
EGAD: A moldable tool for GitHub Action analysis
Pablo Valenzuela-Toledo1, Alexandre Bergel2, Timo Kehrer1, Oscar Nierstrasz3

1Software Engineering Group, University of Bern, Bern, Switzerland
2RelationalAI, Bern, Switzerland

3feenk GmbH, Wabern, Switzerland

Abstract—GitHub Actions (GA) enjoy increasing popularity
in many software development projects as a means to automate
repetitive software engineering tasks by enabling programmable
event-driven workflows. Researchers typically analyze GA at the
raw data level using batch tools to mine and analyze actions, jobs,
and steps within GA workflows. Although this approach is widely
applicable, it ignores the specific context of the GA workflow
domain. Consequently, researchers do not reason directly about
the domain abstractions.

We present our preliminary steps in building EGAD (Ex-
plorable GitHub Action Domain Model), a moldable domain-
specific tool to depict and analyze detailed GA workflow data.
EGAD consists of an explorable domain model of GA workflows
augmented with custom, domain-specific views, and live narra-
tives. We illustrate EGAD in action using it to explore “sticky
commits” in GitHub repositories.

Index Terms—GitHub Actions, software evolution, moldable
development

I. INTRODUCTION

GitHub Actions (GA) have been increasingly adopted in
software development projects [1]. Although GA was publicly
released only in November 2019, it is already the dominant
continuous integration service on GitHub [2]. GA allows
actions to be triggered automatically based on events such
as commits, comments, issues, pull requests, and schedules.
For example, GA enables the automation of testing, code
reviews, continuous integration, communication, dependency
management, and security monitoring.

GA supports automation through workflows. Workflows
are specified in YAML files that describe the actions to be
triggered by specific events (e.g., the automatic treatment of
pull requests [3]). However, we observe that developers make
frequent mistakes in implementing the workflows and commit
multiple changes before running them correctly [4]. The only
tool they have for specifying workflows is the text editor,
which does not provide features for authoring, analyzing or
debugging. Therefore, developers are forced to validate their
workflows by pushing multiple versions to the repository.

To conduct studies into GA, researchers use batch (non-
interactive) tools to mine and analyze raw data of interest [1],
[3], [4] (see section III). Although this approach is widely
applicable, it ignores the contextual nature of the mining and
does not provide explorable domain models [5].

To support researchers in studying GA workflows, we
present Explorable GitHub Action Domain Model (EGAD), a
domain-specific tool to depict and analyze GA workflows and
their evolution. EGAD offers an explorable domain model,

Fig. 1. Architecture overview of EGAD.

custom views and live narratives that enable researchers to
inspect and analyze workflows.

EGAD provides an approach to answer specific questions
about GA workflows. The procedure consists of four steps,
namely: (i) goal definition, (ii) wrapping the GA workflow data
in domain model entities, (iii) exploring the domain model,
and (iv) interpreting the results.

We give an overview of EGAD’s architecture in section II,
and illustrate its use by investigating so-called sticky commits
in GitHub software repositories in section III.

II. TOOL ARCHITECTURE AND IMPLEMENTATION

Figure 1 depicts the architecture of EGAD which consists
of (i) an explorable domain model, (ii) custom views, and (iii)
live narratives that access the raw repository data.

A. Domain model

The domain model wraps the GA workflow data. The model
includes: (i) the workflow history, including all the commits
associated with a GA workflow, and (ii) the representation of
the workflow, including events, jobs and steps.

A class diagram focusing on the most important entities
is shown in Figure 2. A WEHistories instance contains
a collection of WEHistory objects, each of which repre-
sents the history of workflows of a dedicated project. A
WEFileCommit object represents a commit revising a ded-
icated workflow by a new version (WEWorkflow), which in
turn consists of events, jobs and steps.

As we shall see in the next section, we populate an ex-
plorable domain model by extracting data from GA workflow
files obtained from cloned software repositories.

B. Custom views

Custom views enable the exploration and navigation of
the domain model from multiple perspectives. Instead of
presenting the data generically, custom views provide critical
insights into the domain model, and make it possible to pose



Fig. 2. Representation of GA workflows and their evolution.

questions and explore hypotheses. In order to answer domain-
specific questions, the views can be easily extended. This
feature allows the tool to be adapted to face new scenarios
to explore. We shall see several examples in the next section.

C. Narratives

Narratives link documentation, source code, and running
objects to specific questions or hypotheses of the domain
model. We use narratives to explain use cases, scenarios,
and features of the GA domain. The creation of narratives
is accomplished by (i) telling stories, or (ii) following a path
of custom views.

D. EGAD implementation

EGAD is developed on top of the Glamorous Toolkit1

(GT), a moldable environment for building live and explorable
domain models using hyperlinked notebooks, live domain
objects, and customizable, domain-specific views [6]. GT
includes extensive live documentation detailing how to cus-
tomize it for a given application domain. GT is built on Pharo,2

a modern, open-source Smalltalk environment.

III. EGAD IN ACTION

In this demonstration, we will work with a dataset
comprising selected GitHub repositories that (i) currently
use GA and contain at least one workflow file in the
.github/workflow directory, (ii) have been created af-
ter 2019-01-11 (GA official release date) and before
2022-12-14, and (iii) have at least ten stars and 500
commits. We used the GitHub Search tool to select repositories
(excluding forks) meeting these criteria [7]. We cloned the
repositories on 2022-12-14. In this paper, we limit our
dataset to the first 50 repositories returned by the query.

For the sake of analysis and exploration, EGAD supports
a four-step process: (i) goal definition, (ii) wrapping the GA
workflow data in domain model entities, (iii) inspecting the
domain model, and (iv) interpreting the results.

We illustrate the EGAD approach in the context of sticky
commits. Figure 3 introduces the sticky commits narrative in
a single notebook page.

1https://gtoolkit.com
2https://pharo.org

Fig. 3. The sticky commits narrative.

Sticky commits consist of a sequence of commits performed
continuously, one after another. The commits are made by the
same developer, and are intended to correct errors in workflow
specifications made in the previous commit. Sticky commits
suggest that the developer is having difficulty correctly imple-
menting some GA behavior. We call them “sticky commits”
because they are continuously pushed, as if they were sticky.

As an example of sticky commits, let’s consider the history
of the GA workflow file pythonpackage.yml [8]. This
file is part of the Rich GitHub repository [9]. The history of
this file consists of seventy commits.

A. Goal definition

Our goal is to detect one or more sequences of sticky
commits through the exploration of the history of the python-
package.yml file.

B. Wrapping the GA workflow data in the domain model

We wrap the GA workflow data in a WEHistory object.
Figure 3a shows the associated code snippet.

Executing this snippet yields a WEHistory object that we
can explore.

The Workflows view of this object lists the GA workflow
files of the Rich repository (Figure 4a). Each custom view,
such as this one, has been developed in just a few lines of code,
to offer a new, dedicated perspective of the domain objects.

https://gtoolkit.com
https://pharo.org


Fig. 4. Different views of a WEHistory object: (a) Workflow view, (b)
Commits view, (c) Sticky Group view.

The Commits view lists all the workflow commits in chrono-
logical order (Figure 4b), of which only the first nine commits
are shown in the figure.

We now move to the Sticky Groups view, which lists groups
of sticky commits (Figure 4c). These are computed as a
series of commits that are (i) related to GA workflows, (ii)
consecutive, and (iii) performed by the same author.

C. Inspecting the domain model

To analyse the presence of sticky commits, we inspect the
first group, which has 38 commits (Figure 4c). As a result,
we get a WEStickyGroup object (Figure 5) listing all the
commits within the group.

Inspecting the WEStickyGroup object (Figure 5), we
notice in the Duration column that the time between commits
4 through 9 is always less than 8 minutes. This is of interest
since we have a sequence of commits performed repetitively
in a short period of time.

To investigate this sequence of commits in depth, we
navigate through each commit and review the changes. Each
commit is a WEFileCommit object (Figure 6). This object
shows the code that was modified (the Diff view), highlighting
added and deleting lines of code in green and red, respectively.

D. Interpreting the results

Reviewing each commit modification, we realize that these
commits correspond to minor modifications that could have
been handled in a single commit. To record this particular
behavior, we use the editable Category column, entering “yes”,
which means there are sticky commit candidates that could be
empirically validated (Figure 5). These data can be exported
to conduct further analysis.

Fig. 5. Commit view of the WEStickyGroup object.

Fig. 6. Diff view of the WEFileCommit object.

E. What’s next?

Are sticky commits pervasive in workflows of other repos-
itories? To answer this question, we replicate the analysis
considering all the GA workflows in a set of repositories.
A broader view of the presence of sticky commits in GA
workflows may guide the refinement of the heuristics for
computing sticky groups.

We replicate the analysis by wrapping the histories of GA
workflows from multiple repositories in the WEHistories
object (Figure 3b). To make this behavior easier to access,
we create the historiesExample example object in our
narrative (Figure 3c). The historiesExample object lists
all the histories from all the workflows of the 50 repositories.

To investigate the presence of sticky commits in these
histories we inspect the test.yml workflow file from the
OpenBBTerminal repository. The history of this file has
165 WEFileCommit (Figure 3c) and 32 WEStickyGroup
objects (Figure 7a).

Then, we inspect the WEStickyGroup with index 14
(Figure 7a), which contains 11 WEFileCommit objects
(Figure 7b). We notice in the Duration column that the
time between commits 3 through 5, and between commits 7
through 11 is always less than 8 minutes. As with our initial
exploration, this is of interest since we have a sequence of
sticky commit candidates.

To address our finding, we navigate the last five
WEFileCommit objects of the list using the Diff view
(Figure 7c). We observe a sequence of commits performing



Fig. 7. Following a path of views for WEStickyGroup object inspection.

minor modifications one after another, within a short period
of time. Although not a confirmation, this finding suggests that
the presence of sticky commits is plausible in the context of
our narrative.

Then, as a next step, we could be interested in inspecting
the workflow structure in detail and, for example, being able to
check the implementation of events and jobs in the workflow.
This is a feature that will be implemented in the next release
of the tool.

We provide a full replication package [10] which includes
documentation, and an example dataset for running the tool.
A stable version of EGAD is hosted on Zenodo [11].

IV. RELATED WORK

Seminal works from earlier days of mining software repos-
itories relied on artifacts that have been designed to answer
specific research questions [12], [13], while the reusability of
tools has been discussed largely at an architectural level [14],
[15], proposing a blackboard architectural style which we
adopt in EGAD.

To date, the well-known GHTorrent [16], [17] and Boa [18]
provide queryable offline mirrors to deal with massive amounts
of GitHub data. Other tools aim at helping researchers
in curating their own datasets [19], providing facilities for
sampling [7], filtering [20], or finding similar software
projects [21]. Besides, there are initiatives for providing
archives of these data, fostering long-term preservation and
reproducibility [22], [23]. All of these efforts are orthogonal
to ours in the sense that EGAD can be combined with any of
them for populating its explorable domain model.

Next to curating large datasets serving as general research
platforms, a number of tools aim at supporting specific mining

tasks [21], [24], [25], potentially making use of bots to extract
the relevant information from software repositories [26]–[28].
The development of most of these tools has been initiated
prior to the public release of GA in November 2019, and the
analysis of GA workflows has not been considered.

Recently, researchers have started to mine GA using batch
tools at the raw data level. Kinsman et al. [3] studied how
developers use GA, creating a dataset that they later processed
to carry out their study. Decan et al. [1] investigated trends and
adoption patterns of GA through the generation of multiple
datasets for answer specific research questions. Similarly,
Valenzuela-Toledo and Bergel [4] investigated the evolution
of GA workflows, generating a single dataset that they then
used to conduct their research. In our work, we shift the focus
by introducing a reusable and extensible tool that provides
explorable domain models to conduct GA mining studies.

V. CONCLUSION AND FUTURE WORK

We have proposed EGAD, a moldable domain-specific tool.
We have illustrated our approach by means of the sticky
commit narrative. Our tool enables the study of GA through a
domain model, and provides an approach to replicate empirical
studies on this subject. Our efforts aid in the representation
and analysis of GA workflow data, and the creation of an
expandable bench for future research.

In future work, we plan to extend EGAD. We envision the
visualization of the evolution of GA to enable the discovery
of unseen patterns and the automated detection of specific
commit groups such as the sticky ones. Knowing the types of
commit groups made by developers can guide the development
of tools to help developers be more efficient in producing
correct workflow specifications.



REFERENCES

[1] A. Decan, T. Mens, P. R. Mazrae, and M. Golzadeh, “On the use of
GitHub actions in software development repositories,” in 2022 IEEE
International Conference on Software Maintenance and Evolution (IC-
SME). IEEE, 2022, pp. 235–245.

[2] M. Golzadeh, A. Decan, and T. Mens, “On the rise and fall of CI
services in GitHub,” in 2022 IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 2022, pp. 662–
672.

[3] T. Kinsman, M. Wessel, M. A. Gerosa, and C. Treude, “How do
software developers use GitHub actions to automate their workflows?”
in 2021 IEEE/ACM 18th International Conference on Mining Software
Repositories (MSR). IEEE, 2021, pp. 420–431.

[4] P. Valenzuela-Toledo and A. Bergel, “Evolution of GitHub action work-
flows,” in 2022 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 2022, pp. 123–127.

[5] A. Chiş, T. Gı̂rba, J. Kubelka, O. Nierstrasz, S. Reichhart, and A. Syrel,
“Moldable tools for object-oriented development,” in Present and Ulte-
rior Software Engineering. Springer, 2017, pp. 77–101.

[6] O. Nierstrasz and T. Gı̂rba, “Making systems explainable,” in 2022
Working Conference on Software Visualization (VISSOFT). IEEE, 2022,
pp. 1–4.

[7] O. Dabic, E. Aghajani, and G. Bavota, “Sampling projects in GitHub for
MSR studies,” in 18th IEEE/ACM International Conference on Mining
Software Repositories, MSR 2021. IEEE, 2021, pp. 560–564.

[8] Textualize. (2019, Oct.) pythonpackage.yml file. [Online]. Avail-
able: https://github.com/Textualize/rich/blob/master/.github/workflows/
pythonpackage.yml

[9] ——. (2020, Oct.) pythonpackage.yml file. [Online]. Available:
https://github.com/Textualize/rich

[10] P. Valenzuela-Toledo, A. Bergel, T. Kehrer, and O. Nierstrasz, “EGAD:
a Moldable Tool for GitHub Action Analysis,” 1 2023. [Online].
Available: https://github.com/pavt/egad

[11] ——, “Egad: A moldable tool for github action analysis,” Mar.
2023, tool repository: https://github.com/pavt/egad. [Online]. Available:
https://doi.org/10.5281/zenodo.7714219

[12] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes induce
fixes?” ACM sigsoft software engineering notes, vol. 30, no. 4, pp. 1–5,
2005.

[13] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller, “How long will
it take to fix this bug?” in Fourth International Workshop on Mining
Software Repositories (MSR’07: ICSE Workshops 2007). IEEE, 2007,
pp. 1–1.

[14] M. Fischer, M. Pinzger, and H. Gall, “Populating a release history
database from version control and bug tracking systems,” in Interna-
tional Conference on Software Maintenance, 2003. ICSM 2003. Pro-
ceedings. IEEE, 2003, pp. 23–32.

[15] T. Mens, S. Demeyer, M. D’Ambros, H. Gall, M. Lanza, and M. Pinzger,
“Analysing software repositories to understand software evolution,”
Software evolution, pp. 37–67, 2008.

[16] G. Gousios, “The GHTorent dataset and tool suite,” in 2013 10th
Working Conference on Mining Software Repositories (MSR). IEEE,
2013, pp. 233–236.

[17] G. Gousios, B. Vasilescu, A. Serebrenik, and A. Zaidman, “Lean
ghtorrent: GitHub data on demand,” in Proceedings of the 11th working
conference on mining software repositories, 2014, pp. 384–387.

[18] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen, “Boa: A language
and infrastructure for analyzing ultra-large-scale software repositories,”
in 2013 35th International Conference on Software Engineering (ICSE).
IEEE, 2013, pp. 422–431.

[19] S. Romano, M. Caulo, M. Buompastore, L. Guerra, A. Mounsif,
M. Telesca, M. T. Baldassarre, and G. Scanniello, “G-Repo: a tool to
support MSR studies on GitHub,” in 2021 IEEE International Con-
ference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, 2021, pp. 551–555.

[20] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, “Curating GitHub
for engineered software projects,” Empirical Software Engineering,
vol. 22, no. 6, pp. 3219–3253, 2017.

[21] E. Bogomolov, Y. Golubev, A. Lobanov, V. Kovalenko, and T. Bryksin,
“Sosed: a tool for finding similar software projects,” in Proceedings of
the 35th IEEE/ACM International Conference on Automated Software
Engineering, 2020, pp. 1316–1320.

[22] R. Di Cosmo and S. Zacchiroli, “Software heritage: Why and how
to preserve software source code,” in iPRES 2017-14th International
Conference on Digital Preservation, 2017, pp. 1–10.

[23] V. Markovtsev and W. Long, “Public git archive: a big code dataset
for all,” in Proceedings of the 15th International Conference on Mining
Software Repositories, 2018, pp. 34–37.

[24] E. Lyulina, A. Birillo, V. Kovalenko, and T. Bryksin, “TaskTracker-tool:
A toolkit for tracking of code snapshots and activity data during solution
of programming tasks,” in Proceedings of the 52nd ACM Technical
Symposium on Computer Science Education, 2021, pp. 495–501.

[25] N. Sviridov, M. Evtikhiev, and V. Kovalenko, “TNM: A tool for
mining of socio-technical data from git repositories,” in 2021 IEEE/ACM
18th International Conference on Mining Software Repositories (MSR).
IEEE, 2021, pp. 295–299.

[26] S. Surana, S. Detroja, and S. Tiwari, “A tool to extract structured data
from GitHub,” arXiv preprint arXiv:2012.03453, 2020.

[27] T. F. Bissyandé, F. Thung, D. Lo, L. Jiang, and L. Réveillere, “Orion:
A software project search engine with integrated diverse software arti-
facts,” in 2013 18th international conference on engineering of complex
computer systems. IEEE, 2013, pp. 242–245.

[28] A. Abdellatif, K. Badran, and E. Shihab, “MSRBot: Using bots to answer
questions from software repositories,” Empirical Software Engineering,
vol. 25, no. 3, pp. 1834–1863, 2020.

https://github.com/Textualize/rich/blob/master/.github/workflows/pythonpackage.yml
https://github.com/Textualize/rich/blob/master/.github/workflows/pythonpackage.yml
https://github.com/Textualize/rich
https://github.com/pavt/egad
https://doi.org/10.5281/zenodo.7714219

	Introduction
	Tool Architecture and Implementation
	Domain model
	Custom views
	Narratives
	EGAD implementation

	EGAD in action
	Goal definition
	Wrapping the GA workflow data in the domain model
	Inspecting the domain model
	Interpreting the results
	What's next?

	Related work
	Conclusion and future work
	References

