
Fuzzing to Estimate Gas Costs of Ethereum
Contracts

Daniel Soto, Alexandre Bergel, Alejandro Hevia

Department of Computer Science (DCC), University of Chile, Chile
danielsoto.3004@gmail.com http://bergel.eu https://users.dcc.uchile.cl/∼ahevia/

Abstract—This paper studies how a simple approach based on
fuzzing testing can help authors of Solidity contracts to accurately
estimate the gas cost of services specified in a contract. Our fuzzer
creates a private blockchain and randomly generates transactions.
Such an environment is meant to simulate large scale behavior
that may be seen in a public blockchain. Our fuzzer handles
Ethereum starting and target endpoints in a transaction to
accommodate requirements expressed in financial contracts. By
comparing the gas computation made by the Ethereum Solidity
compiler and the actual consumption during our fuzzing, we
are able to find discrepancies between predicted and real gas
consumption. Our findings are beneficial to transaction authors
to correctly predict the computing resources of Ethereum miners.

I. ETHEREUM GAS MODEL

A blockchain is essentially a distributed database. Al-
though originally designed to record financial transactions,
a blockchain can ledge transactions about everything of value.
Ethereum, a popular computing platform and operating system,
exploits this feature by running applications in a consistent
yet distributed way, while storing the state of programs on the
blockchain [1].

Ethereum relies on the Ethereum Virtual Machine as the
executing platform, which can run programs written the
programming language Solidity. This language is similar to
Java in many aspects. For example, a Solidity contract roughly
looks like a Java class and a Solidity service is similar to
a public Java method. A service may be executed either by
another service, or by a transaction. As such, a transaction is
similar to the classical remote method call. Here is an example
of a contract:

1 contract SimpleStorage {
2 address owner;
3 uint amount;
4 constructor() public {
5 owner = msg.sender;
6 }
7 function pay() public payable {
8 require(owner == msg.sender);
9 amount += msg.value;

10 }
11 }

Line 4 - 6 defines a contract constructor, which gets executed
when the contract is deployed on a blockchain. Line 5 records
the sender of the transaction into a variable called owner. As
such, the owner variable references an address that uniquely
identifies the owner of the contract.

In a public blockchain, anyone can execute a transaction,
for any public service. A public service may be designed to
produce valuable data (e.g., a record of a financial transaction,
as in our example given above), which deserves to be stored in
a blockchain. As an incentive for Ethereum network members
(called miners) to execute transactions, Ethereum offers a
monetary system, called gas, which has a price set in any
transaction. A transaction includes payments for the gas its
execution consumes. After executing a transaction, a miner
earns the reward fee set by the transaction author, and if the
execution succeeds, the result of the transaction is placed in
the blockchain.

Ethereum also considers safety measures to prevent wast-
ing miners’ resources and denial of service attacks. If the
transaction execution does not succeed, for example, if the
service invoked by the transaction raises an error or takes “too
long” to execute, then the miner earns the fee paid by the
transaction author, and no record is added in the blockchain. In
that case, the transaction author loses money without obtaining
the hoped execution result. Indeed, a transaction has to provide
a threshold called gas limit, that represents the maximum
amount of resources used by the miner computing platform.
The existence of such a limit is important as it ensures the miner
that executing the contract service specified by the transaction
is bound in terms of resources (CPU and time).

A gas is a unit describing elementary computational steps.
A unit of gas corresponds to the execution of one atomic
instruction: a bytecode. For example, multiplication is a simple
operation that requires few computational units (5 gas) while
a significantly more complex operation, such as getting the
balance of a particular account costs 400 gas.1

The gas estimation problem. Solidity estimates the upper limit
of the gas cost of a given contract by performing a static
analysis on (the bytecode of) the contracts. Any imprecision
in this estimation, however, may have dramatic consequences.
In particular, (i) if the service raises an error or (ii) if gas
limit is too low, then the miner gets to keep the fee without
actually producing a useful result for the person who produced
the transaction. This risk of losing money without having an
actual result is well known among Solidity programmers. As
a consequence, authors of contracts have a tendency to lower
their risk by simplifying their contracts and reusing code that

1https://github.com/crytic/evm-opcodes

is known to work well by means of duplication across multiple
Solidity codebases.

Related work. Other tools have been developed to estimate gas
costs, such as GASTAP [2], which operates on the bytecode
of a contract and generates formulas to compute the exact gas
costs of executing a transaction, given the state of the contract.
In contrast, our fuzzing tool generates a gas cost distribution,
independent of the contract’s state.

Contributions. This work presents a new approach to accurately
estimate the gas cost of services specified in a Solidity contract
by using fuzzing testing. Our fuzzing tool is able to discover
the range of possible gas costs a service may have at execution.
With this tool, we were able to identify a number of patterns
in which the popular way of estimating the gas cost is wrong
and may therefore be considered a potential threat.

This paper makes the following contributions:
• It defines a simple, although extensible fuzzing model for

solidity contracts.
• It classifies most of the contracts available in the

blockchain based on their expected gas costs, and actual
gas costs.

• It analyses a few extraordinary examples, and proposes
hypothesis on why estimations may be off.

New idea and emerging results. In this paper, we put
forward the idea of applying fuzzing techniques to the Solidity
programming language to estimate gas costs. Such application
is not trivial for a number of reasons: (i) Solidity has some
syntactic constructs that are unique, e.g., monetary transactions;
(ii) any fuzzer needs to define a mock environment in which
a blockchain can be properly handled to execute Solidity
contracts. As such, classical fuzzers cannot be trivially ported
to Solidity. The ability of the Solidity compiler to statically
estimate the gas cost is a safety net to prevent wasting monetary
and computational resources. Our emerging results indicate
that the technique employed by the compiler can be imprecise
in some cases, making estimations infinite whenever it can
not determine an upper-bound, and we propose a viable and
practical solution to this situation.

II. METHODOLOGY TO ESTIMATE GAS COST

Our hypothesis is that fuzzing testing technique is efficient
at better estimating the gas cost of Solidity services. This
section describes the methodology we designed to verify this
hypothesis.

A. Fuzzing

Fuzzing testing [3] allows automating software testing by
generating tests automatically. We use fuzzing testing on
Solidity contracts by (i) randomly and uniformly generating
values for primitive types, including numerical and boolean
types, and (ii) generating transactions that randomly invoke
Solidity services. As in most fuzzing techniques, we use a
geometric distribution of size-variable values, such as strings
and arrays. Our fuzzer is able to invoke a transaction by

generating arguments of a contract service’s signature, and
a random address of the transaction emitter.

We chose to implement our own fuzzer over already available
tools like Harvey [4], Echidna [5], ContractFuzzer [6] or
GasFuzz [7], to better accomodate our VM choice and grant us
a large amount of control over how parameters were generated.
This approach also eases the addition of more sophisticated
components later on, such as symbolic execution.

The fuzzer we designed and implemented for Solidity follows
the traditional guidelines to build fuzzers [3] since Solidity
shares many common constructions with most general purpose
programming language such as Java or Python. There are
key differences though. Since Solidity is designed to express
financial transactions in a blockchain, the language provides
an explicit way to refer to people’s identities. An address
uniquely identifies a buyer, a seller, or any account which could
be either the source or target of a transaction. An address is
represented by an unsigned integer, coded on 20 bytes. For
example, consider the following code, which transfers a value
of 200 to address x under a particular condition:

1 address x = 0xd26cef9bfcefa8b4b42e244353f5ec366d21e7ba;
2 address myAddress = this;
3 if (x.balance < 200 && myAddress.balance > 200) x.transfer(200);

Many Solidity contracts expect the sender of a transaction
to match some properties. For instance, the service pay() in
the example contract given in Section I requires that the owner
of the contract is the same as the author of the transaction.

During the transaction generation, our fuzzer (i) generates
new addresses or (ii) reuses those previously generated by
means of a hyperparameter that represents the frequency of
reuses across the transaction generation. Reusing addresses
has the effect of simulating multiple transactions emitted by
the very same starting endpoints. As such, the transaction
pay() will succeed if the same address is used to deploy the
SimpleStorage in the local blockchain.

Accounts are represented as addresses. When an account is
initially generated, it has a balance expressed in ether. As it is
customary while developing and testing Ethereum applications,
to avoid wasting actual money on tests, this balance may
be obtained from a faucet address, a standard mechanism to
request (free) ether. This faucet address is initialized by our
fuzzer when creating a local blockchain.

B. Generating Transactions

For the transaction emulation, the EVM implementation
py-evm was used [8]. Although many EVM implementations
are available, we chose py-evm because it passes all standard
VM tests and it is well documented. Each transaction is
executed as follows:

1) A contract is randomly selected,
2) A service within the contract is randomly chosen,
3) The arguments for the services and the calling address

are generated by the fuzzer, and

4) The generated transaction is sent to the blockchain for
execution, along with around 107 wei to pay for any
possible gas costs.2

After the transaction’s execution, the obtained gas cost is
stored within the blockchain instance used by our fuzzer. This
gas cost is then used to analyze patterns as we explain later.

C. Symbolic Execution

By solely relying on execution, our fuzzer may have
completely missed some branches of the source code. In
consequence, we added to our fuzzer a symbolic analysis
over the require statements. This tried to maximize the gas
costs obtained during the fuzzing by avoiding early exits due
to unfulfilled constraints.

The symbolic execution operated on require statements
with numerical conditions, and tried to always make those
conditions become true. For this, we parsed each require
call in search for the needed arguments and the expression to
evaluate. In case any of these arguments were state variables
of the contract, we executed a transaction to obtain the latest
values of these arguments. In order to avoid visibility problems,
a public getter was generated for every non-public property of
the contract before generating the bytecode used by the VM.

D. Contracts and Experiment Execution

We evaluated our fuzzer on a large number of contracts
obtained from http://EtherScan.io. We ran our fuzzer on 19, 325
Solidity files. These files defined 94, 878 contracts, 233, 369
public services, totaling 6, 075, 210 lines of code. The analyzed
contracts were all written in version 0.4 of Solidity.

The experiment was designed as follows. We iterated over the
Solidity files. For each file, we created a new blockchain. We
uploaded to that new blockchain all the bytecodes produced by
compiling the contracts of the file. Each service was executed
15 times on average. The whole process was repeated 10 times,
totaling 150 executions per service, and such, for each service
in the dataset.

Since the only measured metric was gas consumption, the
experiment was independent from the underlying machine’s
specs. It was executed using versions 0.2.0a42 of pyevm, 3.2.0
of py-solc, 1.3.0 of eth-abi, 0.2.1 of eth-keys and 0.1.0

a23 of trinity.
Overall, we let our fuzzer randomly test more than 6 million

LOC of Solidity, a process that took more than three months.
We collected the consumed gas of each of the 150 invocations
of each service.

III. RESULTS

Cost estimation blueprint. We designed a visual support to
summarize the result of our fuzzing algorithm on an individual
service. The blueprint is composed of a histogram of the gas
cost, represented by the frequency of the service invocation for
a given gas cost range. A vertical dashed red line indicates the

2A Wei is a smallest faction of ether, the cryptocurrency coin used to express
account balances. We note that gas consumption is ultimately expressed in
Wei.

assessment made by Solidity using static analysis of the gas
cost of the service, and a vertical green line for the average
cost.

Fig. 1: Gas cost of a service in the less-than, constant category.

Figure 1 illustrates the blueprint of a service with a constant
consumption during the fuzzing test. However, the expected
gas cost, as predicted by Solidity, is significantly lower. This
example reflects a runtime error. Having an error at runtime
has dramatic consequence, in particular, all gas sent within
a transaction is consumed when the transaction fails. Our
simulation sends a very large amount of gas with each
transaction, thus emphasizing the wrong estimation made by
Solidity. The source code of the service illustrated in the figure
is:

1 function buy() payable public {
2 uint amount = msg.value / buyPrice;
3 transferFrom(this, msg.sender, amount);
4 }
5 function transferFrom(address from, address to, uint256 value)

returns (bool) {
6 var allowance = allowed[from][msg.sender];
7 balances[to] = balances[to].add(value);
8 balances[from] = balances[from].sub(value);
9 allowed[from][msg.sender] = allowance.sub(value);

10 Transfer(from, to, value);
11 return true;
12 }

The runtime error stems from the fact that the code
tries to make a transfer towards a wrong address in the
simulation blockchain. The service transferFrom is a user-
defined wrapper to transfer transaction amount that performs
particular checks. Since the service buy() leads to an error if
any of the two provided addresses are inadequate, the gas sent
along with the transaction is consumed. As a result, this error
causes a gas cost higher than what Solidity estimated. Solidity
estimates a service cost based on summing the individual gas
cost of each bytecode contained in the contract, and does not
consider possible errors, such as the one illustrated above.

Cost trend. The gas consumption histogram may show an
overall trend. Consider Figure 2 which shows three buckets in
which the frequency decreases for higher costs. Such a trend
may be due to the presence of (i) a conditional statement in
which our fuzzer is not able to let the execution go through,
or (ii) a service that exits early to avoid any runtime errors.

Fig. 2: Blueprint example

The blueprint given in Figure 2 does not have the Solidity
estimation (i.e., the dashed vertical line) because Solidity
estimated the consumption as infinite, indicating a situation
for which Solidity cannot determine an upper bound. Such
a situation may happen if the contract has to invoke another
contract on the blockchain, for which static analysis is not
possible.

A cost trend may decrease (e.g., Figure 2), be stable (e.g.,
Figure 1), or increase, and it is a simple, albeit expressive
visual support to indicate the amount of branches the code
contains and how restrictive their associated conditions are.
Classification. The cost estimation blueprint relates three
aspects of the fuzzing (i) the average gas cost, (ii) the gas
cost estimation made by Solidity, and (iii) the general trend
in the frequency of gas costs. As such, each blueprint can be
classified along two dimensions, the average cost and the cost
trend:

• Average cost: Comparing the average gas cost obtained
during the fuzzing against the Solidity estimation, four
situations may happen: (i) the average cost is less than
the estimation, (ii) it is equal, (iii) it is greater, or (iv)
none, capturing the case when Solidity cannot statically
estimate the cost, and merely the service may have an
infinite consumption.

• Cost trend: a cost trend belongs to one of the following
four categories: decreasing (greater gas costs have a lower
frequency than lower gas costs), constant, increasing
(greater gas costs have a higher frequency than lower gas
costs), or other (gas costs do not establish a monotonic
trend).

We hypothesize that the overall profile of a gas cost
consumption can be adequately characterized by these two
dimensions. Furthermore, it highlights some aspects of its

control flow structures. Manually inspecting the less category
for the average costs reveals that this category is likely due
to runtime errors (for which the gas fee associated with a
transaction is lost when an error occurs).

Fig. 3: Heatmap indicating the obtained classifications

Quantitative analysis. Our fuzzer produced 233, 369 blueprints
(one per public service), and each was classified in the
categories described above. Figure 3 shows how the blueprints
are distributed across the categories.

Our results indicate that only 36.12% of the public
services have a gas cost equal to the estimate made by
Solidity from a static analysis. A manual inspection on a
representative sample of the source codes indicates that services
with a constant cost are mostly variable accessors or calls to
external services and operations which might result in an error.
Note that these methods are often automatically generated by
the Solidity compiler. Service accessors for fields having a
dynamically-sized type, such as maps, strings, and dynamic
arrays, have an infinite gas cost.

The none category, defined by services whose estimation
was infinity, are mostly composed of services where one of the
following happens: (i) a function call to an external contract is
made; (ii) a transfer is made; (iii) a dynamically-sized field is
returned; (iv) the code contains a loop whose length depends
on the state of the contract.

The decreasing case of the none category mostly corresponds
to cases (3) and (4). This is because of how the fuzzer generates
dynamically sized fields, where the value generator uses a
geometric distribution to determine the length of the sequences.

The greater-than category is composed mostly by services
that have some kind of error checking with if statements, and
simply returning if a condition is not true. These services
naturally have an average cost, which is lower than the
estimation, since they are called with essentially random
arguments. As such, there is a very low probability that the
execution would pass through the error checking statements.
Because Solidity gives an upper bound for the expected gas cost,
then the actual gas cost is lower than the estimation because

the execution took a shorter branch of the code, mostly exiting
early to avoid errors. An example of code that generates this
behavior follows.

1 function transferOwnership(address newOwner) public ownerOnly {
2 if(owner != newOwner) {
3 owner = newOwner;
4 }
5 }

Fig. 4: Gas cost of the service transferOwnership.

The trends decreasing, increasing, and other are tightly knit
to the greater-than and none classifications. Both decreasing
and increasing generally check for errors in their code, but
the trend is defined by how restrictive this check is. In the
increasing trend, most of the executions manage to pass through
the require statements. In decreasing trends the opposite
happens. They are more densely populated because they also
include code that operates on strings, arrays, or other objects
of variable size. Since the fuzzer generates these values using a
geometric distribution, it is more likely to have shorter values,
hence the bias for these functions to be classified as decreasing.
The other classification is also closely related to this one, since
the decreasing trend takes strict decreasing frequencies. It takes
only a couple of outliers to break the pattern and make the
function be classified as other.

IV. CONCLUSION AND FUTURE WORK

We have developed a fuzzing testing tool3 that allows us
to classify each service of a contract using two criteria: its
performance against the estimation made by Solidity, and
the trend of the gas cost exhibited during the testing. Each
classification offers us some insight about what the associated
code might do, including the restrictiveness of the error
checking, possible optimizations and encountered runtime
errors. Our testing tool was designed for ease of use and,
as such, no configuration is necessary to use it.

Our fuzzer gives a pragmatic approach to gas estimations,
by executing the code multiple times and checking how much

3Our fuzzer is distributed under the MIT License and is available on
https://github.com/danno-s/gas-fuzzer.

each transaction cost. Since the fuzzing is done completely at
random, it might violate some implicit contract expected by
the service. This might explain the large amount of services
that exit during error checks.

Future work will explore whether improving the fuzzer
with more advanced techniques allows for faster and better
estimations. Also, generating better metrics to ease comparison
between the fuzzer and other tools for gas estimation is certainly
interesting. In particular, we wish to compare our fuzzer to
GASTAP, which use a static approach based on bytecode.
Since GASTAP operates directly on the bytecode, and does
not execute the code when estimating the gas cost, its runtime
is mostly constant for a given contract. In contrast, our tool
executes each function, and the amount of times it does so
is configurable, so depending on the accuracy desired in
the estimations its runtime might be higher or lower than
GASTAP’s.

We also make a simple recommendation to obtain safer
Solidity code. Early returns with if statements should be chosen
over runtime errors caused by require calls, in order to minimize
lost gas.

ACKNOWLEDGMENTS

We thank Lam Research and the ANID FONDECYT Regular
1200067 for partially sponsoring the work presented in this
paper.

REFERENCES

[1] G. Wood, Ethereum: A secure decentralised generalised transaction ledger
eip-150 revision (759dccd - 2017-08-07), accessed: 2018-01-03 (2017).
URL https://ethereum.github.io/yellowpaper/paper.pdf

[2] E. Albert, P. Gordillo, A. Rubio, I. Sergey, Gastap: A gas analyzer for
smart contracts, ArXiv abs/1811.10403 (2018).

[3] A. Zeller, R. Gopinath, M. Böhme, G. Fraser, C. Holler, The fuzzing book,
in: The Fuzzing Book, Saarland University, 2019, retrieved 2019-09-09
16:42:54+02:00.
URL https://www.fuzzingbook.org/

[4] V. Wüstholz, M. Christakis, Harvey: A greybox fuzzer for smart contracts,
CoRR abs/1905.06944 (2019). arXiv:1905.06944.
URL http://arxiv.org/abs/1905.06944

[5] Crytic, Invariant based solidity fuzzer., https://github.com/crytic/echidna.
[6] B. Jiang, Y. Liu, W. K. Chan, Contractfuzzer: Fuzzing smart contracts for

vulnerability detection, CoRR abs/1807.03932 (2018). arXiv:1807.03932.
URL http://arxiv.org/abs/1807.03932

[7] F. Ma, Y. Fu, M. Ren, W. Sun, Z. Liu, Y. Jiang, J. Sun, J.-G. Sun, Gasfuzz:
Generating high gas consumption inputs to avoid out-of-gas vulnerability,
ArXiv abs/1910.02945 (2019).

[8] E. Foundation, A python evm implementarion.,
https://github.com/ethereum/py-evm.

