactical keyword that charac-
terizes the accessibility of a class. Four different accessibility modifiers are of-
fered by Java (public, protected, default, and private). For example, public105

is the accessibility modifier for A in the code public class A {}. The absence
of keyword represents the default accessibility.

We refer to application (or plain application) as a bundle of classes dis-
tributed to end-users. An application is not meant to be extended by third
party. We refer to library as a bundle of classes designed to be used or extended110

by applications. We make no distinction between library and framework, except
when relevant.

2.2. Java Class Accessibility

Class. A Java class can be either public or private in the package that defines
it. Java provides two accessibility modifiers that can be used with a plain class:115

• Public – A class definition preceded by the public modifier makes the
class accessible to all other packages and classes in the system.

• Default – A class definition that is not preceded by an explicit modifier has
the default accessibility, making the class private to the package. For ex-
ample, let us consider the class definition package p; class A {}. Class120

A is accessible only in package p, and not accessible from other packages.
All other classes contained in package p, which may be contained in the
same compilation unit than A or not, may reference A. Note that A is not
accessible to sub-packages of p.

Nested class. Nested classes are divided into two categories: static and non-125

static1. The terminology of Java refers as static nested classes to the nested
classes declared static. Instead, non-static nested classes are called inner classes.
The main difference between them is that instances of inner classes are nested
inside an instance of the outer class, whose members may be accessed either
directly, or via the “outer this” language construction. This is not the case for130

static nested classes.

1http://docs.oracle.com/javase/tutorial/java/javaOO/nested.html

4

Java provides four accessibility modifiers to regulate the access of nested
classes:

• public: the nested class is accessible to any class in any package (as long
as the enclosing class accessibility is also public).135

• default (no explicit modifier): the nested class is accessible only within
the package of its enclosing class.

• protected: the nested class is accessible by classes defined in the same
package and by classes that extend the enclosing class.

• private: the nested class is accessible by the enclosing class and other140

nested classes in the same enclosing class.

Additionally, Java allows the definition of classes without a name called
anonymous classes that can be declared and instantiated at the same time. An
anonymous class does not have an accessibility since it cannot be accessed. We
therefore exclude anonymous classes from our analysis. Similarly, Java allows145

the definition of local classes that are nested classes contained by a block that
are not a member of any class. Since local classes cannot declare an access
modifier, we exclude them from our analysis.

Interfaces. An interface in Java is either public or private to its package. To
keep our article focused, we exclude interfaces from our analysis.150

3. Analysis of Java Applications

This section assesses the distribution of class access modifiers across a col-
lection of 30 Java applications. First, we present our benchmark (Section 3.1),
and then we evaluate how access modifiers are used in practice (Section 3.2).

3.1. Benchmark155

Benchmark description. We selected 30 open-source Java systems and mea-
sured the use of access modifiers for classes. These systems and the results of the
metrics relevant to our study are listed in the appendix. Some of these systems
were chosen because of their popularity among the community of developers. In
addition, these are the same systems that were subject of our previous research160

study of methods accessibility [4]. The appendix lists all the software versions
to let others easily reproduce our study. Additionally, the datasets2 and the
processing code3 used to conduct the experiments are available for download.
A total of 15 of these systems are libraries or frameworks while the remaining 15
are plain applications. We distinguish libraries and frameworks from plain ap-165

plication because these two kinds of systems have different goals. The libraries

2http://bit.ly/mseFiles
3http://ss3.gemstone.com/ss/SPIRIT.html (package Spirit-ExhibitionismTests)

5

Kind of applications #Plain #Static
nested

#Non-static
nested

#Total

Libraries/Frameworks 13,536
(81.97%)

2,173
(13.16%)

804 (4.87%) 16,513

Plain applications 10,550
(77.19%)

1,435
(10.5%)

1,682
(12.31%)

13,667

Total 24,086
(79.81%)

3,608
(11.95%)

2,486
(8.24%)

30,180

Table 1: Classes analyzed.

and frameworks4 are meant to be extended, used, and/or instantiated by an
application. On the contrary, the primary goal of a plain application is not to
be extended or used by a third application. As we will verify subsequently, these
differences lead to a different usage of the access modifiers.170

Analyzing the benchmark. We used the Moose5 software analysis platform
to carry out our analysis. The Java source code of the 30 systems was obtained
from public online archives. All non-Java files were excluded from our analysis.
Then, using Moose, we statically analyzed the source code of the systems. In
the cases of systems with unit tests, we included the tests in our analysis.175

Specifically, 8 applications and 11 libraries/frameworks contain unit tests. All
our measurements are reported with a precision of 0.01%, meaning that we
rounded up the values to the second decimal place.

3.2. Accessibility Distribution

Our benchmark totals 30,180 classes and nested classes (Table 1). Non-180

nested classes defined in libraries represent 81.97% of the classes while this
value is 77.19% in plain applications. Nested classes represent the 18.03% (73%
of them are static) and 22.81% (46% of them are static) for libraries and appli-
cations respectively.

Given the different goals of libraries and applications (see Section 3.1), and185

based on RQ1, we hypothesize that applications declare less public classes than
libraries. We analyze the distribution of the different accessibility modifiers for
the classes of the libraries and applications. We distinguish the accessibility for
plain classes and nested classes. The results for each application are listed in
tables A.8 and A.11.190

Figure 1 plots the distribution of plain classes with a given accessibility re-
garding the total number of plain classes for the 15 applications and 15 libraries
(N=15). Both libraries and applications define more public classes than default
ones. On average, in libraries 11.78% of classes are default and 88.22% are

4For the sake of simplicity, the words “library” and “framework” are used indistinctly in
the rest of the article.

5http://www.moosetechnology.org/

6

●

Libraries Applications

0
10

20
30

40

Default (N=15)

%
 D

ef
au

lt
cl

as
se

s

●

Libraries Applications

60
70

80
90

10
0

Public (N=15)

%
 P

ub
lic

 c
la

ss
es

Default (N=15) Public (N=15)
Libraries LibrariesApplications Applications

%
D

ef
au

lt
cl

as
se

s

%
Pu

bl
ic

 c
la

ss
es

Figure 1: Distribution of plain classes accessibility

●

Libraries non−static Libraries static Applications non−static Applications static

0
20

40
60

80

Private (N=15)

%
 P

riv
at

e
cl

as
se

s

●

●●

●

●

●

●

●

●

●

Libraries non−static Libraries static Applications non−static Applications static

0
5

10
15

20
25

Protected (N=15)

%
 P

ro
te

ct
ed

 c
la

ss
es

●

●

●

●

●

●

Libraries non−static Libraries static Applications non−static Applications static

0
10

20
30

40
50

60

Default (N=15)

%
 D

ef
au

lt
cl

as
se

s

●

●

●

Libraries non−static Libraries static Applications non−static Applications static

0
20

40
60

80

Public (N=15)

%
 P

ub
lic

 c
la

ss
es

Private (N=15) Protected (N=15)

Default (N=15) Public (N=15)
Libraries non-

static
Libraries static Applications

non-static
Applications

static
Libraries non-

static
Libraries static Applications

non-static
Applications

static

Libraries non-
static

Libraries static Applications
non-static

Applications
static

Libraries non-
static

Libraries static Applications
non-static

Applications
static

%
Pr

iv
at

e
cl

as
se

s
%

D
ef

au
lt

cl
as

se
s

%
Pu

bl
ic

 c
la

ss
es

%
Pr

ot
ec

te
d

cl
as

se
s

Figure 2: Distribution of nested classes accessibility

7

public. In applications, 13.65% of classes are default and 86.35% are public. In195

order to answer RQ1, we stated the following null hypothesis:

• H10: there is no difference between plain applications and libraries on
how frequently they define plain public classes.

First, we tested the data for normality using the Shapiro-Wilks test. Since
we found that the data is normally distributed (p − value = 0.5279), we used200

the t-test to check if there is a significant difference between the distribution
of public classes defined in libraries and plain applications. After testing we
rejected H10 with α = 0.05 and p − value = 0.01031 indicating that the two
distributions are statistically different. We then concluded that libraries have on
average significantly more public classes than plain applications. This confirms205

our intuition that libraries should expose more classes than applications since
they are designed to be extended by third parties.

Regarding the accessibility defined for nested classes, we distinguish static
from non-static nested classes. Figure 2 plots the ratio of nested classes with a
given accessibility regarding the total number of nested classes.210

Unlike the case of non-nested classes, few non-static nested classes are public
on average. The public access modifier is the least used in non-static nested
classes in both, libraries (4.8%) and applications (3.26%). These results would
indicate that developers frequently create inner classes manually as internal data
structures that are intended to be only used by the parent class. These values215

are higher for static nested classes; 25.83% and 14.17% respectively. We define
two null-hypotheses to verify the statistical significance in the data we gathered:

• H20: there is no difference between plain applications and libraries on
how frequently they define non-static nested public classes.

• H30: there is no difference between plain applications and libraries on220

how frequently they define static nested public classes.

We found that in both cases the data deviate from normality using Shapiro-
Wilks test (p-values: 1.817−7 and 2.201−9). For this reason, we use the Mann-
Whitney-test to check a statistical difference. This test show that H20 and H30
cannot be rejected using a two-tailed test with a probability of error (or signif-225

icance level) α = 0.05. This conclusion is based on the ranks values calculated
by the test: T1 = 238, U1 = 107, U ′1 = 118, T2 = 252.5, U2 = 92.5, U ′2 = 132.5
[6]. This means that there is no statistical significant difference on how libraries
and applications define non-static and static nested public classes.

Regarding the classes defined as default, we found different values for li-230

braries and applications. 5.29% of the nested non-static classes defined in li-
braries are default. This value is higher in applications: 12.62%. When it comes
to nested static classes, they represent the 18.92% in libraries and the 5.79% in
applications.

We observed an interesting fact here: the protected accessibility is rarely235

used in nested classes despite being heavily used in methods [4]. Non-static
classes represents on average 3.44% of the total number of nested classes in

8

com.eteks.sweethome3d

HomeFrameController HomeFramePane

SweetHome3D

public class
HomeFrameController{
...
}

Figure 3: Example of over-exposure in class HomeFrameController

libraries and 4.71% in applications. These values for static classes are 4.87%
and 1.61% respectively.

The private accessibility modifier is the most used one with nested classes.240

Libraries define on average 11.49% of non-static nested classes and 23.37% of
static ones. Plain applications report 33.02% on average of non-static nested
classes and 24.83% of static ones.

In summary, to answer RQ1, libraries define more public plain classes than
applications. However, libraries and applications defines similar percentages of245

public nested classes.

4. Class Over-Exposure

Each class of a Java system is defined with an access modifier. Class acces-
sibilities define the interface of packages. We have discovered that it frequently
happens that a class is over-exposed by having an accessibility greater than the250

strictly necessary. We identify this situation as a code anomaly [7] that should
be considered by the developer. For instance, let us consider the situation shown
in Figure 3 from one of our systems. HomeFrameController is a public class
that is referenced solely in the package in which it is defined. Such a class
could therefore be default (i.e. private to its package) instead of being public.255

We qualify this class as over-exposed since its accessibility is too broad against
its usage. By reference we mean explicit declarations of a class (e.g. declar-
ing a variable of a given class inside a method) but also implicit references to
a class (e.g., method calls involving classes). For example, let us consider a
method foo() defined in class A, and a method bar() defined in class B that260

returns an instance of A. Given a method in a class C with the invocation new

B().bar().foo(), we say that class C references classes B and A. Note that class
B is explicitly referenced while class A is implicitly referenced.

Certainly, there are cases where a class is voluntarily over-exposed by de-
velopers. For example, the developer might want to prepare the system for a265

likely future evolution, to write a unit test or to enable third-party applications
to use the over-exposed class. We carefully consider this situation in Section
6. In this section, we list the criteria and code patterns for marking a class as
being over-exposed, according to the class type. Remember that these criteria
are based on information provided by a static analysis of the code.270

9

Public plain class. A public plain class C is over-exposed if C is only ref-
erenced by classes defined in the same package. The adequate accessibility is
private, using the default accessibility modifier.

Public inner-class. A public inner-class C is over-exposed if:

• C is only referenced by the enclosing class and/or other inner classes275

defined in the same enclosing class. The adequate accessibility is private.

• C is only referenced by classes defined in the same package and classes that
extend the enclosing class (and at least one is defined in other package).
The adequate accessibility is protected.

• C is only referenced by classes defined in the same package. The adequate280

accessibility is default.

Default-accessible nested class. A nested class C is over-exposed if C is
only referenced by the enclosing class and/or sibling nested classes (i.e. another
nested class in the same enclosing class). The adequate accessibility is private.

Protected nested class. A protected nested class C is overexposed if:285

• C is only referenced by the enclosing class and/or other sibling nested
classes. The adequate accessibility is private.

• C is only referenced by classes in the same package. The adequate acces-
sibility is default.

Note that Java only permits a class to be protected if it is nested. Non-nested290

classes cannot be protected.

Private class. A private class (i.e., default accessibility if non-nested and
private accessibility if nested class) cannot be over-exposed since being private
to its package is the most restrictive accessibility.

5. Measuring Class Over-Exposure295

This section gives our measurements of over-exposure in our benchmark.

Analyzable classes. Not all classes can be considered as over-exposed. In
particular, there are two situations in which the over-exposure of classes cannot
be determined:

1. Classes whose accessibility cannot be changed : Anonymous classes do not300

have an explicit accessibility modifier, thus, its accessibility cannot be
changed. Also, non-nested default classes and nested private classes are
in this situation since their accessibility cannot be reduced.

2. Unreferenced classes: Classes that are not directly referenced by any class
(class declaration, field declaration, parameters, etc.) in the application305

cannot be determined. This means that we cannot tell whether the class is

10

Classes Defined Analyzable Right
accessibility

Over-exposed

Plain Public 12,648 8,247 (65.2%) 4,284 (33.87%) 3,963 (31.33%)
Non-nested

Default
888 825 825 0

Nested
Public

1,440 918 (63.75%) 112 (7.78%) 806 (55.97%)

Nested
Default

492 424 (86.18%) 36 (7.32%) 388 (78.86%)

Nested
Protected

210 208 (99.05%) 1 (0.48%) 207 (98.57%)

Total 14,790 9,797
(66.24%)

4,433 (29.97%) 5,364 (36.27%)

Table 2: Over-expose results for libraries/frameworks.

over-exposed. In this case, the class could be dead code, used via reflection
or solely used by third-party applications. We observed that 30.68% (5066)
of classes in libraries and 17.63% (2409) of classes in applications are not
directly referenced by any class.310

Libraries. Table 2 shows the results of over-exposure in libraries. The table
only shows the results for classes whose accessibility could be over-exposed (i.e.
non-nested default and nested private classes are not shown). While libraries
defined a total of 16,513 classes only 14,790 of them could be over-exposed. From
these 14,790 classes, 66.24% of them are analyzable. The Right accessibility315

column indicates the number of classes that have an adequate accessibility (i.e.,
the accessibility that is strictly necessary). On the contrary, the Over-exposed
column indicates the number of classes that fit into one of the patterns described
in Section 4 and whose accessibility can be restricted.

From 9,797 analyzable classes, 4,433 have an adequate accessibility meaning320

that 5,364 classes are over-exposed. In total, 32.48% (5,364 of 16,513) of all the
classes defined in libraries are over-exposed (36.27% of the classes that could be
over-exposed). However, it is important to remark that these values should be
carefully viewed because the percentage of over-exposed classes could be over-
estimated. For instance, some public classes that are currently invoked only325

from inside their packages could have been designed to be invoked by third-
party applications.

For the total number of classes, the range of over-exposed classes defined by
libraries goes from 8.23% to 53.58%, with an average of 28.5%, and a standard
deviation of 11.81%. After carefully analyzing the source code of the library with330

the lowest percentage of over-exposure, JFreeChart (8.23%), we found that it
has the highest percentage of non-nested public classes 93.25% (see Table A.8).
We interpret here that the low number of over-exposed classes of JFreeChart is
not an indicator that developers restricted the access modifiers on purpose but

11

Current
accessibility

Suggested
accessibility

of classes
over-exposed

% of classes
over-exposed

Plain Public Plain Default 3,963 73.89%
Nested Public Nested Default 223 4.16%
Nested Public Nested Protected 26 0.48%
Nested Public Nested Private 557 10.38%

Nested Protected Nested Default 40 0.75%
Nested Protected Nested Private 167 3.11%
Nested Default Nested Private 388 7.23%

Total 5,364 100%

Table 3: Suggested accessibilities for libraries.

rather that a high number of public classes are called outside their packages.335

Interestingly, we found that 65.4% (806+388+207=1,401 of 2,142) of the
nested classes that could have an accessibility broader than necessary are over-
exposed (47.06% of the total number of nested classes in libraries). Moreover,
73.89% (3,963 of 5,364) of the over-exposed classes are plain public classes. This
is shown in Table 3 that details the changes that should be made to restrict340

the accessibilities of the classes to their minimum necessary. Regarding nested
classes, most of the accessibility of them should be changed to private (10.38%
+3.11% +7.23% =20.72%).

While libraries and frameworks are implemented to be extended or used by
other applications, they have some differences. For example, frameworks have345

a low number of classes with extension points when compared to the number of
classes of libraries that are meant to be used directly by clients. For this reason,
we checked for any statistical difference in the over-exposed values of libraries
and frameworks. Our collection of applications only contains 4 frameworks,
namely: Hibernate, JHotDraw, JUnit, and Struts. The remaining 11 systems350

are libraries. After checking the normality of the data, using the Shapiro-Wilks
test (p − value = 0.9746), we used the t-test to check for any significant dif-
ference. After testing, we could not reject the hypothesis that libraries and
frameworks define different percentages of over-exposed classes (α = 0.05 and
p − value = 0.6038). Thus, we concluded that libraries and frameworks have355

similar percentages of over-exposed classes.

Applications. Table 4 shows the results of over-exposure for plain applications.
The analyzed applications define a total of 13,667 classes from which 10,693 of
them that could be over-exposed. From these 10,693 classes, the 79.84% of them
are analyzable.360

We found that 26.52% (3,625 of 13,667) of all the classes present in applica-
tions are over-exposed (33.9% of the classes that could be over-exposed). The
percentage of over-exposed classes found in applications goes from 7.82% to
37.16% with an average of 25.44% and a standard deviation of 9.73%. In this
case, Logisim and Portecle are the applications with the lowest percentages of365

12

Classes Defined Analyzable Right ac-
cessibility

Over-
exposed

Plain Public 9,262 7,288
(78.69%)

4,683
(50.56%)

2,605
(28.13%)

Non-nested
Default

888 825 825 0

Nested
Public

491 386
(78.62%)

134
(27.29%)

252
(51.32%)

Nested
Default

657 586
(89.19%)

87
(13.24%)

499
(75.95%)

Nested
Protected

283 277
(97.88%)

8 (2.83%) 269
(95.05%)

Total 10,693 8,537
(79.84%)

4,912
(45.94%)

3,625
(33.9%)

Table 4: Over-exposure results for applications.

Current
accessibility

Suggested
accessibility

of classes
over-exposed

% of classes
over-exposed

Plain Public Plain Default 2,605 71.85%
Nested Public Nested Default 97 2.68%
Nested Public Nested Protected 9 0.25%
Nested Public Nested Private 146 4.03%

Nested Protected Nested Default 57 1.57%
Nested Protected Nested Private 212 5.85%
Nested Default Nested Private 499 13.77%

Total 3,625 100%

Table 5: Suggested accessibilities for applications.

over-exposed classes (7.82% and 8.16%). After manually reviewing their source
code, we found evidences that developers carefully restricted access modifiers.
Both applications present the highest percentages of non-nested default classes
(24.54% and 35.68%).

Similarly to the case of libraries, 71.85% (2,605 of 3,625) of the over-exposed370

classes are plain public classes whose accessibility should be changed to default
(Table 5). Regarding the nested classes, 71.28% (252+499+269=1,020 of 1,431)
of the classes that could have an accessibility broader than necessary are over-
exposed (32.72% of the total number of nested classes defined in applications).
Moreover, as in the case of libraries, most over-exposed nested classes accessi-375

bility may be changed to private (23.65% of the total number of over-exposed
classes).

Relationship with over-exposed methods. This article is about class over-
exposure. In a previous work [4] we studied over-exposure for methods. Con-

13

trasting these two levels of granularity (class and method) is relevant to under-380

stand the cause of over-exposure. Specifically, we wanted to investigate whether
an over-exposed class has more over-exposed methods than classes with ade-
quate accessibility.

We computed the number of over-exposed methods for each over-exposed
and non-nested class. For example, a class with 9 non-overexposed methods385

and 1 over-exposed method has a ratio of 10% of method over-exposure. We
computed this metric for each library and plain application. We compare the
result with that of non-over-exposed classes. We found that, on average, over-
exposed classes of libraries have 11.38% of over-exposed methods (standard
dev. of 3.5%). Non-over-exposed classes have a ratio of 6.65% over-exposed390

methods (standard dev. 2.62%). Moreover, we consistently found that in each
library over-exposed classes have around twice the percentage of method over-
exposure than non-over-exposed classes. For plain applications, over-exposed
classes have on average 11.11% of over-exposed methods (with a standard de-
viation of 4.67%), while non-over-exposed classes have 5.99% of over-exposed395

methods (standard dev. of 3.54%). Similarly to the case of libraries, we con-
sistently found that in each application over-exposed classes define twice the
number of over-exposed methods than non-over-exposed classes.

The ratios were similar when we analyzed the classes having at least one
over-exposed method. In the case of libraries, 50.71% of the over-exposed classes400

have at least one over-exposed method (with a standard deviation of 11.67%).
However, only 24.64% of the non-over-exposed classes have at least one over-
exposed method (with a standard deviation of 9.93%). We obtained similar
results for applications. On average, 46.96% of over-exposed classes have at
least one over-exposed method (with a standard deviation of 11.67%). This405

value is lower for non-over-exposed classes: 22.68% (with a standard deviation
of 8.34%).

While the percentage of method over-exposure in classes is not really high,
over-exposed classes have on average twice as much over-exposed methods than
non-over-exposed classes. We hypothesize that this situation happens because410

a percentage of over-exposed classes are prepared to be used by other classes.

Comparison. Overall, we found that around 35% of the analyzable classes in
libraries and applications are over-exposed. For this reason, we answer RQ2
as follows: there is a significant portion of classes over-exposed. Moreover, in
both cases more than 70% of the over-exposed classes found are due to non-415

nested classes defined as public that should be default. As we mentioned before,
we think that some over-exposed classes in libraries were left on purpose to
be extended or used by other applications. For this reason, we hypothesized
that libraries should have more over-exposed classes than plain applications. A
statistical test is necessary to support our claims. First, we tested the data for420

normality using the Shapiro-Wilks test. We obtained p−value = 0.3479 > 0.05
indicating the data is normal. For this reason, we can use a Student’s t-test to
check for any statistical difference of over-exposed classes in libraries and plain
applications. We stated our null hypothesis as follows:

14

• H40: libraries have the same proportion of over-exposed classes as appli-425

cations have.

After testing we can reject H40 with α = 0.05 and p − value = 7.225−14

indicating that there is enough statistical evidence to suggest that libraries
define more over-exposed classes than applications.

A special case that should be mentioned here is the existence of internal430

implementation packages. Specifically, Eclipse has adopted an “internal” nam-
ing convention6 in which public classes hosted by a package having “internal”
in its name must not be accessed by clients. That is, classes in this kind of
packages should not be considered as over-exposed. We checked the analyzed
systems and found that only 5 of them have packages that follow this conven-435

tion, namely: Hibernate, JUnit, Maven, Argo, and FindBugs. However, this
convention only appeared in 3.3%, 0.85%, 7.91%, 0.8%, and 0% of the total
number of over-exposed classes found in each system. For this reason, we argue
that this situation is not really important for our analysis.

Incidence of JUnit test on accessibility. We analyzed the incidence of440

JUnit test on the accessibility of plain classes as it may introduce a bias. Since
classes accessed by tests must be public, this could lead to classes with a broader
accessibility than the one originally intended by the developer. However, classes
only called outside their packages by tests are not over-exposed (their accessi-
bility must be public because they are actually called by a class outside their445

package). Since we include tests classes in our analysis, we are not considering
these classes as over-exposed.

As it was mentioned before, 8 applications and 11 libraries/frameworks of
our study contain unit tests. After analyzing these systems, we found that on
average the percentage of plain public classes in libraries that are only referenced450

outside their packages by tests is 6.28% (with a standard deviation of 6.15%).
The same value was computed for applications and turned out to be smaller:
2.61% (with a standard deviation of 2.28%). As it was expected, the percentage
is higher in libraries, since libraries define more classes that are only going to
be externally referenced by third-party applications (or, in this case, by tests).455

Taking into account these results, we can conclude that the incidence of JUnit
test on accessibility is small. The detailed results for each system are listed in
Table A.10 and A.13 in the Appendix.

6. Analyzing the Use of Libraries

Since the purpose of a library is to be used by others, it is expected that460

classes belonging to a library will have an accessibility broader than necessary.
In this case, reducing the accessibility of classes could inhibit external classes
from referencing the class. Thus, it is relevant to measure the number of over-
exposed classes when the libraries are used by external applications. In this way,

6https://wiki.eclipse.org/Naming Conventions

15

Library #Applications
analyzed

#Public
classes

in
library

#Over-
exposed
public
classes

in
library

#Over-
exposed
public
classes
called

externally
by applica-

tions

#Over-
exposed
public
classes

taking into
account ap-
plications

Commons-
Compress

7 142 39 8 31

Javassist 7 239 84 15 69
Jericho-
HTML

4 65 12 1 11

JFreechart 5 891 41 6 35

Table 6: Analysis of library usage (by external applications)

we expect to answer RQ3 by analyzing whether over-exposed classes address465

future client requirements.
We used the following methodology: (i) we identified a number of libraries

being relevant to be part of this experiment; (ii) for each library, we selected
a number of applications that use the library; (iii) we measured the number of
over-exposed classes; (iv) we deduced whether over-exposed classes defined in470

libraries actually met the need of applications using the libraries.
Among the 15 libraries that are part of our benchmark, we picked up 4 that

had a reasonable amount of client applications. These libraries are Commons-
Compress, Javassist, Jericho-HTML, and JFreechart. For each of these libraries,
we have between 4 and 7 client applications. These applications are part of the475

Maven repository7. Note that Maven provides information about applications
that use the same version of the library. This information facilitated our iden-
tification of external applications.

Table 6 measures the number of over-exposed classes when considering client
applications. For each library, we check if one or more of their over-exposed480

public classes found in Section 5 are referenced in the external applications
that use them. Having a class identified as over-exposed in the library that is
referenced by an external application means that the class is not over-exposed
in presence of such an application.

We analyzed 7 external applications that use Commons-Compress. We found485

that 27.46% (=39) of the public classes defined by Commons-Compress were
over-exposed (when no external applications are considered). However, after an-
alyzing the external classes, we found that 8 classes identified as over-exposed
are referenced externally. In this way, there are still 31 classes over-exposed.

7http://mvnrepository.com/

16

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

An
t	

Ar
go
	

Ch
ec
kst
ye
	

Co
be
rtu
ra	

Fin
db
ug
s	

Fre
em
ind
	

Jaj
uk
	

Jed
it	

Jm
ol	

Jst
oc
k	

PM
D	

Po
rte
cle
	

Sw
ee
tho
me
	

Tu
xG
uit
ar	

%
O
E	

pu

bl
ic
	
 c
la
ss
es
	
 c
re
at
ed

	
 a
s	

pu
bl
ic
	
 	

Figure 4: Analysis of the creation of over-exposed public classes

That is, most over-exposed classes (79.49%) seem not to address client require-490

ments. We observed that this percentage is similar for the remaining libraries:
82.14%, 91.67%, and 85.37% for Javassist, Jericho-HTML and JFreechart, re-
spectively. That is, for this sample of applications, most over-exposed classes
remain over-exposed even in presence of external client applications.

By analyzing these results we can answer RQ3 as follows: Only a small495

portion of over-exposed classes identified in libraries address client application
usage. However, in order to claim that the values of over-exposure for public
classes defined in libraries are valid, the analysis needs to be extended to a larger
number of client applications. This study will be carried out in future work.

7. Creation and Evolution of Over-exposed Classes500

What make developers create so many over-exposed classes? We investigate
this non-trivial question by monitoring over-exposed classes over multiple revi-
sions of software systems. We restricted our analysis to (i) plain applications
and (ii) public classes since public classes concentrate most of the over-exposure.
Only one version is available for the Logisim application, we therefore exclude505

this application and report the evolution of the 14 remaining applications. We
analyzed a set of versions of each application since the earliest version.

7.1. Creation of Over-Exposed Classes

Specifically, we analyzed if the plain public classes being over-exposed in
the last version of each application were created with the public accessibility510

modifier. In order to do this, we looked at the version history to find the
version in which an over-exposed class appeared for the first time. Figure 4
reports the ratio of classes over-exposed in each application that were created
with public accessibility. A total of 13 applications, from the 14 analyzed, have
more than 90% of their over-exposed non-nested classes created as public. Only515

17

Xa: ant
sr

X
X

X

X

X

q

X

X

p

X

X

o

X

X

X

n

X

X

X

m

X

lk

X

j

X

i

X

h

X

g

X

f

X

X
X
X
X
X

X

ed

X

X

X
X

X

X

c

X

b

X

X

a

s: webapp
r: util

q: reporting.xml
p: reporting.html.files

o: reporting.hlml
n: reporting
m: merge

l: javancss.test
k: javancss.parser.java15.debug

j: javancss.parser.java15
i: javancss.parser.debug

h: javancss.parser
g: javancss.ccl

f: javancss
e: instrument

c: coveragedata
b: check

d: coveragedata.countermaps

Density: 11%;
Propagation cost: 0.22;
Cyclicality: 0.53;

Stability: 76%

Figure 5: Design structure matrix of Cobertura (e.g. package coveragedata depends on package
util)

two applications (Cobertura and Jmol) showed lower values (73% and 64%).
After analyzing these 2 applications, we found that they have a larger number
of non-nested default classes than the other applications at early versions, which
could be the cause of these outliers. From a total of 2,113 over-exposed classes
analyzed, 2,043 were created as public and were over-exposed. We answer520

to RQ4 (Are classes over-exposed since their first implementation, or do they
become so over time?) affirmatively because 96.69% of the over-exposed public
classes have an access modifier broader than necessary since their creation. This
is an interesting fact since many IDEs, such as Eclipse or NetBeans, use public
as the accessibility by default to create classes. While analyzing how the IDEs525

influence the creation of over-exposed classes could be interesting to understand
the phenomenon, it is out of the scope of this article and it will be analyzed in
future work.

7.2. Speculative Analysis of Evolution of Over-Exposed Classes

Another interesting question is to understand how over-exposed classes will530

affect the system in the future. With this goal in mind, we performed a spec-
ulative analysis of dependencies for Cobertura. In many Java systems, it is

18

reasonable to assume that packages reflect architectural components, and thus,
we can model the (static) system architecture in terms of these components and
their dependencies. In particular, Figure 5 shows Cobertura as a DSM (Design535

Structure Matrix) [8] in which the rows/columns represent Java packages (i.e.,
components) of the application (columns names are not shown for simplicity,
they are the same than the rows). Given a cell for components A (row) and
B (column), an ‘X’ in the cell means that there is at least one access from A
to B being realized via some class. For example, package coveragedata depends540

on (i.e., makes use of classes of) 7 other packages, including check, instrument,
and merge. The components shaded in gray are those in which the over-exposed
classes are located.

The resulting matrix8 may be used to assess component modularity, by mea-
suring properties such as propagation cost, density, or number of cycles, or sta-545

bility, among others [9]. These metrics were computed with the the help of the
Lattix DSM 9 tool. Propagation cost measures the extent to which a change in
one element impacts other elements; and it is a function of the degree of cou-
pling among elements (computation details can be found in [10]). Propagation
cost is an important indicator of a system overall architectural complexity. This550

numerical indicator ranges from 0.0 to 1.0. A value close to 0 reflects a good
modularization and low propagation of changes. Conversely, a value close to 1
means that a change in a component can propagate to almost all components.
Cyclicality is a measure of how many components are involved in (at least) a cy-
cle, since cycles are often correlated with bugs and maintenance problems. The555

closer cyclicality is to 1.0, the more cycles the system has. Stability, in turn,
assesses how much of the system is affected when a change is made. A system
with low stability (closer to 0.0) is generally fragile even to small changes. The
density of the DSM is the ratio of the number of dependencies in the matrix
and the number of all possible dependencies. The values of these metrics for560

Cobertura based on the (actual) DSM are given in Figure 5.
Having an over-exposed (public, non-nested) class C defined in a package

means that, in principle, all other packages in the system might access class
C. For instance, a developer might have inadvertently created C with a public
access modifier, because she used an IDE with public as the default option.565

Anyway, from the perspective of modularity, class C can produce a rippling
effect in the system that enables extra dependencies among components. This
effect is likely to increase coupling and cycles in the system [11, 12]. Many
of these unwanted dependencies might be also not prescribed by the original
architecture design. Figure 6 shows a worst-case DSM for such dependencies,570

in which the over-exposed classes of Cobertura end up accessed by all possible
components. Under this scenario, the density of dependencies in the DSM
goes from 11% to 58%, which represents a significant coupling increase with

8The matrix can include additional dependency information (e.g., variable access, method
calls, etc.), which is not considered in our analysis.

9http://www.lattix.com

19

O

O

O

O

O

O
O

O

O

O

O

X

X

O

X

X

O

O

X

O

O
O

O

O

O

O

O

O

X

O

O

X

X

O

O
O

O

O

O

O

O
O

O
O
O

O

X

O

X

O

O

O

O

X

O
O

O

O

O

O

X

O

O

X

O

X

X

X

O

O

O

O
O

X

O

O
O

O

O
O

O

O

O

O
O

O
O

O
O

O
O

O

O

O

O

O

X

O

O

O

O
OO

O

O

O

O

O

O
O

X

O

O
O

O

O

O
O

O

O

O

O

O

X

O

O

O

O

O

O

O

O

O

O

X

O

O

O

O

O
O

O

O

O

O

O

X
O

O

O
X
O

X
X
X
X

O

X

O

O

O

X

O

O

O

O

O
O

O

O

O

O

O

O

O

O
O

O

O

O

O

X

X

X
X

X

O
O

X

O

O

X

O

O

O

O

O

O

O

O

X

O

O
O
O

X

O

O

O
O

O

O

O

srqponmlkjihgfedcba
a: ant

b: check
c: coveragedata

d: coveragedata.countermaps
e: instrument
f: javancss

g: javancss.ccl
h: javancss.parser

i: javancss.parser.debug
j: javancss.parser.java15

k: javancss.parser.java15.debug
l: javancss.test

m: merge
n: reporting

o: reporting.hlml
p: reporting.html.files

q: reporting.xml
r: util

s: webapp

Density: 58%;
Propagation cost: 0.89;
Cyclicality: 0.89;

Stability: 15%

Figure 6: A worst-case design structure matrix of Cobertura when considering over-exposed
classes (‘X’ means existing dependencies and ‘O’ unnecessary class exposure)

20

negative effects on system modularity. The over-exposed classes precipitate an
increase to 0.89 in the propagation cost (the initial propagation cost was 0.22),575

and also lead to a higher cyclicality (the initial value of 0.53 becomes 0.89).
The design stability consequently goes down from 76% to 15%, as an indicator
of the modularity degradation. Note that the rippling effect (marked by cells
with ‘O’ in the figure) depends on the distribution of the over-exposed classes
across components, as well as on the initial interactions (coupling) among the580

components. Certainly, the average case of degradation might be not as severe
as in Figure 6 (or even some new dependencies might be justified by architectural
rules). For example, in a realistic scenario, the amount of dependencies caused
by over-exposed classes (‘O’) can be lower than in Figure 6. Thus, the global
propagation cost of Cobertura should fluctuate between 0.22 and 0.89 in an585

average case. The DSM of Figure A.8 (Appendix) shows an average case of
added package dependencies computed using link prediction techniques from
social network analysis10. Note that the metrics for propagation cost, stability
and cyclicality have moderate values, but higher than those of the initial DSM
for Cobertura. Nonetheless, we believe this example is representative of the risk590

of having many over-exposed classes as they might hinder system modularity.

7.3. Analysis of Evolution of Over-Exposed Classes in History

While the previous analysis shows the latent risk of having over-exposed
classes, it is necessary to analyze the evolution of these classes over time. To
do so, we took the first and last versions of the same 14 applications described595

before. Then, we identified the over-exposed classes in the first version (v1) and
analyzed if they were still over-exposed in the last version (v2). There are four
possible situations, namely:

1. The class remains over-exposed. That is, there were not new references
that affected the over-exposure of the class.600

2. The class stopped being over-exposed due to a new reference from other
class. For example, in the case of a non-nested public class, a reference
from a class defined outside its package. This is the case in which an
over-exposed class can degrade the modifiability of the system.

3. The class stopped being over-exposed because its accessibility was reduced605

to the minimum necessary.

4. The class was deleted or moved to other package (the latter case cannot
be identified automatically since there may be more than one class with
the same name).

Table 7 shows the results. On average only 5.55% of the over-exposed classes610

in v1 are not over-exposed in v2 because of new references. Moreover, on av-
erage, only 1.05% of the over-exposed classes in v1 are not longer over-exposed
in v2 because its accessibility was reduced to the strictly necessary. In fact,

10http://be.amazd.com/link-prediction

21

Application #Over-
exposed
classes
in v1

%Over-
exposed

classes in
v1 that
remain
over-

exposed
in v2

%Over-
exposed

classes in
v1 fixed
in v2 by

calls

%Over-
exposed

classes in v1
fixed in v2

by changing
the

accessibility

%Over-
exposed
classes
in v1

deleted
in v2

Ant 367 83.11 5.18 0 11.71
Argo 593 37.94 18.72 6.58 36.76

Checkstyle 133 81.95 0 0 18.05
Cobertura 24 75 0 0 25
Findbugs 336 92.86 1.19 0.3 5.65
Freemind 45 71.11 15.56 0 13.33

Jajuk 186 100 0 0 0
JEdit 343 93 1.46 0.88 4.66
JMol 142 13.38 1.41 2.82 82.39

JStock 88 55.68 17.05 0 27.27
PMD 158 96.84 2.53 0 0.63

Portecle 9 88.89 11.11 0 0
SweetHome3D 64 93.75 3.125 3.125 0

TuxGuitar 25 4 0 0 96
Average 69.57 5.55 1.05 23.83

Standard deviation 31.08 6.95 1.91 30.26

Table 7: Analysis of evolution of over-exposed classes

22

most of the over-exposed classes in v1 remain over-exposed in v2 (69.57%) or
were deleted (23.83%). In the cases of JMol and TuxGuitar, which present a615

high percentage of deleted classes, we manually analyzed the source code. We
observed that more of 90% of the classes were not deleted in v2 but moved to a
different package. After manually checking that these were the same classes that
existed in v1, we found that more than 95% of them were still over-exposed.

Also, we analyzed the evolution of over-exposed classes in 5 revisions between620

the first and last versions. Specifically, we looked for a pattern in which over-
exposed classes in v1 stopped being over-exposed by new references (case 2),
but eventually they were fixed. That is, a developer removed the reference.
This situation could mean that the class was not designed to be accessed with
that level of accessibility. We found this pattern in only 3 of 14 applications:625

Argo (19.73% of the over-exposed classes of v1), Findbugs (0.3%), and Freemind
(2.22%). Then, we conclude that the pattern rarely appears. In fact, from a total
of 2,513 over-exposed classes found in the first versions of the 14 applications,
2,161 of them remain over-exposed exposed (without intermediate changes) until
the last version or its deletion (86%). Moreover, when we analyzed the over-630

exposed classes of v1 that stopped being over-exposed at least in one of the
versions, we found that this situation occurred in only 289 of the classes (11.5%).

Summary. The fact that over-exposed classes remain over-exposed after a
number of versions suggests that over-exposed classes are not a perceived prob-
lem. While the accessibility of classes is broader than necessary, the existence of635

new references from classes outside the “minimal” accessibility are unusual. In
this way, we can answer RQ5 by saying that over-exposed classes do not usually
negatively impact on the software health. That is, over-exposed classes are not
a major contributor to the erosion of the public API and the modularity prob-
lems associated to them. This result is interesting because it would indicate640

that developers are not usually aware of the implications of access modifiers
of classes. However, according to classical textbook on software encapsulation
[13, 14, 15, 16], over-exposed classes are a potential problem if they are called
from classes outside their intended scope. This could be specially harmful in
libraries since it will introduce incompatibilities in the API [11, 12].645

8. Automated Detection in IDE

With the goal of making developers aware of the existence of over-exposed
classes we extended Cover11, an Eclipse plugin that detects over-exposed meth-
ods, to also detect over-exposed classes. The usage of this plugin would also
help to cope with the degradation symptoms analyzed in Section 7 that might650

affect system modularity.
The plugin uses the Java Development Tools of Eclipse (JDT) to iterate over

all the classes and retrieve the calling classes for each class of the application.

11https://sites.google.com/site/santiagoavidal/projects/cover-methods

23

Figure 7: Refactoring suggestion of Cover

Then, Cover lists the over-exposed classes (structured along packages), and for
each over-exposed class, the plugin indicates the most appropriate accessibility655

for the current state of the application (Figure 7). To determine whether a class
is over-exposed we implemented in Cover the patterns described in Section 4.

To evaluate our plugin, we applied it to SweetHome3D12, one of the appli-
cations of our benchmark. We followed five steps:

1. run the application and try out the tutorial;660

2. automatically find the over-exposed classes using Cover ;

3. reduce the accessibility of each over-exposed class to the one suggested by
the plugin (i.e. its strict necessary accessibility);

4. recompile SweetHome3D;

5. run all the tests and verify that they all pass;665

6. run the tutorial and look for odd behavior;

We successfully conducted this experiment using SweetHome3D. After refac-
toring the source code, the application compiled and we did not notice any odd
or unexpected behavior when the application was re-run. These steps can be
easily applied to other applications as well. Our refactoring of SweetHome3D is670

available at https://db.tt/xr9LtZOC. The percentage of over-exposed classes
detected was 16.92% (in accordance with the percentage shown in Table A.12).

9. Threats to Validity

The validity of our results depends on factors in the experimental settings.
Next, we analyze four kinds of validity threats [6].675

12http://www.sweethome3d.com

24

Conclusion validity. This threat concerns the statistical analysis of the results.
Since we analyzed 30 Java applications we argue that the statistical power of
the results is appropriate. However, we think that the analysis of library usage
(Section 6) could be conducted with more applications to reduce the risk of
drawing wrong conclusions.680

Internal validity. This threat concerns causes that can affect the independent
variable of the experiment without the researcher’s knowledge. Our approach
employs static analysis to identify over-exposed classes. For this reason, some
limitations imposed by static analysis could bias our result. Specifically, some
references to classes could not be identified by the static analysis algorithm of685

Moose (e.g. hierarchical relationships and reflective calls). This situation could
lead to false positives due to missing calls or simply to the identification of
classes that are not called.

Construct validity. It is concerned with the design of the experiment and the
behavior of the subjects. Our main concern are those over-exposed classes that690

are intentionally left over-exposed by developers. While these classes are over-
exposed they should not be labeled as such since the intention of the developers
was to made them visible to other packages on purpose. However, we found that
the number of public over-exposed classes being used by external applications
is probably low (Section 6).695

External validity. It is concerned with having a subject that is not represen-
tative of the population. We argue that the number of applications analyzed
in the study is large enough to avoid this threat. Moreover, we distinguished
and analyzed separately two kinds of applications: plain applications and li-
braries/frameworks.700

10. Related Work

Although other researchers have looked at class accessibility in object-oriented
programming, they have not conducted a detailed empirical study as we report
in this article. However, some works had analyzed the use of accessibility mod-
ifiers in classes, methods, and fields.705

We previously presented an empirical evaluation of the over-exposed meth-
ods with the goal of analyzing their impact on information hiding and the inter-
faces of classes [4]. In this work we analyzed the same collection of applications
which were also distinguished between plain applications and libraries/frameworks.
However, our previous work was only focused on over-exposed methods while710

this work is focused on over-exposed classes. Also, similarly to this work, we
previously analyzed the history of the applications with the goal of understand-
ing the variations in the over-exposed methods. For these reasons, we think
that the current article completes the empirical analysis of over-exposure.

Grothoff et al. [17] present a tool called JAMIT to restrict access modifiers.715

Differently from us, this work is not focused on modifiability but in security.

25

Specifically, Grothoff et al. analyze whether a class is confined to the package
to which it is declared. That is to say, they try to guarantee that a reference
to a class cannot be obtained outside its package. This definition is stricter
than ours, which has the modifiability goal of restricting the public API of720

classes/packages. In this context, Grothoff et al. use the JAMIT tool to report
the percentage of classes that could be confinable. However, these values are not
comparable with our over-exposed values because they are not exactly the same.
A confinable class must satisfy some rules that an over-exposed class must not.
For example, all methods invoked on a confined class must be anonymous [17],725

and all the subtypes of a confined class must be confined [17]. Moreover, differ-
ently from us, Grothoff et al. do not report the necessary refactoring to restrict
class accessibility (e.g., change protected accessibility for default accessibility).
Another important issue to mention is that their work do not distinguish be-
tween libraries/frameworks and plain applications as we do. In fact, they mix730

libraries and plain applications in their benchmark suite. Also, while Grothoff
et al. consider nested classes, they do not distinguish between nested classes
with different accessibilities as we do.

Bouillon et al. [3] present a tool that checks for over-exposed methods in Java
applications. While it briefly mentions the classes with an accessibility broader735

than necessary, it does not make any analysis of them. Similar to ours, their tool
determines the best access modifier by analyzing the references to each method.
However, the tool was only tested in some packages of 4 applications (i.e. the
applications were not carefully analyzed). The authors suggest that any over-
exposed method could be the result of the developer’s intention of extending the740

applications, but unlike our study in classes, no historical analysis is performed.
Müller [18] uses bytecode analysis to detect those access modifiers of methods

and fields that should be more restrictive. However, the work does not describe
the algorithm used to detect these situations nor presents case-studies to validate
their tool.745

Kobori et al. [19] investigated the evolution of over-exposed methods and
fields for a set of open-source applications. Similarly to our analysis of classes,
they reported that the change of access modifiers of methods is infrequent. They
also found that the number of over-exposed methods and fields tends to increase
in time.750

Zoller and Schmolitzky [5] present a tool called AccessAnalysis to detect
over-exposed methods and classes by analyzing the references to them. To mea-
sure the usage of access modifiers for types and methods, Zoller and Schmolitzky
employ two software metrics: Inappropriate Generosity with Accessibility of
Types (IGAT) and Inappropriate Generosity with Accessibility of Methods755

(IGAM). IGAT is equivalent to our concept of class over-exposure. To evaluate
AccessAnalysis, the authors report on the analysis of 12 open-source applica-
tions. Their findings include that “general access modifiers are often chosen
more generously than necessary”, which is in agreement with our observations.
Specifically, Zoller and Schmolitzky reported results for 5 applications, which760

we also analyzed with our approach and showed very similar results. For exam-
ple, they reported an over-exposure of 20% for PMD while we reported 20.03%.

26

However, Zoller and Schmolitzky do not analyze libraries/frameworks nor ana-
lyze the creation (and evolution) of the over-exposure phenomenon.

Steimann and Thies [20] highlight the difficulties of carrying out refactoring765

in the presence of non-public classes and methods. The authors formalize ac-
cessibility constraints in order to check the preconditions of a refactoring (e.g.,
moving a class to another package requires checking whether the accessibility of
the class allows its users to still reference it). In particular, the authors analyze
the cases in which a class or a method is moved between packages or classes770

with the goal of adapting their access modifiers to preserve the original behavior.
They propose the change accessibility refactoring to change the access modifier
of a declared entity. This refactoring recursively changes all the entities that are
directly or indirectly related to the refactored entity. However, the approach
presented by these authors does not analyze the detection of the over-exposure775

in a broad context.

11. Conclusions

Selecting the right accessibility modifiers of classes improves system modu-
larity by avoiding unwanted interactions among components. We have proposed
a code anomaly called class over-exposure to identify classes with an accessi-780

bility broader than necessary. We have empirically measured for a set of 30
applications that around 35% of plain Java public classes are over-exposed.
Moreover, we found that systems define around 87% of their classes as public,
with libraries defining more public classes than applications (RQ1). Also, we
found that around 35% of the public classes are over-exposed (RQ2). Addition-785

ally, we analyzed the over-exposed classes of libraries and we determined that
most of them are not used by third-party applications (RQ3). We also found
that over-exposed classes often have this condition since its first implementa-
tion (RQ4). Finally, we could not find evidence that over-exposed classes are a
major contributor to modularity problems (RQ5).790

As future work we plan to:

• analyze the role of automated mechanisms of IDEs to generate source code
in the creation of over-exposed classes.

• monitor programming activity to see how often class accessibility is re-
considered by developers in the context of IDEs.795

• analyze the effects of classes and methods over-exposed in the degradation
of the software architecture (e.g., modularity, drift and erosion problems).

• extend our analysis of over-exposure to Java interfaces.

• refine our analysis by considering the use of reflection, increasing the num-
ber of analyzable classes.800

27

[1] D. L. Parnas, On the criteria to be used in decomposing systems into
modules, Commun. ACM 15 (12) (1972) 1053–1058. doi:http://doi.

acm.org/10.1145/361598.361623.

[2] M. L. Scott, Programming Language Pragmatics (3. ed.)., Academic Press,
2009.805

[3] P. Bouillon, E. Grokinsky, F. Steimann, Controlling accessibility in agile
projects with the access modifier modifier., in: R. F. Paige, B. Meyer (Eds.),
TOOLS (46), Vol. 11 of Lecture Notes in Business Information Processing,
Springer, 2008, pp. 41–59.

[4] S. A. Vidal, A. Bergel, C. Marcos, J. A. Dı́az Pace, Understanding and810

addressing exhibitionism in java: Empirical research about method acces-
sibility, Empirical Software Engineering (2015) to appear.

[5] C. Zoller, A. Schmolitzky, Measuring inappropriate generosity with access
modifiers in java systems., in: IWSM/Mensura, 2012, pp. 43–52.

[6] C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson, B. Regnell, Experimenta-815

tion in Software Engineering., Springer, 2012.

[7] M. Lanza, R. Marinescu, Object-Oriented Metrics in Practice - Using Soft-
ware Metrics to Characterize, Evaluate, and Improve the Design of Object-
Oriented Systems., Springer, 2006.

[8] N. Sangal, E. Jordan, V. Sinha, D. Jackson, Using dependency models to820

manage complex software architecture, in: ACM Sigplan Notices, Vol. 40,
ACM, 2005, pp. 167–176.

[9] A. MacCormack, J. Rusnak, C. Y. Baldwin, Exploring the structure of com-
plex software designs: An empirical study of open source and proprietary
code, Management Science 52 (7) (2006) 1015–1030.825

[10] R. Milev, S. Muegge, M. Weiss, Design evolution of an open source project
using an improved modularity metric, in: Open Source Ecosystems: Di-
verse Communities Interacting, Springer, 2009, pp. 20–33.

[11] R. Robbes, M. Lungu, D. Röthlisberger, How do developers react to api
deprecation?: the case of a smalltalk ecosystem, in: Proceedings of the830

ACM SIGSOFT 20th International Symposium on the Foundations of Soft-
ware Engineering, ACM, 2012, p. 56.

[12] S. Raemaekers, A. Van Deursen, J. Visser, Semantic versioning versus
breaking changes: A study of the maven repository, in: Source Code Anal-
ysis and Manipulation (SCAM), 2014 IEEE 14th International Working835

Conference on, IEEE, 2014, pp. 215–224.

[13] G. Booch, Object-oriented analysis and design with applications (2.
ed.)., Benjamin/Cummings series in object-oriented software engineering,
Addison-Wesley, 1995.

28

http://dx.doi.org/http://doi.acm.org/10.1145/361598.361623
http://dx.doi.org/http://doi.acm.org/10.1145/361598.361623
http://dx.doi.org/http://doi.acm.org/10.1145/361598.361623

[14] S. Demeyer, S. Ducasse, O. Nierstrasz, Object-Oriented Reengineering Pat-840

terns, Morgan Kaufmann, 2003.

[15] E. Gamma, R. Helm, R. E. Johnson, Design Patterns. Elements of Reusable
Object-Oriented Software., 1st Edition, Addison-Wesley Longman, Ams-
terdam, 1995.

[16] T. Mens, S. Demeyer, Software Evolution, Springer, 2008, iSBN 978-3-540-845

76439-7. doi:10.1007/978-3-540-76440-3.

[17] C. Grothoff, J. Palsberg, J. Vitek, Encapsulating objects with con-
fined types, ACM Transactions on Programming Languages and Systems
(TOPLAS) 29 (6) (2007) 32.

[18] A. Müller, Bytecode analysis for checking java access modifiers, in: Work850

in Progress and Poster Session, 8th Int. Conf. on Principles and Practice
of Programming in Java (PPPJ 2010), Vienna, Austria, 2010.

[19] K. Kobori, M. Matsushita, K. Inoue, Evolution analysis for accessibility
excessiveness in java, in: Software Analysis, Evolution and Reengineering
(SANER), 2015 IEEE 22nd International Conference on, IEEE, 2015, pp.855

83–90.

[20] F. Steimann, A. Thies, From public to private to absent: Refactoring
java programs under constrained accessibility., in: S. Drossopoulou (Ed.),
ECOOP, Vol. 5653 of Lecture Notes in Computer Science, Springer, 2009,
pp. 419–443.860

Appendix A.

29

http://dx.doi.org/10.1007/978-3-540-76440-3

Library/
Framework

Version #Classes %PPC %PDC %NPC %NDC %NProC %NPriC

Ant 1.8.3 1,507 71.27 1.73 16.39 1.13 1.13 8.36
Commons-
Compress

1.4.1 171 81.29 9.36 1.75 1.17 0 6.43

Commons-
Primitives

1.0 433 66.05 22.63 0 6.47 3.23 1.62

Dom4J 2.0 158 78.48 10.13 0.63 0.63 4.43 5.69
Hibernate 4.1.3 5,555 86.59 2.72 5.02 2.25 0.41 3.0
JavAssist 3.12 347 59.37 11.53 9.51 17.29 0.86 1.44
Jericho-
HTML

3.2 164 39.02 35.37 0.61 5.49 0 19.51

JFreeChart 1.0.14 948 93.25 1.79 0.74 3.16 0.74 0.32
JHotDraw 7.0.6 309 85.11 2.27 3.88 0 0 8.74

JUnit 4.10 707 37.77 0.85 55.16 2.12 0 4.1
Log4J 1.2.16 435 71.49 10.11 3.68 3.22 0.23 11.26
Maven 3.0.4 732 82.1 7.79 0.96 3.42 0.41 5.33
Struts 2.3.3 2,005 81.05 2.69 8.18 4.19 0.5 3.39

Tomcat 7.0.27 1,951 65.91 4.31 10.81 1.33 6.25 11.38
Xalan 2.7.1 1,091 64.89 19.62 6.32 5.13 0.27 3.76

Average 1,101 70.91 9.53 8.24 3.8 1.23 6.29
PPC: plain public classes; PDC: plain default classes; NPC: nested public

classes; NDC: nested default classes; NProC: nested protected classes; NPriC:
nested private classes;

Table A.8: General information Library/Frameworks.

30

Library/ Framework %OE Classes %OE PPC %OE NPC %OE NDC %OE NProC

Ant 27.87 16.39 9.62 0.8 1.06
Commons-Compress 23.39 21.05 1.75 0.58 0
Commons-Primitives 53.58 45.5 0 4.85 3.23

Dom4J 32.28 26.58 0.63 0.63 4.43
Hibernate 40.32 35.73 2.99 1.21 0.4
JavAssist 40.35 17.0 7.2 15.27 0.86

Jericho-HTML 10.98 6.71 0.61 3.66 0
JFreeChart 8.23 3.9 0.42 3.16 0.74
JHotDraw 34.3 31.07 3.24 0 0

JUnit 16.55 7.21 7.92 1.41 0
Log4J 25.52 19.31 2.76 3.22 0.23
Maven 18.99 14.89 0.55 3.28 0.27
Struts 33.12 21.8 7.03 3.79 0.5

Tomcat 38.54 22.14 9.02 1.13 6.25
Xalan 23.46 12.83 5.68 4.67 0.27

Average 28.5 20.14 3.96 3.18 1.22
OE PPC: over-exposed plain public classes; OE NPC: over-exposed nested pub-
lic classes; OE NDC: over-exposed nested default classes; OE NProC: over-
exposed nested protected classes;

Table A.9: Over-exposure information Library/Frameworks

Library/ Framework #PPCT % PPCT

Ant 32 2.98
Commons-Compress 0 0
Commons-Primitives 50 17.48

Hibernate 313 6.51
Jericho-HTML 0 0

JFreeChart 166 18.78
JUnit 20 7.49
Log4J 6 1.93
Maven 32 5.32
Struts 114 7.02

Tomcat 20 1.56

Average 6.28
PPCT: plain public classes only externally referenced by tests;

Table A.10: Incidence of JUnit tests in Library/Frameworks

31

Application Version #Classes %PPC %PDC %NPC %NDC %NProC %NPriC

Argo 0.34 2,087 63.82 22.23 0.43 3.45 0.96 9.1
Azureus 4.7.12 2,797 81.27 1.07 3.93 1.57 6.65 5.51

Checkstyle 5.5 1,029 66.47 17.88 3.89 5.54 0.78 5.44
Cobertura 1.9.4.1 148 83.11 3.38 4.73 1.35 0 7.43
FindBugs 2.0.1 1,191 77.41 1.09 5.21 6.63 0.17 9.49
FreeMind 0.9 684 54.82 4.53 7.46 3.36 3.8 26.02

Jajuk 1.9.6 596 82.55 5.2 4.87 2.68 0 4.7
JEdit 5.0 1,000 40.7 9.8 8 20.8 0.3 20.4
Jmol 12.2.33 706 59.77 17 1.98 16.57 1.98 2.69

Jstock 1.06 341 71.26 0 6.74 1.76 0 20.23
Logisim 0.0.1-a 1,023 35.68 24.54 2.64 2.74 0 34.41
PMD 4.2.6 789 88.97 0.25 2.79 0.38 0.13 7.48

Portecle 1.7 98 42.86 35.71 0 1.02 0 20.41
SweetHome3D 3.5 396 46.21 4.3 2.78 0 1.52 45.2

TuxGuitar 1.2 782 89.13 0.9 0.77 0.13 2.17 6.91
Average 911.13 65.6 9.86 3.75 4.53 1.23 15.03

Table A.11: General information Plain Applications.

Application %OE Classes %OE PPC %OE NPC %OE NDC %OE NProC

Argo 23.96 19.6 0.14 3.26 0.96
Azureus 33.75 23.99 1.93 1.25 6.58

Checkstyle 12.73 10.2 1.17 1.26 0.1
Cobertura 37.16 31.08 4.73 1.35 0
FindBugs 32.91 23.85 3.27 5.63 0.18
FreeMind 25.58 16.23 3.51 2.33 3.51

Jajuk 31.21 26.85 2.52 1.85 0
JEdit 35.7 13.0 5.5 16.9 0.3
Jmol 32.86 15.44 0.99 14.73 1.7

Jstock 34.31 29.33 3.52 1.47 0
Logisim 7.82 6.65 0.59 0.59 0
PMD 20.03 18.38 1.14 0.38 0.13

Portecle 8.16 8.16 0 0 0
SweetHome3D 16.92 13.89 1.77 0 1.26

TuxGuitar 28.52 26.09 0.26 0 2.17
Average 25.44 18.85 2.07 3.4 1.12

Table A.12: Over-exposure information Plain Applications.

32

Library/ Framework #PPCT % PPCT

Checkstyle 5 0.73
Cobertura 6 4.88
FindBugs 1 0.11
FreeMind 12 3.2

Jajuk 7 1.42
Jstock 0 0
PMD 47 6.7

SweetHome3D 7 3.83

Average 2.61
PPCT: plain public classes only externally referenced by tests;

Table A.13: Incidence of JUnit tests in Applications

Xa: ant O

O

sr

X
X

X

O

X
O

O

O

X

q

X

X

O
O

p

X

X

O
O

O

o

X

X

X

n

X

X

X

O

m

X

O

lk

O

X

O
OO

O

j

X

O
O
O

O

i

X

O

O

O

O

h

O

X

O

g

X

f

O
X

O

O

X
X
X
X
X

X

e

O

d

X

X

X
X

X

O

X

c

X

b

O

X

X

a

s: webapp
r: util

q: reporting.xml
p: reporting.html.files

o: reporting.hlml
n: reporting
m: merge

l: javancss.test
k: javancss.parser.java15.debug

j: javancss.parser.java15
i: javancss.parser.debug

h: javancss.parser
g: javancss.ccl

f: javancss
e: instrument

c: coveragedata
b: check

d: coveragedata.countermaps

Figure A.8: An average-case design structure matrix of Cobertura when considering over-
exposed classes (‘X’ means existing dependencies and ‘O’ unnecessary class exposure)

33

	Introduction
	Background
	Terminology Related to Class Accessibility
	Java Class Accessibility

	Analysis of Java Applications
	Benchmark
	Accessibility Distribution

	Class Over-Exposure
	Measuring Class Over-Exposure
	Analyzing the Use of Libraries
	Creation and Evolution of Over-exposed Classes
	Creation of Over-Exposed Classes
	Speculative Analysis of Evolution of Over-Exposed Classes
	Analysis of Evolution of Over-Exposed Classes in History

	Automated Detection in IDE
	Threats to Validity
	Related Work
	Conclusions
	

