
Evolution of GitHub Action Workflows
Pablo Valenzuela-Toledo

ISCLab, DCC, University of Chile
DCI, Universidad de La Frontera

pvalenzue@dcc.uchile.cl

Alexandre Bergel
ISCLab, DCC

University of Chile
abergel@dcc.uchile.cl

Abstract—GitHub Actions are an event-driven tool to auto-
matically respond to particular GitHub events. Typical events
are receiving new pull requests or publishing a software release.
Despite the massive and quick adoption of GitHub Actions, little
is known about the incremental construction of GitHub Actions
workflow by practitioners.

This paper presents the result of a manual inspection of 222
commits of GitHub Actions workflows obtained from 10 popular
open-source repositories. Our hierarchical taxonomy, obtained by
systematically categorizing and tagging workflow modifications,
reveals 11 types of modifications and presents opportunities for
improvement in the way workflows are built and edited. In
particular, our results highlight the need for adequate tooling
to support refactoring, debugging and code editing of GitHub
Actions workflows.

Index Terms—GitHub Actions, Workflow Modifications Taxon-
omy, Workflow Evolution

I. INTRODUCTION

Automating repetitive tasks of a software development
process is nowadays frequently supported by Social Code
Platforms, such as GitHub [1]–[3]. GitHub Actions (GA)
are a service offered by GitHub to automate all software
workflow, including building, testing, and deploying directly
from GitHub1. GA is relatively new since a beta release of
GA was available in November 2019. Since then, GA is now
a central service for both practitioners and cloud adoption2.
Software developers have a positive perception of GA [3].

Despite the relevance of GA in state-of-the-art software
development practices, little is known about how practitioners
build and maintain GitHub Actions workflows. In particular, it
is not clear how practitioners cope with the particularities of
developing GA workflows (e.g., workflow are executed only by
pushing a change in the repository, debugging a GA workflow
is carried out by inspecting logs, workflows are typically edited
through a generic text editor through the GitHub interface).

This paper provides a first approximation of how practitioners
build and maintain GA workflows. We have revised the
content and history of 10 open-source GitHub repositories. The
repositories were selected from a previous related effort [4].
From the selected projects, we identified 222 commits that
directly involve the edition of at least one GA workflow. Our
taxonomy comprises 11 different types of workflow modifica-
tions, themselves classified into the following categories: (i) file

1https://github.com/features/actions
2https://docs.microsoft.com/en-us/azure/cloud-adoption-framework/

scenarios/github-velocity/

modification, (ii) execution configuration, and (iii) workflow
construction.

Our results highlight a number of deficiencies in the way GA
workflows are produced and maintained. In particular, we found
4.5% of modifications are about fixing the YAML syntax used
in workflow, another 5.86% involve debugging GA workflows.

The outline of the paper is as follows: Section II succinctly
describes GitHub Actions as theoretical background; Section III
states a research question and presents the methodology we
used to build a taxonomy; Section IV presents our results;
Section V presents the threats to our effort; Section VII
concludes and highlights some of our future works.

II. WORKFLOWS MODIFICATIONS IN GITHUB ACTIONS

GitHub Actions (GA) is an event-driven feature provided by
the GitHub Social coding platform to automate software devel-
opment tasks. Using workflows as an essential building block,
the configuration of actions automatically trigger responses to
different events, which is the base for continuous integration.
These events reflect specific software development activities
that trigger the workflow execution. For example, a workflow
running all the unit tests may be executed upon merging a pull
request into a particular branch. Practitioners can define actions
by creating entirely new workflows or reuse previously built
actions publicly available in the GitHub Actions Marketplace3.

Workflows are stored as scripts in the .github/workflows

directory and use YAML syntax, and file extension .yml or
.yaml. The lifecycle of a GA workflow is very different from
traditional software program. In particular, the execution of a
workflow is triggered with any commit in the GitHub repository,
commit being related or not to the workflow. As a consequence,
the history of GitHub repositories having actions contains great
details about all the changes made on workflows, at a fine
grain. As any kind of software artifacts, GA workflow files
are modified over time, expressing new continuous integration
requirements. In our case, we consider a workflow modification
as any change in a YAML file.

III. STUDY DESIGN

This paper report our finding on GA workflow modifications
from a qualitative perspective. We propose a taxonomy of
workflow modifications that developers tend to perform when
using GA. Our study addresses the following research question
(RQ):

3https://github.com/marketplace?type=actions



• RQ: What types of GitHub Actions workflows modifica-
tions are performed by developers on our set of selected
software repositories?

This RQ aims at analyzing a sample and determining
the types of workflow modifications carried out by software
developers when building/maintaining workflows. Knowing the
types of workflow modifications performed by developers is a
valuable source of data that can guide the future development
of tools to ease the evolution of workflows.

A. Data Collection

To answer our RQ, we mine the commits from ten open-
source software GitHub repositories from a previous related
effort [4]. We collected these commits in July 2021 and
represented the context of our study. The data selection
criteria were: (1) commits from repositories using GitHub
Actions; (2) commits associated with GitHub Action workflows
modifications; and (3) commits that were available between
the release of GitHub Actions, and July 30, 2021.

We built our dataset in three sequential steps: (i) we clone
the software repositories; (ii) we extract commits that fulfill our
data selection criteria; (iii) for each commit we defined a link to
the GitHub single commit view; and (iv) we extract the result
of the workflow execution. In this way, we take advantage of
GitHub to visualize the GA workflow modification.

A total of 222 commits satisfied our selection criteria,
representing 5.6% of the total available commits in the period
of our study. All 222 workflow modifications are available in
our dataset file [5].

B. Methodology

We use the open card sorting approach in our study [6].
Card sorting is a widely used technique in software engineering
useful to derive taxonomies from data [7]. In our case, card
sorting helps us to categorize GA workflow modifications.
Figure 1 illustrates our methodology.

We executed card sorting in three phases, according to
guidelines defined by Few [6]. In the preparation phase, we
configured our cards using descriptive coding [8], which is a
useful technique to generate a rich description of the study
subject. We wrote down an explicit fine-grain description of
each workflow modification using the GitHub single commit
view. We adopt the criteria of including an explanation about
why and where the change occurred. We added a total of 222
descriptions (one for each workflow-related commit). Then, we
physically printed out our 222 cards, each including a descrip-
tion and context information of each GA workflow modification
(project name, project owner, file name, identification number).

In the execution phase, we label and sort each card into
meaningful groups with a descriptive title (e.g., the card with
text “A new workflow was added, for push event” was classified
as New Workflow). Finally, in the analysis phase, with no
predefined groups we derive abstract hierarchies in order to
deduce general categories.

We adopt our card sorting approach considering the following
execution criteria:

• The description criteria of the preparation phase was
piloted by 3 participants, 2 undergrad students and the first
author. Here, we assigned 50 workflow modifications links
to each participant to write down respective descriptions.
Participants reviewed and compared the descriptions and
derived the final description structure.

• The card labelling during the execution phase was sup-
ported by the physical creation of printed cards. Each
card includes related data, for a better comprehension of
the workflow modification.

• We manually build a hierarchy and sort all the categories
accordingly.

IV. RESULTS DISCUSSION

We built a taxonomy consisting of 11 types of GA workflow
modifications including a total of 222 labelled modifications
(see Table I). We grouped these modifications into 3 main
categories: (i) file modification; (ii) execution configuration;
and (iii) workflow construction.

We present representative examples for each category and
discuss implications for practitioners derived from our findings.
The whole list of commits is available in our accompanying
artifact [5].

TABLE I: Workflow Modifications Taxonomy.

Primary group Secondary group # %

File
Modification

New workflow 23 10.36
Deleted workflow 1 0.45
Workflow file-name modification 4 1.80

Execution
Configuration

Showing instructions execution 2 0.90
Updated instruction 10 4.50
Debugging 13 5.85

Workflow
Construction

Instruction definition 134 60.36
Code review configuration 7 3.15
Commented code 2 0.90
Code indentation 10 4.50
Testing configuration 16 7.20

Total modifications 222 100%

A. File Modifications

A total of 27 (12.16%) workflow modifications are related
to file modifications. This category covers the following types
of modifications: (i) New workflow; (ii) Deleted workflow; and
(iii) Workflow file-name modification.

New workflow (23). New workflow category refers to adding
a new workflow to the repository. Practitioners incorporate new
workflows as a way to automate answers to events. We found
23 samples of this type of modifications (e.g., [9]).

Deleted workflow (1). Deleted workflow refers to removing
an existing workflow from the repository. Such a removal
typically happens to reduce the activity on GitHub’s cloud
infrastructure, to remove obsolete workflows, or to keep the
activity under a GitHub free plan (2000 minutes per month).
We found 1 sample of this category (e.g., [10]).

Workflow file-name modification (4). This category covers
any change of the workflow file name to reflect refactoring.
We found 4 samples in this category (e.g., [11]).



Fig. 1: Illustration of our methodology.

Discussion. Our results highlight modifications related to
modifications of the workflows files. In this category the
modification type most frequently found is, not surprisingly,
New Workflow. Indeed, as it happens with new added source
code, new workflows are frequently added to implement new
features, e.g., a greeting answer to a push event [12]. We
also notice that new workflows are part of migration from
previous similar used tools. Here, using the related pull request
discussion [13] of the modification [14], we verify a migration
from Travis to GitHub Actions. However, adding workflows
might not be trivial since not all new ones are correctly executed.
We found that just 29% of newly added workflows were
executed successfully. We also found a similar scenario in
Deleted Workflow category, as we can notice in the related
pull request discussion [15] of the modification [10].

These results are consistent with previous studies regarding
the incorporation of new automation practices in the software
development process. The mere introduction of an automated
build infrastructure in the development workflow does not
guarantee to achieve the expected benefits of automation such
as faster releases [16] and increased developer productivity [17].

B. Execution Configuration

A total of 25 (11.26%) workflow modifications are related
to execution configuration, including: (i) Showing instructions
execution; (ii) Updated instruction; and (iii) Debugging.

Showing instructions execution (2). Showing instructions
execution category covers modifications that allows visualizing
the execution of one or more workflow instructions. We found
2 samples in this category (e.g., Figure 2 [18]).

Fig. 2: Adding instructions to show workflow execution [18].

Updated Instruction (10). This category refers to mod-
ifications where one or more changes are done to update
tools/software used in the workflow. We found 10 samples
of this category (e.g., Figure 3 [19]).

Fig. 3: Updating an action from version 1 to version 2 [19].

Debugging (13). Debugging category refers to modifications
made to find or reduce the number of defects of the workflow.
Practitioners often debug their workflows to make them behave
as expected [20]. We found 13 samples of this category (e.g.,
Figure 4 [21]).

Fig. 4: Deliberately making the workflow fail [21].

Discussion. Most of the modifications related to execution
configuration can be generalized to issues experienced by
developers when executing workflows. This scenario is strongly
related to the lack of cultural shift that involves incorporate
automation tools [22]. For example, since GA debugging build
failures happen on a remote server with limited access, fixing a



bug is not a straightforward task. Also, waiting for the results of
long builds threatens developer productivity. Here, we notice
that the workflow creation-edition-execution process is not
tool-supported and explains why nearly the 40% of the total
modifications we identified do not execute correctly.

C. Workflow Construction
A total of 169 (76.13%) workflow modifications are related

to workflow construction. This category considers modifica-
tions related to: (i) Instruction definition; (ii) Code review
configuration; (iii) Commented code; (iv) Code indentation;
(v) testing configuration.

Instruction definition (134). This category refers to adding,
modifying an instruction at any level (e.g. at job or step level)
in the workflow. We found 134 samples of this category (e.g.,
Figure 5 [23]).

Fig. 5: Defining workflow instructions to add new tool
specifications [23].

Code review configuration (7). This category covers mod-
ifications related to adding, modifying or defining tools to
automate code review associated task in the new workflow. We
found 7 samples of this category (e.g., Figure 6 [24]).

Fig. 6: Configuring a code review workflow [24].

Commented code (2). This category refers to code-
comments present in the workflow. We found 2 samples of
this category (e.g., [25]).

Code indentation (10). Code indentation refers to modifying
the indentation of the code in the workflow. We found 10
samples of this category (e.g., [26]).

Testing configuration (16). Testing configuration refers to
adding, modifying tools/software to test code in the workflow.
We found 16 samples of this category (e.g., [27]).

Discussion. Many of the modifications related to Workflow
Construction concern the way in which developers define
and configure GA. Not surprisingly, the Instruction Definition
category is our most frequent modification type (60.36%).
In this case, the definition of a new instruction can be both
involved in debugging [23] and adding features [28].

In this context, we notice lack of code documentation in
workflow construction. For example, we find that just 17
samples of workflows that include code-comments.

V. THREATS TO VALIDITY

We report construct, internal and external threats to validity.
Construct Validity: Threats to construct validity are related

to the potential measurement imprecision when extracting data
used in our study. Since we manually verified each of 222
workflow modifications, we did not discard entries in our
dataset. In this way, we make sure that the automatic mining
of workflows modifications do not include false positives.

Internal Validity: Threats to internal validity refers to con-
founding factors in our study that can affect the results because
suggestiveness was introduced during the manual analysis. We
mitigated this threat by following description criteria and by
analyzing each sample (3 participants) independently.

External Validity: Threats to external validity are related
to the ability to generalize our study observations. Although
we considered different software projects in our analysis, our
workflow modification taxonomy relies on the specific set of
modifications that we analyzed and a small subset of available
GitHub software projects. So, it is possible that in other contexts
(other software projects), workflows modification types that
we found did not appear.

VI. RELATED WORK

Because GitHub Actions are a relatively new tool, released
at the end of 2019, there is little work related to mining GitHub
Actions workflows. Also, previous work has investigated other
automation practices and tools such as continuous integration,
continuous delivery and software bots.

GitHub Actions. Prior work about GitHub Actions tech-
nology has shown been well perceived by practitioners [3].
Its adoption shows an increasing number of monthly rejected
pull requests and a decreasing number of commits on merged
pull requests. The most common operations are continuous
integration, miscellaneous utilities (e.g., reading configuration
files), deployment, publishing, and code quality/code review,
with other types of actions.

Continuous Integration and Continuous Delivery. The
main goal of continuous integration and delivery is improving
software quality and reducing risks and holds vast potential to
further reduce human effort by automating repetitive tasks [29].
Nevertheless, this practice implies a cultural shift and involves
non-trivial challenges. Hilton et al. [22] list these challenges
as follows: (1) debugging build failures is not straightforward



since it is carried out on remote servers; (2) waiting for the
results of long builds is necessary, which threatens developer
productivity; (3) automating software engineering task requires
dedicated developers; (4) the size of each coding task has to
be granular enough to enable developers to integrate frequently
their code contributions.

Software Bots. Software bots can be used for software
engineering task automation. For example, in GitHub inte-
grating software bots into the pull request workflow can
perform tasks related to repairing bugs or refactoring the source
code [30]–[32]. Also, software bots can support technical
and social aspects of software development activities, such
as communication (greeting messages) and decision-making.
[33], [34].

VII. CONCLUSIONS AND FUTURE WORK

We study workflow modifications from 10 different software
projects. We qualitatively discussed our findings and expose
implications for developers. Our effort contribute to (i) under-
standing how developers use GitHub Actions and (ii) providing
a ground for possible future improvements.

Given the undeniable value of GitHub Actions technology
we consider that the use tools is a need to better supporting
workflows creation/edition. Tools should be able of identify
syntax errors, and provide recommendations to specific com-
mon task. In addition, the workflow creation/editing process
requires practitioners to accept and incorporate new approaches
and culture to guaranty expected benefits of automation such
as faster releases and increased developer productivity.

Our future work comprises the correlation between workflow
modification and the workflow execution. Such a correlation
would then be used to predict the build outcome without
executing the workflow, and as such, making the workflow
execution more agile. Another effort will comprise the build of
IDE extension to support the refactoring and lint-like checks
of GitHub Actions workflows. As far as we are aware of, the
VSCode plugins related to workflow available in the Visual
Studio Marketplace do not support refactoring and lint-like
rules.
Acknowledgements. Bergel thanks the financial support of the
ANID Fondecyt Regular project number 1200067. Valenzuela
thanks the financial support of the Universidad de La Frontera,
DIUFRO Project number DI20-0015.

REFERENCES

[1] J. Humble and D. Farley, “Continuous delivery: Reliable software releases
through build,” Test, and deployment automation. Pearson Education,
vol. 1, 2010.

[2] D. Kavaler, A. Trockman, B. Vasilescu, and V. Filkov, “Tool choice
matters: Javascript quality assurance tools and usage outcomes in github
projects,” in ICSE ’19.

[3] T. Kinsman, M. Wessel, M. A. Gerosa, and C. Treude, “How do software
developers use github actions to automate their workflows?” arXiv
preprint arXiv:2103.12224, 2021.

[4] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, “Curating github for
engineered software projects,” Empirical Software Engineering, vol. 22,
no. 6, pp. 3219–3253, 2017.

[5] P. Valenzuela-Toledo and A. Bergel, “Workflow modifications dataset,”
July, 2021. [Online]. Available: https://bit.ly/3Dus7yL

[6] S. Few, “The encyclopedia of human-computer interaction,”
The Encyclopedia of Human-Com-puter Interaction (p. Ch 35).
Retrieved from https://www. interaction-design. org/literature/book/the-
encyclopedia-of-human-computer-interaction-2nd-ed/data-visualization-
for-humanperception, 2013.

[7] T. Zimmermann, “Card-sorting: From text to themes,” in Perspectives
on data science for software engineering. Elsevier, 2016, pp. 137–141.

[8] J. Saldaña, The coding manual for qualitative researchers. sage, 2013.
[9] Moosetechnology, “New workflow category commit example,” July,

2021. [Online]. Available: https://bit.ly/3nNOxEF
[10] Django, “Deleted workflow category commit example,” Github, July,

2021. [Online]. Available: https://bit.ly/3bz2RLs
[11] Roassal3, “Workflow file modification category commit example,”

Github, July, 2021. [Online]. Available: https://bit.ly/3byU6RQ
[12] Matplotlib, “New workflow category commit example,” July, 2021.

[Online]. Available: https://bit.ly/3CKYucs
[13] ——, “New workflow category commit example,” July, 2021. [Online].

Available: https://bit.ly/2Y79ul6
[14] ——, “New workflow category commit example,” July, 2021. [Online].

Available: https://bit.ly/2Y79ul6
[15] Django, “Deleted workflow category commit example,” July, 2021.

[Online]. Available: https://bit.ly/3nVWx6N
[16] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, “Usage, costs,

and benefits of continuous integration in open-source projects,” in ASE
’16.

[17] D. A. Tamburri, R. Kazman, and H. Fahimi, “The architect’s role in
community shepherding,” IEEE Software, vol. 33, no. 6, pp. 70–79, 2016.

[18] Roassal3, “Showing instructions execution category commit example,”
July, 2021. [Online]. Available: https://bit.ly/3Fpi8eW

[19] Django, “Updated instructions category commit example,” July, 2021.
[Online]. Available: https://bit.ly/3kht8TB

[20] J. Ressia, A. Bergel, and O. Nierstrasz, “Object-centric debugging,” in
ICSE ’12.

[21] Django, “Updated instructions category commit example,” July, 2021.
[Online]. Available: https://bit.ly/3GJq4co

[22] M. Hilton, N. Nelson, T. Tunnell, D. Marinov, and D. Dig, “Trade-
offs in continuous integration: assurance, security, and flexibility,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering.

[23] Matplotlib, “Instruction definition category commit example,” July, 2021.
[Online]. Available: https://bit.ly/3GDXQzE

[24] Curl, “Code review configuration category commit example,” July, 2021.
[Online]. Available: https://bit.ly/3CO4W20

[25] Matplotlib, “Commented code category commit example,” July, 2021.
[Online]. Available: https://bit.ly/3jXeq3N

[26] Django, “Code indentation category commit example,” July, 2021.
[Online]. Available: https://bit.ly/3GBDM0V

[27] Curl, “Testing configuration category commit example,” July, 2021.
[Online]. Available: https://bit.ly/3weLFog

[28] Matplotlib, “Instruction definition category commit example,” July, 2021.
[Online]. Available: https://bit.ly/3nOSKYH

[29] P. M. Duvall, S. Matyas, and A. Glover, Continuous integration:
improving software quality and reducing risk. Pearson Education,
2007.

[30] L. Erlenhov, F. G. de Oliveira Neto, R. Scandariato, and P. Leitner,
“Current and future bots in software development,” in 2019 IEEE/ACM
1st International Workshop on Bots in Software Engineering (BotSE).

[31] M. Monperrus, “Explainable software bot contributions: Case study of
automated bug fixes,” in 2019 IEEE/ACM 1st International Workshop
on Bots in Software Engineering (BotSE). IEEE, 2019, pp. 12–15.

[32] M. Wyrich and J. Bogner, “Towards an autonomous bot for automatic
source code refactoring,” in 2019 IEEE/ACM 1st International Workshop
on Bots in Software Engineering (BotSE). IEEE, 2019, pp. 24–28.

[33] B. Lin, A. Zagalsky, M.-A. Storey, and A. Serebrenik, “Why developers
are slacking off: Understanding how software teams use slack,” in Pro-
ceedings of the 19th acm conference on computer supported cooperative
work and social computing companion, 2016, pp. 333–336.

[34] M.-A. Storey and A. Zagalsky, “Disrupting developer productivity one bot
at a time,” in Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2016, pp. 928–931.


