
Noname manuscript No.
(will be inserted by the editor)

Understanding and Addressing Exhibitionism in Java

Empirical Research about Method Accessibility

Santiago A. Vidal · Alexandre Bergel ·
Claudia Marcos · J. Andrés Dı́az-Pace

Received: date / Accepted: date

Abstract Information hiding is a positive consequence of properly defining com-
ponent interfaces. Unfortunately, determining what should constitute a public
interface remains difficult. We have analyzed over 3.6 million lines of Java open-
source code and found that on the average, at least 20% of defined methods are
over-exposed, thus threatening public interfaces to unnecessary exposure.

Such over-exposed methods may have their accessibility reduced to exactly
reflect the method usage. We have identified three patterns in the source code
to identify over-exposed methods. We also propose an Eclipse plugin to guide
practitioners in identifying over-exposed methods and refactoring their applications.
Our plugin has been successfully used to refactor a non-trivial application.

Keywords Method accessibility · Information hiding

1 Introduction

Developing activities are centered on the premise that software is made to be
changed (Booch 2004). Limiting the impact of a component modification to the
rest of the system is known to be particularly difficult (Robbes et al 2012). It is
widely recognized that encapsulation and information hiding play a key role in
software maintenance and evolution. In his seminal contribution (Parnas 1972),
David L. Parnas phrased:

Santiago A. Vidal
ISISTAN, UNICEN, Argentina and CONICET
E-mail: svidal@exa.unicen.edu.ar

Alexandre Bergel
Pleiad Lab, Department of Computer Science (DCC), University of Chile
E-mail: abergel@dcc.uchile.cl

Claudia Marcos
ISISTAN, UNICEN, Argentina and CIC
E-mail: cmarcos@exa.unicen.edu.ar

J. Andrés Dı́az-Pace
ISISTAN, UNICEN, Argentina and CONICET
E-mail: adiaz@exa.unicen.edu.ar

2 Santiago A. Vidal et al.

“Every module [...] is characterized by its knowledge of a design decision which

it hides from all others. Its interface or definition is chosen to reveal as little as

possible about its inner workings.”

Parnas’ work closely associates the notion of information hiding with component
interfaces. Among the different interfaces a software component may have (Meyer
2009), its public interface determines which services may be used and by whom.
Reducing the public interface to a minimum is an elementary design rule in software
engineering that has received scarce attention from the research community (Riel
1996; Martin 2002; Zoller and Schmolitzky 2012; Steimann and Thies 2009).

Method accessibility has a direct impact on the public interface by enforcing
information hiding, one of the key features of object-oriented programming. Over-
exposed methods are associated with a strong negative aspect: a programmer may
wrongly consider an over-exposed method as part of the public interface. Each
public method is an entry point for the class itself and the web of classes connected
to that class, thus the more entry points a class has, the more likely the runtime
state of an object is to be exposed.

Despite the advances in programming environments and methodologies, little
assistance is offered to programmers to define the public interface of classes. Along
this line, we think that the developer should be assisted in this task.

Our analysis of 30 open-source Java applications reveals that at least 20% of
the methods are defined with an accessibility that is broader than necessary: a
typical situation is when a method is declared as public, whereas it may simply be
protected or private. Consider the following situation inspired by one of our case
studies:

public class Author {
private String name;

public Author (String name) { giveName(name); }

// giveName is never called outside Author
public void giveName (String aName) { this.name = aName; }

public String getName () { return name; }
}

The class Author defines a constructor and two public methods. Being public
allows any other method in the system to merely invoke giveName(...) and getName

(). The constructor Author calls method giveName(...) to set a name. In the whole

application, method giveName(...) is referenced and called nowhere, except by the
class constructor. Method giveName() may therefore be private without affecting
the application integrity. The programmer probably made giveName(...) public on
the assumption that setting an author name is an operation important enough to
be used by client classes, either in future versions of the application or in external
components. However, in the current version of the system, this assumption is a
mere speculation because there is no evidence that this method is useful outside
class Author. An over-exposed method is a method with an accessibility broader than
necessary based on the location of its caller methods, as the method giveName(...)

in the example given above. Note that a method can be over-exposed as part of the
developer’s design intent, either to support future application evolution or to usage

Understanding and Addressing Exhibitionism in Java 3

by external components, but it can also be over-exposed because of “over-design”
or by mistake.

Mainstream programming languages have a sophisticated access modifiers
system for its methods and classes. Unfortunately no assistance is offered to a
programmer to properly pick the right accessibility. This article contributes to
rectifying this situation by carefully answering relevant questions and providing a
robust prototype.

To understand the extent of the over-exposure phenomenon, we have studied
over 3.6 millions lines of Java code, looking at how method accessibility manifests in
practice. We structure our empirical analysis along the following research questions:

– Q1 - Is there a difference in terms of method accessibility distribution between

libraries / frameworks and plain applications?

– Q2 - Do libraries and frameworks contain, on average, more over-exposed methods

than plain applications?

– Q3 - Are over-exposed methods effectively used in future system versions?

In order to answer these questions, we provide three code patterns that represent
situations where a method is over-exposed. These patterns are based on a combina-
tion of invocations between methods and classes. Using these patterns as detectors,
over-exposed methods may then be refactored to reduce their accessibility to their
strict necessity. The size of the public interface of classes will be consequently
reduced.

Additionally, to assist the refactoring of method accessibility, we have developed
an Eclipse plugin to automatically identify over-exposed methods and propose
refactorings to remove the unnecessary method exposure.

To verify that no changes are observed in the behavior of applications when
reducing method accessibility, we refactored SweetHome3D, a 84K LOC Java
application. Based on a series of tests, no impact on its behavior at runtime has
been observed. This gives us confidence that the semantics of the application are
preserved to some extent, after reducing the accessibility.

This article makes the following contributions:

– It highlights a limitation of programming environments to assist programmers
in rightfully choosing the access modifier of a method.

– It empirically studies the presence of over-exposed methods which has not been
rigorously been covered in the past.

– It provides three code patterns to identify over-exposed methods.
– It describes the implementation and the evaluation of a prototype to efficiently

identify over-exposed methods.

Outline. The article is structured as follows. Section 2 briefly summarizes the
different access modifiers for a method in Java. The section further analyzes a set
of 15 libraries and 15 plain applications. Section 3 discusses three code patterns
for detecting over-exposed methods, and then analyzes the proportion of exposure
in our 30 applications. Section 4 monitors changes in over-exposed methods over
application versions. Section 5 discusses possible reasons for finding so many
over-exposed methods. Section 6 presents the threats of validity of our approach.
Section 7 briefly presents and evaluates our Eclipse plugin for identifying and
refactoring over-exposed methods. Section 8 describes a case-study conducted on a

4 Santiago A. Vidal et al.

Accessibility class package subclass world
public A A A A

protected A A A -
package A A - -
private A - - -

Fig. 1 Method accessibility in Java (A = accessible, - = not accessible).

non-trivial Java application. Section 9 analyzes related work. Section 10 concludes
and discusses future lines of work.

2 Method Accessibility in Java Applications

This section discusses the access modifiers offered by the Java programming language
and their presence in a set of 30 Java applications.

2.1 Access modifiers offered by Java

The Java programming language gives to each field and method one of four different
accessibilities. The accessibility of a method m unambiguously determines which
methods in the system have the right to invoke m. This “right” depends on the
class and the package of the calling method.

A public method may be invoked by any method. A protected method may be
invoked only by (i) the classes that belong to the same package of the protected
method and (ii) the subclasses of the class that defines the protected method. A
package method may be invoked only by the methods of the same package. Package
is the accessibility per default, when no accessibility is specified (i.e., method
declared without an access modifier). A private method may be invoked only by
its defining class.

These four accessibilities may be ordered along the degree of exposure a method
may have (cf Figure 1, inspired by a Java tutorial1). A public method is more
exposed than a protected method, itself more exposed than a package or a private
method.

The Java compiler makes sure that each method call conforms to the accessibility
of the targeted method. A compilation error is reported if the targeted method is
not accessible for a caller. On the contrary, no error or warning is provided if a
method is accessible to more methods than necessary. The premise on which this
paper is based is that the more public methods a class has, the more exposed it is.
On the opposite, the more private methods a class has, the less exposed it is.

We informally define a class C as “exhibitionist” if parts of C are unnecessarily
accessible to other classes via methods.

2.2 Study of Java Applications

We have selected 30 open-source Java applications and measured the use of access
modifiers for methods. The appendix lists these applications and the results of the

1 http://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html

Understanding and Addressing Exhibitionism in Java 5

metrics relevant to our study in tables 4, 5, 6 and 7. Some of these applications were
chosen because of their popularity others were found on the website sourceforge.net,
a popular hosting platform for open source software projects. In all the cases we
checked for the availability of its source code and a strong commitment of their
supporting community (e.g., existence of an active mailing list, availability of unit
tests). Additionally, we sought to select applications involving different sizes and
belonging to different domains. The size of the applications we are considering
ranges from 15K to 689K lines of code. We have analyzed nearly 275,000 methods
totaling over 3.6 million lines of code. The appendix contains all the software
versions to let one easily reproduce our findings. Additionally, the datasets2 and
the processing code3 used to conduct the experiments are available for download.

In this paper we focus on method accessibility but we do not consider variable
accessibility. While the analysis of variable accessibility is relevant, we have focused
on methods because their accessibility is essential to the notion of encapsulation
and it is a topic largely under-considered by both practitioners and researchers.

We classify these applications into two distinct categories:

– library / framework - applications that are either self-claimed as a library (e.g.,

JUnit, Struts) or applications that are meant to complement functionalities
offered by Java (e.g., Commons-Primitives, Commons-Compress). These ap-
plications are meant to be used by other applications, and cannot be directly
considered as an end product for a non-programmer.

– plain application - applications that are meant by their authors to be used directly
by an end-user (e.g., Jedit, Jmol). We include in this category applications that
operate on other applications (e.g., PMD, Cobertura, FindBugs). Although
such applications are also meant to be extended, we the end user the primary
user of these applications, with extensions meant as possibilities to add features
for these users.

The reason for these two categories stems from the two very different ways of
using these applications. A library is meant to be extended and/or used by an
application. A library has therefore to provide public services and hooks in the
source code to be easily extended. A plain application does not necessarily have
the same constraints, since its typical usage does not involve an extension of its
source code.

We therefore hypothesize that a library has more public methods and fewer private

methods than an application for end users. We further expect to find a larger number
of methods without calls in library systems than in plain applications, since a library
defines methods that will be called when the library is used by third applications.

2.3 Accessibility in Java applications

We have studied the distribution of method accessibilities across libraries and plain
applications. This section addresses both: the hypothesis presented in the previous
section and the Q1 research question stated earlier. Specifically, in this section we
try to determine if there is any statistical significant difference in the number of
methods defined with a given accessibility between plain application and libraries.

2 http://bit.ly/mseFiles
3 http://ss3.gemstone.com/ss/SPIRIT.html (package Spirit-ExhibitionismTests)

6 Santiago A. Vidal et al.

%
 P

ac
ka

ge
 m

et
ho

ds

%
 P

riv
at

e
m

et
ho

ds

%
 P

ub
lic

 m
et

ho
ds

%
 P

ro
te

ct
ed

 m
et

ho
ds

Applications Libraries/Frameworks

0
10

20
30

40
50

60

Private

Applications Libraries/Frameworks

5
10

15
20

25

Package

Applications Libraries/Frameworks

2
4

6
8

10
12

Protected

Applications Libraries/Frameworks

40
50

60
70

80

Public

Private (N=15)

Protected (N=15) Public (N=15)

Package (N=15)
Applications

Applications

Applications

Applications

Libraries/Frameworks

Libraries/Frameworks

Libraries/Frameworks

Libraries/Frameworks

Fig. 2 Accessibility distribution

Figure 2 gives the distribution of the four access modifiers for methods (public,
private, protected, and package) for the 30 Java applications of our study. Each
chart is a box plot, plotting the frequency against the number of methods of
a particular accessibility. For example, the top left chart gives the number of
applications with a particular portion range of private methods. The metrics we
obtained from the applications have a precision of 0.01% (cf Appendix), meaning
that we rounded up the values to the second decimal place.

Public methods. On average, plain applications have 67.1% of public methods. The
standard deviation is 12.5%. Libraries have an average of 77.2% of public methods,
with a standard deviation of 6.5%. That is, libraries report on average more public
methods than plain applications.

Although the box plots give descriptive insights, no conclusion can be made so
far on whether there is a significant difference between the distribution of public
methods between libraries and plain applications. A statistical test is necessary.

First, we test the data for normality using the Shapiro-Wilks test. Table 1
shows the p-values obtained from the tests for the different accessibility data. Since

Understanding and Addressing Exhibitionism in Java 7

Accessibility modifier p-value

Public 0.001708
Protected 0.04801
Package 0.002281
Private 0.00511

Table 1 Shapiro-Wilks test results (normality).

Factor n T+ T−

Public 15 82 38
Protected 15 79 41
Package 15 26 94
Private 15 30 90

Table 2 Mann-Whitney-test results.

all the p-values are lower than 0.05, we can conclude that the data deviate from
normality.

As the data of public method accessibilities is not normally distributed across
applications, we use the Mann-Whitney-test to check the difference between plain
applications and libraries on defining public methods. In this context, we define
the following null hypothesis:

– H0: there is no difference between plain applications and libraries on how
frequently public accessibility is used

The alternative hypothesis (H1) is that there is a difference between plain applica-
tions and libraries with regards to how often the public accessibility is used. Table
2 describes the T+ and T− values which are calculated based on the sum of the
ranks between the percentage of methods with an accessibility modifier. The H0

hypothesis could be rejected if the smallest of T+ and T− is less than or equal
to a value indicated in a statistical table (Wohlin et al 2000). In this case, for
n = 15 the value is 25. From Table 2, the null hypothesis H0 cannot be rejected
with a two-tailed test with a probability of error (or significance level) α= 0.05
(i.e. there is a 5% chance of wrongly accepted H0) and a p-value of 0.007544 since
min(T+, T−) is larger than 25 (Siegel and Castellan 1988). That is, there is no

statistically significant difference between plain applications and libraries on how public

accessibility is used.
As we have just seen, a large proportion of methods are declared public in Java

applications (around 70%). This is a rather surprising fact since information hiding
and encapsulation principles promote the idea of restricting public interfaces to
their minimum. That is, the accessibility of the methods should be reduced to their
strict necessity based on the locations of caller methods. Our analysis shows the
opposite tendency in practice.

Protected methods. Protected methods are used much less than the other accessibil-
ities. Plain applications have on average 5.1% (standard deviation = 2.9) protected
methods and libraries have 7.2% (standard deviation = 3.4). Similarly to public
methods, we define the null hypothesis as:

– H0: there is no difference between plain applications and libraries on how
frequently protected accessibility is used

8 Santiago A. Vidal et al.

As shown in Table 2, a new Mann-Whitney-test for these measurements failed to
reject the null hypothesis with a significance level of 0.05 and a p-value of 0.0742
since min(T+, T−)=41.

Package methods. Plain applications have an average of 9.8% (standard deviation
= 7.0) package accessible methods and libraries have an average of 7.6% (standard
deviation = 5.7). The null hypothesis for the Mann-Whitney-test is formulated
similarly to that of the previous accessibilities. From Table 2, the null hypothesis
cannot be rejected with a two-tailed test with a probability of error of 0.05 and a
p-value of 0.6832 since min(T+, T−)=26.

Private methods. Plain applications have an average of 18% of private methods
(standard deviation = 13.8) and libraries have an average of 7.9% (standard devia-
tion = 5). The null hypothesis for the Mann-Whitney-test is formulated similarly
to the previous accessibilities. The test returns a p-value of 0.002306 with a prob-
ability of error of 0.05 and min(T+, T−)=30, which is comparable to the result
of the previous analyse. That is to say, there is not enough statistical evidence
to reject the null hypothesis. That means that there is no statistically significant

difference between plain applications and libraries on how private accessibility is used.
Surprisingly, we found that there are about 2.2 times more private methods in
plain applications than in libraries.

Note that the application Cobertura is an outlier, as shown in Table 6 of the
appendix. This 50K LOC application is composed of 3,313 methods, in which
1,970 are private and 1,190 are public. Cobertura has 59.46% private methods,
which is a higher number than for the remaining applications. A closer look at
this application reveals that a large portion of these private methods belong to a
built-in Java parser. This parser has been automatically generated by the JavaCC
parser generator.

In summary, answering Q1 showed that there is not a difference in terms of
method accessibility distribution between libraries/frameworks and plain applica-
tions. Also, we have found that, on average, 70% of the methods are defined as
public. All the experiments given in the article have been performed on the Moose
software analysis platform4. Moose offers a meta-model on which we formulate
queries and compute metrics. The parsing of the Java application has been done
using the VerveineJ Java analyzer5.

3 Over-exposed Methods

We qualify a method as over-exposed if it has an accessibility that is greater than the

one being necessary. Necessity here should be interpreted in the “context” of the
application, which can be that of a plain application or a library. As a consequence,
an over-exposed method may have its accessibility reduced to reflect its actual
use. Being over-exposed for a method depends on (i) other methods that call the

4 http://www.moosetechnology.org
5 http://www.moosetechnology.org/tools/verveinej

Understanding and Addressing Exhibitionism in Java 9

over-exposed method and (ii) the accessibility of the original method in presence
of overriding.

A typical scenario for a method to be over-exposed is when the method is
declared public and used as if it were a private method (i.e., solely called within its
class). This method is over-exposed and its accessibility could be restricted without
impacting the application behavior. An example of such a situation is the class
Author given earlier (Section 1).

3.1 Accessibility patterns

In this section, we present an approach to identify over-exposed methods through
three code patterns. We illustrate these patterns using contrived but representative
examples.

Pattern 1 - Package method. A method a() defined as public or protected in a class
C is over-exposed and its accessibility may be changed to package if:

– it is called by at least one method that is not defined in C and,
– all the caller methods are defined in the same package as a()

Example: Classes Library and Author live in the same package:

package library;
public class Library {

public void defineNewAuthor() {
new Author().giveName();
}

}

package library;
public class Author {
public void giveName() { ... }

}

Method Library.defineNewAuthor() invokes Author.giveName(). Method giveName()

is not called anywhere else except by Library. The most restricted accessibility
allowed for giveName() is package. If giveName() is protected or public, then it is
over-exposed.

Pattern 2 - Protected method. A method defined as public in a class C is over-exposed
and its accessibility may be changed to protected if:

– it is only called by methods defined in classes that inherit from C

Example: IndexedAuthor and Author are two classes living in different packages:

package library;
public class Author {
public void giveName() { ... }

}

package indexedlibrary;
public class IndexedAuthor extends library.Author {
public void computeIndex() { this.giveName(); }

}

10 Santiago A. Vidal et al.

IndexedAuthor invokes giveName(), which is defined in a superclass. Method
giveName() is not called anywhere except by IndexedAuthor. The accessibility of
giveName() is public. The minimum accessibility for method giveName() is protected,
and it is over-exposed if it is public.

Pattern 3 - Private method. A method a() defined as public, package or protected in
a class C is over-exposed and its accessibility may be changed to private if:

– it is only called by methods defined in Foo

Example: Class Author defines giveName(), which is declared as public:

package library;
public class Library {

public void defineNewAuthor() {
new Author().defineNewName();
}

}

package library;
public class Author {
public void giveName() { ... }
public void defineNewName() { this.giveName(); }

}

Method giveName() is solely called by Author itself. If the accessibility of giveName
() is either public, protected or package, then it is over-exposed. The minimum
accessibility for method giveName() that is strictly necessary is private. Note that
giveName() does not override any method. Because the accessibility of an overridden
method cannot be more restrictive than that of the method that it is overriding
(this case is discussed in Section 3.3), overridden methods are considered in our
patterns only when their accessibilities can be effectively reduced. If an overridden
method fits with one of the patterns but its accessibility cannot be reduced because
of the method that is being overridden accessibility, the method is not considered
over-exposed.

To sum up, we qualify a method as over-exposed (e.g., giveName()) if it is
involved in at least one of the three patterns described above. Note that a private
method cannot be over-exposed since private is the most restrictive accessibility.

3.2 Proportion of unnecessary exposure

We have seen that libraries and plain applications have a slightly different profile
of method accessibility (Section 2.3). This finding therefore suggests that these
two kinds of applications should be treated distinctly. This section analyzes the
distribution of the unnecessary method exposure of 30 Java applications. The source
code of the 30 applications (15 plain applications and 15 libraries) we analyzed
totals 457,351 method invocations.

Libraries and frameworks. Not all the methods defined in an application are relevant
for our analysis. We consider a method m analyzable if (i) m is called at least
once by another method and (ii) m is non-private. In order to determine whether
the accessibility of m is appropriate, m must be called. If this is not the case,

Understanding and Addressing Exhibitionism in Java 11

then it cannot be involved in one of the patterns P1, P2, or P3, presented earlier
(Section 3.1). Note that methods that are not analyzable in our study might or
might not be over-exposed.

For the total number of methods, the range of over-exposed methods goes from
11.15% to 32.98%, with an average of 24.81%, a median of 26.41%, and a standard
deviation is 5.93. For calculating these values, we took into account the calls from
the test methods of the libraries.

The 15 libraries define 138,568 methods, for which 8,541 are private. The
following table gives the proportion of the accessibility for non-private methods:

methods defined analyzable right over

accessibility exposed

public 110,438 44,771 17,056 27,715
protected 9,220 5,826 2,145 3,681
package 10,369 2,435 1,834 601

total 130,027 53,032 21,035 31,997

The defined column gives the number of methods that are defined. In total we
have 130,027 non-private methods (138,568 - 8,541). Note that we also include
abstract methods, since an abstract method has an access modifier making it
relevant to our analysis (one of its implementations may be invoked). The analyzable

column gives the number of methods being called at least once for each kind of
accessibility, and finally it totals the number of methods being called at least once
that are not private (53,032). The right accessibility is the number of methods that
have an adequate accessibility (i.e., the accessibility that is strictly necessary),
meaning that they do not fit into any of the three patterns presented earlier.

From the 130,027 methods, only 40.78% (= 53,032) are analyzable. The re-
maining 59.22% of methods are either not called by the actual applications or
references to them could not be determined. Out of the 53,032 methods, 21,035
have an adequate accessibility, meaning that 31,997 are over-exposed. In total,

23.09% of the 138,568 methods are over-exposed.We found that 86.6% of the
over-exposed methods are public methods whose accessibilities can be reduced.
The following table details the changes suggested by our pattern-based analysis of
the accessibility modifiers.

Current accessibility Suggested accessibility # of methods over-exposed

Public Private 6798
Public Protected 2612
Public Package 18305

Protected Private 3681
Package Private 477
Package Protected 124

Plain applications. Similar to the case of libraries, public methods make up a large
proportion when compared to the other methods. The 15 plain applications define
144,795 methods, which include 16,017 private methods. We present the proportion
of the accessibility for the 128,778 non-private methods:

12 Santiago A. Vidal et al.

Applications Libraries.Frameworks

15
20

25
30

%
 o

ve
r-e

xp
os

ed
 m

et
ho

ds

N=15

Fig. 3 Distribution of over-exposed methods in plain applications and libraries/frameworks

methods defined analyzable right over

accessibility exposed

public 95,433 46,336 24,861 21,475
protected 9,744 7,192 4,423 2,769
package 14,551 4,429 3,617 812

total 128,778 57,957 32,901 25,056

Out of the 57,957 methods that are analyzable, 32,901 methods have an adequate
accessibility. As a consequence, 17.30% (= 25,056) of the 144,795 methods

are over-exposed. A 85.7% of the over-exposed methods are public methods whose
accessibility should be reduced. The following table details the reductions suggested
by our analysis.

Current accessibility Suggested accessibility # of methods over-exposed

Public Private 5962
Public Protected 1838
Public Package 13675

Protected Private 2769
Package Private 702
Package Protected 110

Libraries/frameworks versus plain applications. The libraries we analyzed have on
the average 5.79% (= 23.09 - 17.30) more over-exposed methods than the plain
applications do.

Figure 3 shows the distributions of over-exposed methods for libraries and plain
applications. We tested the normality of the data using the Shapiro-Wilks test.
We obtained a p-value of 0.2681. Since the p-value is higher than 0.05 we can
conclude that the data is normal. The graph in Figure 3 follows the intuition that

Understanding and Addressing Exhibitionism in Java 13

libraries offer public services that are meant to be used by external applications.
This analysis answers the second research question stated earlier (Q2, Section 1).
Since the data is normal we can use a Student’s t-test to check for any statistical
difference between the number of over-exposed methods in libraries and plain
applications. H0 is that libraries have the same percentage of over-exposed methods
than applications have. After testing we reject the null hypothesis with α = 0.05
and p-value = 0.01 indicating that the two distributions are statistically different.
That means that libraries have on average more over-exposed methods than plain
applications.

Use of libraries / frameworks. We have earlier determined that 23.09% of the methods
contained in libraries are over-exposed, a higher value than for plain applications
(17.30%). This is not really surprising since the intention of a library is to be used
or instantiated.The question that naturally follows is whether the number of over-
exposed methods for libraries is reduced when they are used by external applications.
Answering this question implies analyzing a number of client applications for each
library. This is a significant amount of work that we leave for future efforts. To get a
sense of the possible answer, we analyzed three applications that use the JFreeChart
library. We measured the number of over-exposed methods in JFreeChart when used
by each of the client applications. We then compared the number of over-exposed
methods to that of JFreeChart alone.

Specifically, we analyzed the way in which iTracker6, OpenReports7 and JSky8

use JFreeChart. We conducted an experiment similar to the one conducted with
the libraries, but instead of focusing on the analysis of the methods of the client
applications (i.e., iTracker, OpenReports and JSky), we computed the number of
over-exposed methods in the version of JFreeChart used by the applications. The
following table compares our results for JFreeChart and the usage of this library
in the three aforementioned applications:

system defined analyzable right over

accessibility exposed

JFreeChart 8,207 3,456 985 2,471

iTracker 8,207 3,456 985 2,471
JSky 8,207 3,482 1,032 2,450

OpenReports 8,207 3,473 1,021 2,452

Without being used by a client application, JFreeChart defines 8,207 methods,
from which 2,471 (= 30.1%) are over-exposed. When JFreeChart is used, the
number of analyzable methods (i.e., non-private methods that are called at least
once) is slightly higher. These methods that turn into being analyzable are entry
points of the library. The number of over-exposed methods is slightly reduced to
29.8%., presumably because some methods are effectively used by external clients
(note that the values reported for iTracker are the same as the ones reported to
JFreeChart because iTracker calls a subset of the methods called internally by
JFreeChart). Still, this small analysis indicates that using a library may not strongly
reduce the number of over-exposed methods. Nonetheless, more experiments are
needed to confirm this claim.

6 http://www.itracker.org
7 http://oreports.com/
8 http://archive.eso.org/cms/tools-documentation/jsky/

14 Santiago A. Vidal et al.

3.3 Discussion of the study

A number of points related to our measurements are worth discussing.

Callbacks. It is common to have methods defined in an application that are not
directly called by the application itself. Methods intended to be called by the
Java runtime, such as event callbacks, belong to this category. Since a method
defining the callback is not directly called by the application, the method cannot
be analyzed. Consider the following code excerpt found in SweetHome3D:

private void displayHome(final JRootPane rootPane, final Home home,
final UserPreferences preferences,
final ViewFactory viewFactory) {

EventQueue.invokeLater(new Runnable() {
public void run() {

HomeController3D controller =
new HomeController3D(home, preferences, viewFactory, null, null);

rootPane.setContentPane((JComponent)controller.getView());
rootPane.revalidate();
}
});
}

Method invokeLater(...) takes as argument an instance of an anonymous class
that implements the interface Runnable. This anonymous class implements the
method public void run(). This method is invoked by a particular thread, called
the dispatch thread by the Java runtime. The call of run() is therefore made in
classes that belong to Java.

Our analysis focuses on what directly constitutes the applications, that is, their
source code. We did not consider the runtime environment in order to avoid having
redundancy for each analyzed application.

Use of reflection. We assessed the 30 applications by analyzing their source code. We
therefore discarded all aspects that may occur at runtime. In addition to callbacks,
one limitation of our approach is that it does not take into account reflective
method invocations. As an example, consider the following code excerpt obtained
from SweetHome3D:

public void destroy() {
if (notNull(this.appletApplication)) {

try {
Method destroyMethod = this.appletApplication.getClass().getMethod(”destroy”, new
Class [0]);
destroyMethod.invoke(this.appletApplication, new Object [0]);

} catch (Exception ex) {
ex.printStackTrace();

}
}
this.appletApplication = null;
System.gc();

}

An instance of the Java class Method is obtained, and then it is invoked using
destroyMethod.invoke(...). The call to the actual destroy() method cannot be stati-
cally identified. Although this method is called by the application itself, this call is
not considered in our analysis.

Understanding and Addressing Exhibitionism in Java 15

In the 30 applications we analyzed, 23 make use of the reflective capabilities of
Java. Of these 23, 16 are actually invoking methods via reflection. We analyzed
the percentages of classes that invoke methods via reflection. On average we found
that only the 2.98% of the classes of the libraries and 0.7% of the classes of the
applications use reflection. While the values obtained for the different applications
were similar, there were two outliers in the libraries: JavaAssist (9.24%) and JUnit
(7.3%). We think that these values are related to the domain of the libraries
(bytecode manipulation and testing, respectively). We did not specifically measure
the impact of reflection in our analysis. We plan to investigate this aspect in the
future using a dynamic analysis, similarly to Thies and Bodden (2012).

Inheritance and accessibility. Java allows overriding methods to have their acces-
sibility widened. It means that (i) a package method may be made protected or
public and (ii) a protected method may be made public when being overridden9.
Consider the following example:

public class Author {
void giveName() { ...}

}

public class IndexedAuthor extends Author {
public void giveName() { ...}

}

public class KeyedAuthor extends Author {
protected void giveName() { ...}

}

Each override has an accessibility wider than the original method of the root
class. The class Author defines the method giveName(), which has a package acces-
sibility. IndexedAuthor redefines it and makes it public. KeyedAuthor redefines the
giveName() method as protected.

Among the 283,363 methods we analyzed, we found only 1,339 (= 0.47%) occur-
rences of overriding methods that have a wider accessibility than the declaration
in a superclass.

4 Monitoring the Evolution

This section assesses whether the presence of over-exposed methods is intended
to satisfy future needs of different applications. The reported results address our
third research question (Q3). For each of the plain applications, we analyzed
and compared the evolution of over-exposed methods along the history of the
applications. We could not find more than one version of the Logisim application
and therefore report our measurements for the 14 remaining applications. We
have analyzed 7 versions for all but one application. Only 5 versions are publicly
available for CheckStyle. For each application A, we denote Ax the version x of A.
The argument x ranges from 0 to 6.

9 Note that a private method cannot be overridden.

16 Santiago A. Vidal et al.

4.1 Evolution of over-exposed methods

For each version of each application, we measured the number of defined methods,
over-exposed methods, and the ratio between these two. Our results are presented
in Figure 7, given in the appendix. Each application comes with two graphs:

– the graph with two curves located on the left-hand side shows the evolution of
the total number of methods with the number of over-exposed methods.

– the graph with one curve located on the right-hand side indicates the evolution
of the relative number of over-exposed methods.

These graphs visually convey the intuition that the number of over-exposed methods
seems to correlate with the total number of methods. In fact, plotting all the pairs
(# methods in Ax, # over-exposed methods in Ax) indicates a linear correlation
between these two10. We therefore computed Spearman’s correlation coefficient
(denoted p). We found that 10 of the 14 applications11 have a strong positive
correlation (> 0.8) between the number of defined methods and the number of
over-exposed methods. Although we cannot deduce the causality between these
two, the strong correlation indicates that a new application version that contains
more methods is likely to have more over-exposed methods than in its previous
version.

Out of the remaining five applications, we distinguish three applications with
little variation in their number of defined methods and over-exposed methods.
Checkstyle (r = 0.23), Jajuk (r = 0.82) and Jedit (r = 0.18) loosely correlate
because of the small variations in their corresponding measurements. The two
remaining applications, Jmol (r = 0.04) and Portecle (r = −0.90), went through
some major change, which breaks the continuity of our measurements, thus resulting
in a low correlation.

4.2 What do over-exposed methods become?

One question that naturally arises is what do over-exposed method become over
time. We provide an answer to this question by monitoring each over-exposed
method of our applications over time. There are three different fates for a method
that is over-exposed. A method that is over-exposed in a version Ax, may in a
version Ay (y > x):

– be not over-exposed anymore – This happens if the method has new calling
methods that fit well with its accessibility. Based on the Author class given in
the introduction, the method giveName(...) may be called from another package
in version y of the application that contains Author.

– not exist anymore – This situation corresponds to a method removal or renaming.
Version y does not contain the method Author.giveName(...).

– remain over-exposed – The method is still over-exposed in version y. This does
not prevent the method from having additional calling methods, however its
accessibility remains still too permissive.

10 These scatterplots are not reported in this paper.
11 ArgoUML, SweetHome3D, FreeMind, Ant, Cobertura, Findbugs, Jajuk, JStock, PMD,

TuxGuitar

Understanding and Addressing Exhibitionism in Java 17

We measured the proportion of over-exposed methods that fall into each of these
three situations by tracing each over-exposed method found in an early version of
each application. For each application A, we compare the over-exposed methods
found in A0 (the initial version) with the methods found in a later version; A0 is
therefore used as a reference point. The six last versions are denoted A1, ..., A6,
from the oldest to the newest one. Figure 8 shows four metrics for each application:

– Over-exposed methods (OEM) in A0: this value simply corresponds to the number
of over-exposed methods in A0. This value is equal to the sum of the following
three metrics.

– OEM in A0 that are not OEM in Ax: The number of over-exposed methods in
A0 that are not over-exposed in Ax.

– OEM in A0 that do not exist in Ax: The number of over-exposed methods in A0

that do not exist in Ax anymore.
– OEM in A0 that are OEM in Ax: The number of over-exposed methods in A0

that remain over-exposed in Ax.

Each graph (in the Appendix) describes the profile of the application regarding the
evolution of over-exposed methods. Consider the applications SweetHome3D, Jedit,
CheckStyle, Jajuk, Jedit and PMD. These applications have the number of over-
exposed methods from A0 reduced by less than 5%, only. Although the size of

these applications increases over time, the number of over-exposed methods

found in an early version of these applications remains over-exposed across

the analyzed versions.

On the other end of the spectrum, the applications TuxGuitar and Jmol show
their number of over-exposed methods found in A0 reduced by 76% and 64%,
respectively. These two applications have the number of over-exposed methods
found in their initial version largely reduced over time.

An interesting result is that the number of methods that become not over-
exposed is relatively small for all applications. The 14 applications we considered in
this paper have less than 19% of the over-exposed methods found in an early version
turned into a non-over-exposed. This measurement indicates that the intuition
giving an accessibility greater than necessary to a method for future usage holds only
for a small portion of the methods.

Figure 4 gives a global estimation of the evolution of over-exposed methods
for the 6 versions of the 13 applications (without CheckStyle and Logisim). The
graph summed up the four metrics given above. It shows that, from the 15,276
over-exposed methods found in the initial version of the applications and after six
successive versions, 71.97% (= 10,994) methods remain over-exposed, 19.71% (=
3,011) are removed and 8.32% (= 1,271) become not over-exposed.

5 Why so many over-exposed methods?

Fully understanding the causes of having an average of 20% of over-exposed methods
is difficult. Furthermore, around 70% of these methods are likely to remain over-
exposed over time. Many factors related to education, programming culture and
habits may explain the rather high number of over-exposed methods. One reason
that explains why method accessibility is improperly used and rarely changed may
be found in the support offered by programming environments. An exhaustive

18 Santiago A. Vidal et al.

0

5000

10000

15000

20000

Version 1 Version 3 Version 5

Over-exposed methods (OEM) in A0

OEM in A0 that are OEM in Ax

OEM in A0 that are not OEM in Ax

OEM in A0 that do not exist in Ax

20,000

15,000

10,000

5,000

0

Fig. 4 Cumulative evolution of over-exposed methods

explanation cannot reasonably be provided in this article due to the complexity
of the task. Instead of focusing on the root of the problem, we investigate how
frequently access modifiers are changed and provide a possible explanation for this.

Code review tools. Code review tools are popular for quality control, and they
usually exercise static analysis on a source code. These kinds of tools come with a
set of rules that identify anomalies based on the source code.

Popular code review tools for Java are PMD 5.0.112, CheckStyle 5.613, and
FindBugs 2.014. We have reviewed the rules offered by each of these tools, with
the purpose of analyzing whether they help identify and reduce the number of
over-exposed methods. Surprisingly, none of them offer check rules to identify over-
exposed methods. Several rules are about improper usage of method accessibility.
For example, the three tools provide a rule to identify protected methods defined
in final classes. Having a protected method in a final class is rather meaningless.
However, the tools do not assess the accessibility of a method based on the callers
of that method.

12 http://pmd.sourceforge.net
13 http://checkstyle.sourceforge.net
14 http://findbugs.sourceforge.net

Understanding and Addressing Exhibitionism in Java 19

Refactoring tools. We have reviewed the set of refactorings offered by three popular
programming environments for Java, namely Eclipse15, IntelliJ IDEA16 and Net-
Beans Java17. These environments offer to practitioners a large set of refactorings
to improve the quality of the source code. These three environments support a
specific refactoring to change its signature for a given method, its return type,
and the order of the parameters. The accessibility may also be changed, and the
consistency of the code is verified against the new given accessibility. However,
using this refactoring to modify the accessibility is equivalent to directly changing
the source code: no suggestion about the optimal method accessibility. During
a programming activity, a programming environment makes suggestions about
obvious and simple modifications (e.g., unnecessary package imports or variables
that are never read). However, over-exposed methods are not reported.

Eclipse automatically generates method stubs18. If the generated method is in
the same class from where it is called, then the private accessibility is given.

Other potential factors. Other factors besides a poor support of the programming
environments may explain the large proportion of over-exposed methods. Although
we did not conduct any controlled study, our extensive experience in teaching
Java shows that method accessibility in Java is a complex topic. For example, our
experience has shown us that engineers and students are often not aware that a
private instance method is statically bound or that a protected method is in fact
visible within its package (and not only to its subclasses). Our feeling is that the
Java accessibility model is more complex than, for example, the Ruby accessibility
model. One way to verify this is to conduct a similarly study of applications written
in Ruby.

Another intuition we have from our teaching experience, is that most students
spend effort on the actual behavior of a given method. Students caring about
design will typically try to find out how to shorten methods or properly distribute
responsibilities. However, method accessibility is apparently rarely considered in
the thinking effort. In the future, we plan to monitor programming activities (Ge
et al 2012) to verify this intuition.

6 Threats to Validity

Our case-study and its results are subject to validity threats. Since the approach
is based on the call graph analysis of the methods, the main threats are related
to whether a method is rightfully exposed to a particular interface. Such threats
constitute a source of false negatives and false positives.

Effects of other research. Some of the applications we analyzed have also been
analyzed in other research experiments. For example, Zoller and Schmolitzky (2012)
analyzes SweetHome3D, PMD, FreeMind. Numerous papers analyze JHotDraw,

15 version Juno (4.2)
16 version 9.0.4
17 version 7.0.1
18 This happens when you call a method that does not exist and you ask Eclipse to automati-

cally generate the missing method.

20 Santiago A. Vidal et al.

e.g., Binkley et al (2005). Researchers have a tendency to contact authors to
share and validate their findings (as we did with SweetHome3D, Section 8). This
means that the design of these applications may have been influenced by previous
experiments.

Sampling. In total, we analyzed 30 applications, which represent over 3.6 million
lines of code. Identifying these 30 applications is non-trivial. We spent a fair amount
of time finding Java applications that (i) have several versions for us to monitor the
evolution and (ii) may be imported into the Eclipse programming environment to
be processed by our plugin. Having an application that is “compilable” is important
since we have to make sure that no errors are present in the application before
running our analysis tool. We first naturally opted for the Qualitas Corpus Tempero
et al (2010), a popular corpus of 112 software systems. However, many of the
applications in that corpus are not in a compilable state. Configuration files are
crucial and are not always distributed with the applications. This means that we
would have to manually repeat the tedious loop of (i) downloading an application,
(ii) manually identifying what the downloaded archive is made of, (iii) importing
the application into Eclipse, and (iv) fixing dependencies by downloading missing
libraries.

Design. Some methods may be intentionally defined as over-exposed by program-
mers. Our personal experience and the discussion with some authors (Section 8)
show that a number of methods are often left over-exposed to address some possible
future need.

Studying software evolution (Section 4) clearly indicates that over-exposed
methods found in an early version of an application remain over-exposed. However,
programmers believe that some of these over-exposed methods deserve to be
visible to an audience larger than necessary. This fact clearly reflects an intuition
shared by programmers. Unfortunately, we were not able to measure or even
confirm this intuition. Measuring the number of over-exposed methods that are
intentionally over-exposed requires (i) carrying out the case-study we conducted
for SweetHome3D with the 14 remaining applications and (ii) identifying the
authors of each software component and getting in touch with them. The software
we have chosen for our case-study is the result of a large community effort, for
which traceability of classes and methods may not be carried out in a satisfactory
manner (for example, most source code versioning systems for Java operate at file
level granularity, therefore extracting information about methods is challenging).
Since open source communities are places with a significant turnover of developers,
identifying and contacting the primary author of over-exposed method is difficult.

Static analysis. Our approach employs static analysis to identify over-exposed
methods. We are thus facing limitations that static analysis imposes on us. There
could be callers that are not identified because of an under approximation of the
virtual method call resolution (at runtime) or because of the use of callbacks or
reflection. This situation could lead to false positives due to missing calls or simply
dead code. However, we think that the number of caller methods missed is generally
low. This is supported by the fact that Moose, the tool that we used to analyze the
source code, implements a call analysis algorithm similar to rapid type analysis
(RTA) (Bacon and Sweeney 1996) to construct the call graph of the applications.

Understanding and Addressing Exhibitionism in Java 21

Fig. 5 Methods list

Also, Moose analyzes the presence of keywords such as this and super to refine the
virtual calls. It has been reported that the precision of RTA for resolving virtual
method calls is in the range of 70-100% (Liang et al 2001).

7 Support for Practitioners

In order to help software engineers in managing the accessibility of methods, we
extended the Eclipse programming environment with Cover19, a plugin to identify
and address improper method accessibility.

7.1 Plugin description

Cover takes as input the source code of a Java application. After analyzing it,
Cover provides the following output:

– the list of over-exposed methods structured along packages and classes of the
application;

– possible refactorings by indicating the most appropriate accessibility for the
current state of the application.

The number of over-exposed methods is given for each reported package and class.
For example, Figure 5 reports some results for the SweetHome3D application. Cover
indicates that 871 methods are over-exposed, which account for 20.3% of the total
number of methods defined in the application. By delving down into the structure
of the application, relevant information is given for each of the packages and
classes. For example, package com.eteks.sweethome3d.io contains 20 over-exposed
methods. These 20 methods represent 14.1% of the methods defined in the package.
Additionally, over-exposed methods are marked in the source code along with the
proper accessibility (Figure 6).

The plugin uses the Java development tools of Eclipse (JDT) to iterate over all
the methods and retrieve the calling methods for each method of the application.
Retrieving calling methods can be a time-consumming operation. For instance,
our plugin takes approximately 11 minutes to analyze SweetHome3D20. However,
we believe the performance of the method analysis can be improved by adding
appropriate caches.

19 http://sites.google.com/site/santiagoavidal/projects/cover-methods
20 Experiments were conducted on a MacBook Air, CPU 1.8 GHz Intel Core 5. 4Gb of memory.

22 Santiago A. Vidal et al.

Fig. 6 Refactoring suggestion

Statement Strongly
disagree

Disagree Neither Agree Strongly
agree

There is a need for controlling
method accessibility

2 4 4

The plugin is easy to use 2 3 5
The plugin is useful 4 6
The suggestions made by the plugin
are clear

1 4 5

You will be able to find the over-
exposed methods and perform the
refactoring without using the plugin

1 5 1 3

Table 3 Plugin survey.

7.2 Plugin evaluation

With the goal of evaluating if Cover helps developers achieve the task of choosing
the most appropriate accessibility for methods, we conducted an experiment with
ten PhD students. The experiment was run off-line. All students had previous
experience with Java and OOP in an industrial setting. Also, they had access to a
tutorial that described how to install and use our plugin.

We assigned to each student the task of refactoring the over-exposed methods
of the application Clustermines21. Specifically, the students had to go through the
methods listed as over-exposed by the plugin and apply the suggested refactorings
on the accessibilities of the methods.

After running the experiment we checked that the students refactored all the
over-exposed methods identified. Also, the students filled out survey about the
plugin and the experiment. The results of this survey are presented in Table 3. For
each affirmative statement, the table indicates how many participants chose a level
of agreement with it.

While this experiment is not completely comprehensive, it shows that the
participants found the plugin easy to use, and that they think that there is a need
to change method accessibilities. Specifically, we found that 80% of the participants
agree on a need to control method accessibilities (agree+strongly agree). Also, the
80% of the participants agree that the plugin is easy to use. All the students agree
on the usefulness of the plugin. The ninety percents of the participants also agree
on the clearness of the suggestions of the plugin. Finally, while 30% of the students
think that they will be able to find over-exposed methods without the plugin, 60%

21 http://clustermines.sourceforge.net

Understanding and Addressing Exhibitionism in Java 23

disagree or strongly disagree on this point. These observations reinforce the need
for a tool like our plugin that helps developers control method accessibilities.

8 Reducing method accessibility

Section 2.3 identified a large proportion of over-exposed methods in about 30 Java
applications. We claim that a large portion of those methods may be removed
by simply reducing their accessibility modifier. We empirically verified this claim
by refactoring an application and assessing that its (observable) behavior did not
change.

8.1 Manual Refactoring

SweetHome3D22 is a 84K LOC application. It comes with 26 unit tests, themselves
defining 40 test methods. According to Cobertura, a popular test code coverage for
Java23, the test coverage of SweetHome3D is 70.16%. An application is considered
well-tested with a test coverage over 70% (Mockus et al 2009).

Methodology. To measure the impact of reducing the accessibility of over-exposed
methods, we conducted the following experiment on SweetHome3D:

1. run all the tests and verify that they all pass
2. run the application and try out the tutorial
3. find the over-exposed methods
4. reduce the accessibility of each over-exposed method to its strict necessary

accessibility.
5. recompile SweetHome3D
6. run all the tests and verify that they all pass
7. run the tutorial and look for odd behavior

These steps can be easily applied to other applications. Our refactoring of Sweet-
Home3D source code is available online at http://bit.ly/SweetHomeRefactoring.

We ran the tests and looked for odd behavior after changing the accessibility
of the methods to check that no method shadows24 existed (i.e. conflicts between
methods or classes with the same name). Odd behavior refers to test failures,
visualization errors, or application crashes, among others.

Experiment results. All tests remained green and we did not notice any odd or
unexpected behavior. The variation of accessibility is given in the table below:

methods before after ∆

private 945 1,022 + 8.14%
package 270 620 + 129.62%

protected 221 227 + 2.71%
public 4,080 3,647 - 10.61%

over-exposed 682 31 - 95.45%

22 http://www.sweethome3d.com
23 http://cobertura.sourceforge.net
24 http://docs.oracle.com/javase/specs/jls/se7/html/jls-6.html#jls-6.4

24 Santiago A. Vidal et al.

The before and after columns give the number of methods before and after
the refactoring. The variation is computed as ∆ = (after - before) / before. The
over-exposed row corresponds to the number of over-exposed methods.

SweetHome3D defines 5,516 methods, for which 12.36% (= 682) are over-
exposed. We removed 95.45% of the over-exposed methods by simply changing
the accessibility modifier. The over-exposed methods whose visibility could not be
reduced were false positives caused by callbacks and reflective method invocations.

While we cannot generalize the results of this refactoring to other applications,
future work could replicate this experiment with a larger set of applications.

8.2 Feedback from the authors

We submitted our refactored version of SweetHome3D to its authors. They expressed
great interest in our results because, ensuring a high quality of their products is
indeed a strong priority.

Our refactoring addressed many public methods defined in private inner classes.
Since private inner classes cannot be accessed from outside the encapsulating class,
the authors did not feel it relevant to include these refactorings.

As we discussed earlier for other applications, having over-exposed methods
may prepare the application to address future requirements. The authors of Sweet-
Home3D have deliberately over-exposed many methods and constructors for that
purpose. The authors prefer to leave such methods untouched. This feedback could
lead to an improvement of our plugin. For instance, a future feature is to support
filtering criteria, so that the user can exclude certain methods from the analysis.

Using our plugin, we found a number of public methods that could be private.
The authors recognized them and agreed with their resolution. The next version of
SweetHome3D 4.0 will include parts of our refactoring.

9 Related Work

As far as we are aware of, no large-scale empirical study has been conducted on
the accessibilities of methods in object-oriented programming languages. However,
some works have identified the uses of access modifiers that are not restrictive
enough.

Bouillon et al (2008) present a tool that checks for over-exposed methods in
Java applications. Similar to ours, their tool determines the best access modifier
by analyzing the references to each method. However, the tool was only tested in
some packages of 4 applications (i.e. the applications were not carefully analyzed).
This approach does not analyze overridden methods (which can also be over-
exposed). The authors suggest that any over-exposed method could be the result
of the developer’s intention of extending the applications, but unlike our study, no
historical analysis is performed.

Müller (2010) uses bytecode analysis to detect those access modifiers of methods
and fields that should be more restrictive. However, the work does not describe
the algorithm used to detect these situations nor presents case-studies to validate
their tool.

Understanding and Addressing Exhibitionism in Java 25

Zoller and Schmolitzky (2012) present a tool called AccessAnalysis to detect
over-exposed methods and classes by analyzing the references to them. To measure
the usage of access modifiers for types and methods they employ two software
metrics: Inappropriate Generosity with Accessibility of Types (IGAT) and Inappro-

priate Generosity with Accessibility of Methods (IGAM). IGAM is equivalent to our
concept of over-exposure. To evaluate AccessAnalysis, the authors report on the
analysis of 12 open-source applications. Their findings include that “general access
modifiers are often chosen more generously than necessary” which agrees with our
observations. Interestingly, this work reports that, on average, 35% of methods are
over-exposed25. This value is higher than the 20% we measured. We think that
this difference is because the authors do take not overridden methods into account.

Steimann and Thies (2009) highlight the difficulties of carrying out refactoring
in the presence of non-public classes and methods. Steimann and Thies formalize
accessibility constraints in order to check the preconditions of a refactoring (e.g.,

moving a class to another package requires checking whether the visibility of the
class allows its users to still reference it). In particular, the authors analyze the cases
in which a class or a method is moved between packages or classes with the goal of
adapting their access modifiers to preserve the original behavior. They propose the
change accessibility refactoring to change the access modifier of a declared entity.
This refactoring recursively changes all the entities that are directly or indirectly
related to the refactored entity. For example, consider the following example:

class C1 {
public void bar() { ... }

}
class C2 extends C1{

public void foo() { this.bar(); }
}

If C1.bar() is not used by anyone else in the system, then protected is identified by
our approach as the ideal visibility for C1.bar(). Applying the change accessibility

refactoring to turn C1.bar() into a private method may have a ripple effect of
refactoring (e.g., moving C2.foo() into C1). This change of C2 may in turn be
governed by other constraints, which must be generated as well. A general approach
for naming and accessibility for refactoring was later build upon this work (Schafer
et al 2012). An Eclipse plugin has also been proposed as an implementation of the
constraint-based model of accessibility. Their plugin differs from our since we focus
on over-exposure.

Fowler (2002) emphasizes the distinction between public methods and published
interfaces. While the changes of a public method of an application can be measured,
Fowler’s work alerts that changes on interfaces may severely affect other systems
that use the application. For this reason, he suggests that the number of published
interfaces should be as limited as possible.

Patenaude et al (1999) present the extension of a proprietary source code
analysis tool with Java metrics. This extension contains simple metrics related to
coupling such as: number of public, private and protected methods, and numbers of
calls to a method. After applying the metrics to a group of seven library applications,

25 We obtained the value 35% by computing the average of the IGAM metric from Figure 3
in Zoller and Schmolitzky (2012).

26 Santiago A. Vidal et al.

a very low number of private methods and a majority of public methods were
found. However, the reason for those findings are not analyzed.

Briand et al (1999) empirically analyze the relationship between coupling and
the rippled effect in object-oriented applications. They determined that classes
with high coupling values are more prone to be changed when changes in the public
interfaces of classes are performed.

Singh and Kahlon (2011) use static analysis to predict bad smells in code using
software metrics. They present two metrics to measure information hiding that are
focused on the number of public and private methods of a class respectively. This
work found that both metrics are useful in diagnosing smelly classes.

Chowdhury and Zulkernine (2010) analyze the existence of a relationship
between different metrics of complexity, coupling and cohesion and security failures.
After analyzing several versions of an application they conclude that an important
correlation exists between these metrics and vulnerabilities. A similar conclusion
is achieved by Singh et al (2012) who also analyze the relation of coupling with
software defects.

10 Conclusion and Future Work

Determining the right accessibility when defining a method is key to preserving the
right amount of encapsulation and information hiding in object-oriented systems,
favoring maintenance and modifiability. We have empirically measured, for a given
corpus, that over 20% of the methods are over-exposed. We also found that more
of the 70% of the methods of the applications are defined as public (Q1). Also, we
have found that libraries have on average more over-exposed methods than plain
applications (Q2). Additionally, we found that less than 10% of the over-exposed
methods defined in early versions of the applications become non-over-exposed in
future versions (Q3).

We have proposed three patterns to identify over-exposed methods in code. We
have developed an Eclipse plugin that augments the programming environment
with the ability to detect and refactor over-exposed methods.

As future work we plan to:

– refine our analysis by carefully considering the use of reflection and callbacks,
increasing the range of analyzable methods;

– perform a study of over-exposed methods in framework-based applications,
so as to determine whether our preliminary findings for JFreeChart can be
generalized.

– refine our set of accessibility patterns with the aim of identifying the type of
information being exposed by methods.

– monitor programming activity to see how often method accessibility is re-
considered by programmers;

– analyze the impact of over-exposed methods on the interfaces of high-level design
software elements (e.g., packages, modules, layers, architectural patterns).

– extend the Cover plugin to support the automated refactoring of the over-
exposed methods, ensuring the preservation of behavior.

Overall, this work empirically studied the accessibility modifiers of the meth-
ods from multiples angles. We analyzed the over-exposing phenomenon in plain

Understanding and Addressing Exhibitionism in Java 27

applications and libraries/frameworks. We also measured the impact of software
evolution on method accessibility. We argue that these multiple angles provide a
clear analysis of the phenomenon.

Acknowledgements We thank Emmanuel Puybaret, principal author of SweetHome3D, for
his feedback on our refactoring. We gratefully thank Romain Robbes and Renato Cerro for
their feedback on an earlier draft of the manuscript. We also thank Hugo Manterola and Ignacio
Orlando for contributing to the development of the plugin. We thank the anonymous reviewers
for their comments and suggestions to improve the quality of this work.

This work was partially supported by PIP Project 112-201101-00078 (CONICET) - Ar-
gentina and FONDECYT project 1120094 - Chile.

References

Bacon DF, Sweeney PF (1996) Fast static analysis of c++ virtual function calls. In: Anderson
L, Coplien J (eds) OOPSLA, ACM, pp 324–341

Binkley D, Ceccato M, Harman M, Ricca F, Tonella P (2005) Automated refactoring of object
oriented code into aspects. In: Software Maintenance, 2005. ICSM’05. Proceedings of the
21st IEEE International Conference on, pp 27–36, DOI 10.1109/ICSM.2005.27

Booch G (2004) Object-Oriented Analysis and Design with Applications (3rd Edition). Addison
Wesley Longman Publishing Co., Inc., Redwood City, CA, USA

Bouillon P, Grokinsky E, Steimann F (2008) Controlling accessibility in agile projects with
the access modifier modifier. In: Paige RF, Meyer B (eds) TOOLS (46), Springer, Lecture
Notes in Business Information Processing, vol 11, pp 41–59

Briand LC, Wst J, Lounis H (1999) Using coupling measurement for impact analysis in
object-oriented systems. In: ICSM, pp 475–482

Chowdhury I, Zulkernine M (2010) Can complexity, coupling, and cohesion metrics be used
as early indicators of vulnerabilities? In: Proceedings of the 2010 ACM Symposium
on Applied Computing, ACM, New York, NY, USA, SAC ’10, pp 1963–1969, DOI
10.1145/1774088.1774504, URL http://doi.acm.org/10.1145/1774088.1774504

Fowler M (2002) Public versus published interfaces. IEEE Software 19(2):18–19
Ge Xi, DuBose QL, Murphy-Hill E (2012) Reconciling manual and automatic refac-

toring. In: Proceedings of the 2012 International Conference on Software En-
gineering, IEEE Press, Piscataway, NJ, USA, ICSE 2012, pp 211–221, URL
http://dl.acm.org/citation.cfm?id=2337223.2337249

Liang D, Pennings M, Harrold MJ (2001) Extending and evaluating flow-insenstitive
and context-insensitive points-to analyses for Java. In: Proceedings of the 2001 ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engineering,
ACM, New York, NY, USA, PASTE ’01, pp 73–79, DOI 10.1145/379605.379676, URL
http://doi.acm.org/10.1145/379605.379676

Martin RC (2002) Agile Software Development. Principles, Patterns, and Practices. Prentice-
Hall

Meyer B (2009) Touch of Class: Learning to Program Well with Objects and Contracts, 1st
edn. Springer Publishing Company, Incorporated

Mockus A, Nagappan N, Dinh-Trong TT (2009) Test coverage and post-verification defects: A
multiple case study. In: Proceedings of the 2009 3rd International Symposium on Empirical
Software Engineering and Measurement, IEEE Computer Society, Washington, DC, USA,
ESEM ’09, pp 291–301, DOI 10.1109/ESEM.2009.5315981

Müller A (2010) Bytecode analysis for checking Java access modifiers. In: Work in Progress and
Poster Session, 8th Int. Conf. on Principles and Practice of Programming in Java (PPPJ
2010), Vienna, Austria

Parnas DL (1972) On the criteria to be used in decomposing systems into
modules. CACM 15(12):1053–1058, DOI 10.1145/361598.361623, URL
http://www.cs.umd.edu/class/spring2003/cmsc838p/Design/criteria.pdf

Patenaude JF, Merlo E, Dagenais M, Lagu B (1999) Extending software quality assessment
techniques to Java systems. In: IWPC, IEEE Computer Society, pp 49–

Riel A (1996) Object-Oriented Design Heuristics. Addison Wesley, Boston MA

28 Santiago A. Vidal et al.

Robbes R, Lungu M, Roethlisberger D (2012) How do developers react to
API deprecation? The case of a Smalltalk ecosystem. In: Proceedings of
the 20th International Symposium on the Foundations of Software Engi-
neering (FSE’12), pp 56:1 – 56:11, DOI 10.1145/2393596.2393662, URL
http://scg.unibe.ch/archive/papers/Rob12aAPIDeprecations.pdf

Schafer M, Thies A, Steimann F, Tip F (2012) A comprehensive approach to naming and
accessibility in refactoring Java programs. IEEE Transactions on Software Engineering
38(6):1233–1257, DOI 10.1109/TSE.2012.13

Siegel S, Castellan NJ (1988) Nonparametric Statistics for the Behavioral Sciences, 2nd edn.
McGraw-Hill, New York

Singh S, Kahlon KS (2011) Effectiveness of encapsulation and object-oriented metrics to
refactor code and identify error prone classes using bad smells. ACM SIGSOFT Software
Engineering Notes 36(5):1–10

Singh V, Bhattacherjee V, Bhattacharjee S (2012) An analysis of dependency of coupling on
software defects. ACM SIGSOFT Software Engineering Notes 37(1):1–6

Steimann F, Thies A (2009) From public to private to absent: Refactoring Java programs
under constrained accessibility. In: Drossopoulou S (ed) ECOOP, Springer, Lecture Notes
in Computer Science, vol 5653, pp 419–443

Tempero E, Anslow C, Dietrich J, Han T, Li J, Lumpe M, Melton H, Noble J (2010) The qualitas
corpus: A curated collection of Java code for empirical studies. In: Software Engineering
Conference (APSEC), 2010 17th Asia Pacific, pp 336 –345, DOI 10.1109/APSEC.2010.46

Thies A, Bodden E (2012) Refaflex: safer refactorings for reflective Java programs. In:
Proceedings of the 2012 International Symposium on Software Testing and Analysis,
ACM, New York, NY, USA, ISSTA 2012, pp 1–11, DOI 10.1145/04000800.2336754, URL
http://doi.acm.org/10.1145/04000800.2336754

Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2000) Experimentation in
software engineering: an introduction. Kluwer Academic Publishers, Norwell, MA, USA

Zoller C, Schmolitzky A (2012) Measuring inappropriate generosity with access modifiers in
Java systems. In: Proceedings of the 2012 Joint Conference of the 22Nd International
Workshop on Software Measurement and the 2012 Seventh International Conference on
Software Process and Product Measurement, IEEE Computer Society, Washington, DC,
USA, IWSM-MENSURA ’12, pp 43–52, DOI 10.1109/IWSM-MENSURA.2012.15, URL
http://dx.doi.org/10.1109/IWSM-MENSURA.2012.15

Understanding and Addressing Exhibitionism in Java 29

Table 4 Library / Frameworks analyzed

Library/
Frame-
work

Version #Meth %Pub %Prot %Pac %Priv #LOC #Clss #Pac

1 Ant 1.8.3 13,517 79.09 7.63 3.68 9.60 178,759 1,730 79
2 Commons-

Compress
1.4.1 1,625 73.97 3.32 4.74 17.97 27,730 206 16

3 Commons-
Primitives

1.0 4,136 79.64 13.20 4.69 2.47 26,847 505 4

4 Dom4J 2.0 2,938 84.72 10.11 3.00 2.18 25,524 190 14
5 Hibernate 4.1.3 45,348 82.02 5.63 7.55 4.80 390,254 6,741 765
6 JavAssist 3.12 3,362 65.02 5.74 13.27 15.97 42,460 357 17
7 Jericho-

HTML
3.2 1,272 67.85 3.69 12.03 16.43 15,032 148 2

8 JFreeChart 1.0.14 8,635 85.63 4.02 5.40 4.96 15,9217 619 37
9 JHotDraw 7.0.6 3,784 80.79 12.29 1.66 5.26 41,577 470 24
10 JUnit 4.10 2,824 79.28 7.26 5.67 7.79 16,185 866 58
11 Log4J 1.2.16 2,132 75.38 12.57 5.53 6.52 27,890 315 22
12 Maven 3.0.4 6,527 66.05 3.26 23.55 7.14 72,063 940 112
13 Struts 2.3.3 15,541 77.12 6.85 10.86 5.17 159,129 2,490 187
14 Tomcat 7.0.27 16,503 82.96 8.54 2.53 5.97 234,945 1,775 112
15 Xalan 2.7.1 10,424 78.99 5.05 10.00 5.97 259,556 1,237 42

Average 9,238 77.23 7.28 7.61 7.88 111,811 1,239 99.4

#Meth: number of methods; %Pub: number of public methods; %Prot: number of protected
methods; %Pac: number of package visible methods; %Priv: number of private methods;
#LOC: total number of lines of code; #Clss: number of classes, including inner classes; #Pac:
number of packages;

URLs: Ant: http://ant.apache.org/; Commons-Compress:
http://commons.apache.org/compress/; Commons-Primitives:
http://commons.apache.org/primitives/; Dom4J: http://dom4j.sourceforge.net/; Hiber-
nate: http://www.hibernate.org/; JavAssist: http://www.jboss.org/javassist/; Jericho-
HTML: http://jerichohtml.sourceforge.net/; JFreeChart: http://www.jfree.org/jfreechart/;
JHotDraw: http://www.jhotdraw.org/; JUnit: http://www.junit.org/;
Log4J: http://logging.apache.org/log4j/; Maven: http://maven.apache.org/;
Struts: http://struts.apache.org/; Tomcat: http://tomcat.apache.org/Xalan:
http://xml.apache.org/xalan-j/

30 Santiago A. Vidal et al.

Table 5 Library / Frameworks analyzed

Library/
Frame-
work

#OEM %OEM %OEMa

1 Ant 3101 22.94 65.64
2 Commons-

Compress
389 23.94 61.75

3 Commons-
Primitives

1232 29.79 86.7

4 Dom4J 969 32.98 83.47
5 Hibernate 9121 20.11 55.07
6 JavAssist 943 28.05 53.22
7 Jericho-

HTML
369 29.01 65.54

8 JFreeChart 2471 28.62 71.5
9 JHotDraw 1150 30.39 64.5
10 JUnit 315 11.15 43.75
11 Log4J 563 26.41 64.05
12 Maven 1017 15.58 54.18
13 Struts 2865 18.44 57.18
14 Tomcat 4859 29.44 61.15
15 Xalan 2633 25.26 58.15

Average 2133 24.81 63.06

#OEM: number of over-exposed methods; %OEM a: Over-exposed methods taking into
account only analyzable methods.

Table 6 Applications analyzed

Application Version #Meth %Pub %Prot %Pac %Priv #LOC #Clss #Pac

1 Argo 0.34 18,248 70.39 9.26 10.91 9.45 235,539 2,568 127
2 Azureus 4.7.12 42,619 75.99 11.42 8.02 4.57 689,989 7,874 476
3 Checkstyle 5.5 3,769 69.04 6.37 10.56 14.04 47,342 1,062 39
4 Cobertura 1.9.4.1 3,313 35.92 1.66 2.96 59.46 50,719 115 19
5 FindBugs 2.0.1 11,326 68.89 2.97 17.91 10.22 129,041 1,765 64
6 FreeMind 0.9 5,980 77.21 5.37 7.26 10.17 56,766 960 48
7 Jajuk 1.9.6 5,781 85.63 2.13 4.07 8.18 95,660 1,065 40
8 JEdit 5.0 7,696 70.80 3.73 10.58 14.89 134,399 1,271 40
9 Jmol 12.2.33 10,355 47.50 7.86 25.63 19.01 176,544 800 66
10 Jstock 1.0.6 3,797 68.00 1.90 4.98 25.13 56,779 799 19
11 Logisim 0.0.1-

a
6,601 72.88 3.77 11.89 11.45 57,134 963 43

12 PMD 4.2.6 4,949 71.91 3.15 2.14 22.79 49,648 706 47
13 Portecle 1.7 684 54.68 8.33 3.51 33.48 20,234 188 11
14 Sweet

Home 3D
3.5 5,516 73.97 4.01 4.89 17.13 84,632 1,351 9

15 TuxGuitar 1.2 5,111 63.86 5.05 21.64 9.45 48,511 953 78

Average 9,050 67.11 5.13 9.80 17.96 128,862 1,496 75.07

URLs: Argo: http://argouml.tigris.org/; Azureus/Vuse: http://azureus.sourceforge.net/;
Checkstyle: http://checkstyle.sourceforge.net/; Cobertura: http://cobertura.sourceforge.net/;
FindBugs: http://findbugs.sourceforge.net/; FreeMind: http://freemind.sourceforge.net/; Ja-
juk: http://jajuk.info/; JEdit: http://www.jedit.org/; Jmol: http://jmol.sourceforge.net/;
Jstock: http://jstock.sourceforge.net/; Logisim: http://ozark.hendrix.edu/ burch/logisim/;
PMD: http://pmd.sourceforge.net/; Portecle: http://portecle.sourceforge.net/; SweetHome3D:
http://www.sweethome3d.com/; TuxGuitar: http://www.tuxguitar.com.ar/

Understanding and Addressing Exhibitionism in Java 31

Table 7 Applications analyzed

Application #OEM %OEM %OEMa

1 Argo 3710 20.33 56.48
2 Azureus 6712 15.75 35.25
3 Checkstyle 428 11.36 59.44
4 Cobertura 758 22.88 82.84
5 FindBugs 2753 24.31 59.68
6 FreeMind 1235 20.65 45.04
7 Jajuk 802 13.87 35.87
8 JEdit 1864 24.22 48.43
9 Jmol 1546 14.93 28.12
10 Jstock 743 19.57 50.34
11 Logisim 1017 15.41 32.57
12 PMD 1428 28.85 76.73
13 Portecle 143 20.91 60.08
14 SweetHome3D 682 12.36 31.7
15 TuxGuitar 1235 24.16 42.16

Average 1670 19.30 49.65

32 Santiago A. Vidal et al.

SweetHome3D FreeMind

ArgoUML Ant

CheckStyle Cobertura

Findbugs Jajuk

Jedit Jmol

JStock PMD

Portecle TuxGuitar

0
1500
3000
4500
6000

2.6 3.0 3.1 3.2 3.3 3.4 3.5
0

7.5
15.0
22.5
30.0

2.6 3.0 3.1 3.2 3.3 3.4 3.5
0

1750
3500
5250
7000

0.5 0.6.7 0.8.0 0.9.0
0

7.5
15.0
22.5
30.0

0.5 0.6.7 0.8.0 0.9.0

0
5000

10000
15000
20000

0.22 0.26 0.30.2 0.34
0

7.5
15.0
22.5
30.0

0.22 0.26 0.30.2 0.34
0

3750
7500

11250
15000

1.6.5 1.7.1 1.8.1 1.8.3
0

7.5
15.0
22.5
30.0

1.6.5 1.7.1 1.8.1 1.8.3

0
1000
2000
3000
4000

4.4 5.2 5.3 5.4 5.5
0

7.5
15.0
22.5
30.0

4.4 5.2 5.3 5.4 5.5
0

1000
2000
3000
4000

1.8 1.9.1 1.9.3 1.9.4.1
0

7.5
15.0
22.5
30.0

1.8 1.9.1 1.9.3 1.9.4.1

0
3000
6000
9000

12000

1.3.5 1.3.7 1.3.9 2.0.1
0

7.5
15.0
22.5
30.0

1.3.5 1.3.7 1.3.9 2.0.1
0

1500
3000
4500
6000

1.9 1.9.2 1.9.4 1.9.6
0

7.5
15.0
22.5
30.0

1.9 1.9.2 1.9.4 1.9.6

0
2000
4000
6000
8000

4.3.3 4.4.2 4.5.1 5.0
0

7.5
15.0
22.5
30.0

4.3.3 4.4.2 4.5.1 5.0
0

2750
5500
8250

11000

11.0 11.4.0 11.8.1 12.2.33
0

7.5
15.0
22.5
30.0

11.0 11.4.0 11.8.1 12.2.33

0
1000
2000
3000
4000

1.0.0 1.0.2 1.0.4 1.0.6
0

7.5
15.0
22.5
30.0

1.0.0 1.0.2 1.0.4 1.0.6
0

1250
2500
3750
5000

4.2 4.2.2 4.2.4 4.2.6
0

7.5
15.0
22.5
30.0

4.2 4.2.2 4.2.4 4.2.6

0
225
450
675
900

1.1 1.2 1.3 1.4 1.5 1.6 1.7
0

7.5
15.0
22.5
30.0

1.1 1.2 1.3 1.4 1.5 1.6 1.7
0

1750
3500
5250
7000

0.7 0.9 1.0 1.2
0

7.5
15.0
22.5
30.0

0.7 0.8 0.90.9.11.0 1.1 1.2

Total amount of methods
Amount of over-exposed methods

% over-exposed methods

Fig. 7 Evolution of over-exposed methods

Understanding and Addressing Exhibitionism in Java 33

0

150

300

450

600

3.0 3.1 3.2 3.3 3.4 3.5
0

150

300

450

600

0.6.1 0.7.1 0.8.1
0

750

1500

2250

3000

0.24 0.28.1 0.32.1

0

750

1500

2250

3000

1.7.0 1.8.0 1.8.2
0

125

250

375

500

5.2 5.3 5.4 5.5
0

23

45

68

90

1.9 1.9.2 1.9.4

0

750

1500

2250

3000

1.3.6 1.3.8 2.0.0
0

200

400

600

800

1.9.1 1.9.3 1.9.5
0

500

1000

1500

2000

4.4.1 4.5.0 4.5.2

0

500

1000

1500

2000

11.2.0 11.6 12.0.1
0

100

200

300

400

1.0.1 1.0.3 1.0.5
0

375

750

1125

1500

4.2.1 4.2.3 4.2.5

0

38

75

113

150

1.2 1.3 1.4 1.5 1.6 1.7
0

150

300

450

600

0.8 0.9 0.9.1 1.0 1.1 1.2

SweetHome3D FreeMind ArgoUML

Ant CheckStyle Cobertura

Findbugs Jajuk Jedit

Jmol JStock PMD

Portecle TuxGuitar
Over-exposed methods (OEM) in A0

OEM in A0 that are OEM in Ax

OEM in A0 that are not OEM in Ax

OEM in A0 that do not exist in Ax

Fig. 8 Evolution of over-exposed methods identified in the first version of each application

