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Abstract—This paper describes the experience we have gained
by reproducing software failure using genetic algorithm. Our
approach is based on reproducing exception for which its
associated runtime call stack matches the stack of the error to
reproduce. We present two tools for Python. Three simple case
studies illustrate the feasibility of our approach.

I. INTRODUCTION

Anyone with experience in programming knows that finding
and reproducing errors can be one of the most time expensive
activities in the development of a software project. Writing
a piece of software (especially when it starts to grow in
dimensions) that has no bugs is virtually impossible.

Writing a robust set of tests over our software is a very
effective way to prove functionality and find errors in the
application, but even then, tests can only show the existence
of errors and not the absence of them. There’s a very famous
quote of Donald Knuth saying “Beware of bugs in the above
code; I have only proved it correct, not tried it” [1], implying
that even though he gave a proof on the correctness of the
code he could not assure that it was free of errors.

The problem is that generating a robust set of tests is a
labour-intensive task. To address this issue many tools for
automated test generation for crash replication have been
introduced in the literature; but even so there’s a lack of
development in this topic on dynamically typed languages such
as Python, Ruby, or Smalltalk.

This paper presents two tools:
• Genyal: a general purpose evolutionary programming

framework written completely in Python focused on being
simple to use while maintaining the quality of the results;
and

• Beacon: a software that uses the previously mentioned
framework to reproduce program crashes by generating
sequences of instructions that raises a given exception and
the stack trace associated to it.

The proposal of this tools follows two main objectives:
1) Providing a way to reproduce Python crashes.
2) Generalize the ideas presented in previous works to

dynamically typed languages to empirically prove that
there’s no need to provide type information (be it
by explicit declaration or by type inference) to apply
stacktrace based test generation techniques to a program.

II. STATE-OF-THE-ART

Most of the previous implementations of using genetic
algorithms (GA) for test generation focuses on maximizing
the coverage [2]–[5].

On the other hand, previous approaches used for crash
reproduction do not usually apply evolutionary programming
to generate the tests [6]–[8].

Some recent approaches have been using the error’s stack
trace as the only source of information to replicate software
crashes [9]–[11], but the applications of this approach are
almost no existent for dynamically typed languages.

One approach that is going to be particularly important
in this area is EvoCrash [12]; this tool introduces a search-
based Guided Genetic Algorithm (GGA) to replicate crash
stack traces on Java programs, with mostly possitive results,
outperforming other approaches with high precision and short
execution times [13].

It is important to note that crash reproduction generation
does not assure anything about code coverage because we
would like the generated code to go through the less amount
of lines of code as possible, aiming at finding the minimum
amount of instructions to replicate the exception.

III. GENYAL

To solve the problem of generating a minimal crash repli-
cation (MCR) test we introduce Genyal, a genetic algorithm
framework implemented in pure Python aimed at being ef-
fective yet simple to use. This was done because previous
approaches to evolutionary programming are either outdated
or have a very complex flow that obfuscate the code (PyEvolve
[14] was last updated 5 years ago and DEAP [15] requires
a series of configurations in order to execute even simple
algorithms that ends up complicating the code).

The architecture of Genyal is composed by two main
components: a gene factory and the genetic algorithm engine.

The gene factory (represented by the GeneFactory class)
is an object that will contain the logic to create new genes from
a given generator function (see lines 1-3, 11-12 of listing 1).
For a given population, all individuals will share the factory
assuring that all generated members of the population are
consistent. This also provides flexibility since the generator



function can be any function defined by the user of the frame-
work, this makes the algorithm more generic, thus adaptable
to any kind of problem (as we will see in the next section
when we’ll use the factory to generate lines of code).

The engine (defined as GenyalEngine) is the runner of
the GA, this class is also very flexible allowing almost total
control over its parameters and execution, but it also provides
default implementations for most of them (tournament selec-
tion, single-point crossover, etc) in such way that the manual
configurations are done only when absolutely needed. There is
only a few parameters that are going to be needed for almost
all use cases: the number of individuals in the population, the
number of genes per individual (lines 16-17 of listing 1 shows
the creation of a population of size 32 where each individual
has 3 genes), the function used to calculate an individual’s
fitness, and, a function to stop the engine (see lines 4-10, 13-
15 of listing 1).1

1 def random_char():
2 return random.choice(
3 string.ascii_lowercase)
4 def fitness_fun(word: list[str]) -> float:
5 return sum([word[i] == "crow"[i]
6 for i in range(0, 4)])
7 def target(genyal_engine: GenyalEngine) \
8 -> bool:
9 return "".join(genyal_engine \

10 .fittest.genes) == "crow"
11 gene_factory = GeneFactory()
12 gene_factory.generator = random_char
13 engine = GenyalEngine(
14 fitness_function=fitness_fun,
15 terminating_function=target)
16 engine.create_population(32, 4,
17 gene_factory)
18 engine.evolve()
19 print(engine.fittest)
20

Listing 1. Example of using Genyal to find the word crow

IV. BEACON

The main contribution of this paper is Beacon, a tool to
generate a MCR based solely on the runtime stack. For this
we use a search-based guided genetic algorithm similar to the
one presented by Soltani et. al. [12].

The GGA used by Beacon follows the same structure as
most genetic algorithms (i.e. create a population, crossover,
mutation) which objective is to maximize a fitness function
that represents the similarity of the produced stack trace and
the desired one.

The following sections will explain the details of the algo-
rithm.

A. Population

Each individual of the population is defined by a series
of statements. To further explain this consider the following
definitions:

1The specific details of the framework definition can be found at
https://github.com/islaterm/genyal

Definition 1. Let P be the population of a GA. The alphabet
of the population, αP , is the set of values used to generate
each one of the individuals of the population such that for all
individuals Ii ∈ P , and, for each gene γij of the individual we
have that:

γij ∈ αP

Definition 2. We define the signature σ of a function f as a
set of pairs (pn, pv) such that pn is the name of a parameter
of f and pv the value of the parameter.2

Definition 3. A statement S is a tuple of values (f, n, σ)
where:

• f is a function contained in the alphabet αP

• n is the name of the function f
• σ is the signature of the function f

for αP the alphabet of a population P .

Note. Depending on the signature of f the alphabet may be
an infinite set since pv could be any value; e.g. σ = (“n”, pv)
where pv ∈ R is a valid signature.

For the first step of the GGA Beacon receives the name
of a Python module as a parameter. The alphabet of the
algorithm is then defined as the set of all functions contained
in the given module with random inputs generated from the
statement signature and an input factory that’s part of Beacon’s
specification.

Next, an initial population is created by generating individ-
uals which genes are a series of N statements.

B. Fitness function

To define the fitness of an individual Tracer (the main class
of Beacon) receives 4 arguments:

1) The previously mentioned Python module’s name.
2) The type3 of the exception involved in the crash; e.g.

AssertionError.
3) (Optional) A string that should be contained in the

arguments of the thrown exception.
4) (Optional) The name of a function that should be present

on the runtime stack of the crash.
The following snippet illustrates the usage of Tracer:

1 tracer = Tracer("my_module", AttributeError,
2 "Arguments should be integers",
3 "sum_integers")
4

Listing 2. Example of using Genyal to find the word crow

The main objective of these optional parameters will be to
further specify the desired error, this will help the Tracer to
choose between different statements that may raise the same
kind of exception.

2In the literature is common for the signature to be defined in terms of the
name of the function, its return type (if any) and, the name and type of its
arguments. The definition presented in this work is slightly different to focus
only on the data that is useful for the algorithm, and, since we are using a
dynamically typed language, the type of the parameters should not be a factor
for the algorithm.

3Note that we need the class of the exception, not an instance of it.



The fitness function definition is heavily inspired by the
one presented by Soltani et.al. [12] modified to better adapt
to Beacon’s approach. The fitness function used by EvoCrash
depends of three parameters: (1) the location of the crash,
(2) the exception class, and (3) the actual stacktrace. Then
EvoCrash fitness is defined as

f(t) = 3ds(t) + 2dexcept(t) + dtrace(t)

for a given test t.
On the other hand Beacon’s approach focuses on generating

the smallest set of instructions to reproduce a crash. Given
that, the resulting stacktrace generated by Tracer may not be
the same as the one produced by the original crash, so the
actual difference between the stacktraces is not as relevant.
Instead we focus more on the specific exception that was
thrown from the execution, particularly, (1) the type of error,
(2) the contents of the error (in this case, the error message),
and (3) the location of the crash (given by the presence of a
target function on the stacktrace). With that we can define the
fitness function.

Definition 4. The fitness of an individual I = (S0, . . . , SN )
is given by:

FI = 2tex + targ + 2tfn

where:

tex =

{
1 if the desired exception type was raised
0 otherwise

targ =


1 if the exception’s message contains the desired

string
0 otherwise

tfn =


1 if the specified function is present in the

stacktrace
0 otherwise

Note that, given that every value in the fitness function is
either 0 or 1, the maximum fitness of an individual will be 5,
in which case the algorithm achieved a MCR. This function,
although simplistic produced overall succesful results as can
be seen on section VI.

To calculate the fitness of an individual first we need to
execute all of its statements to see if an exception is thrown.
Everytime the fitness function is called the algorithm will
execute each statement sequentially and store the returned
value in a variable. Next, for each statement it will feed the
function with parameters that can be:

• a randomly generated value (number, string, etc.), or
• the returned value of a previously executed function.

Note. For both cases, we don’t worry about checking if the
type of the parameters is the ones that the function expects
since the function will just raise an exception if the types are
wrong, and, as long as it’s not the exception that we’re looking
for, it’ll just result in a lower fitness for the individual.

If an exception is raised during the execution of the state-
ments, the algorithm takes a snapshot of the runtime stack’s
frames and calculates the fitness according to FI . On the other
hand, if no exception is raised the individual’s fitness is set to
0.

C. Crossover, mutation and selection

The crossover, mutation an selection all follow a standard
implementation, and are handled entirely by Genyal. Since
there’s nothing novel in these steps we’re not gonna dwelve
deep into details for the sake of brevity. With that said, the
applied strategies are:

• Selection: a standard tournament selection strategy that
selects the individuals with higher fitness.

• Crossover: a single-point crossover that takes the first
i statements of one of its parents and j from the other
(given that i + j = N ) and creates a new sequence of
instructions by appending them; this operation returns
only a single child.

• Mutation: for each instruction of the individual, it re-
places it with a new instruction with random inputs or
a reference to an instruction that’ll be called before this
one, with a small probability.

D. Minimization

After the genetic algorithm has finished its execution Tracer
reduces the amount of statements of the fittest individual to
generate the MCR. This step is done by applying a simple
greedy algorithm like the following
S ← The sequence of instructions of the fittest individual
for all s ∈ S do

Candidate← S \ {s}
if fitness(Candidate) ≥ fitness(S) then

S ← Candidate
end if

end for
Then, the final result given by Tracer will be the sequence

of instructions S given by the application of this algorithm to
the fittest individual.

V. CASE STUDY

The context of the experiments in the study consists on
generating test cases to reproduce 3 common errors in Python.
The first one (V-A) only depends on functionalities of the
standard library, and the remaining 2 (V-B and V-C) use
NumPy [16] and PyYAML [17], two of the most used Python
libraries [18].

To assure the consistency of the experiments all experiments
were run under the same conditions (same environment, indi-
vidual and population lenghts, etc). This conditions be further
explained in section VI.

A. Erroneous list extension

For the first experiment consider the following function:



1 def list_reduction(lst):
2 def aux(x, y):
3 x.extend(y)
4 return reduce(lambda x, y: aux(x, y),
5 lst)
6

Listing 3. Wrong use of the extend function

This code snippet has an important error that’s hard to see
when doing a quick look over the code which may lead to
very difficult to find bugs.

Consider the following code

1 l = [1, 2, 3]
2 list_reduction(l)
3

Listing 4. Wrong use of the extend function

If executed, the above code will raise an
AttributeError because the extend function has
no return value (or to be more precise, it returns None). The
fact that the function uses both a lambda and a local function
makes the code even more difficult to debug.

B. Invalid buffer size

This experiment consists on searching a MCR using only
the functions defined in the module numpy.core, with no
dependence on any code written by us. For this, Beacon will
retrieve all functions on the given module (with the exception
of some built-in functions for which the tools provided by the
standard library are incapable to get their proper signature).

In this case, to show that the proposed tool is adaptable to
many scenarios, the type of the error will not be provided.
Instead, Beacon will try to generate a MCR that produces a
stacktrace where the crash message should contain the text
“buffer size”.

For this case there is actually two correct outputs, and we
want to reproduce any of those. Listing 5 shows a code that
would raise an error with the message “Buffer size, 4, is too
small” whilst listing 6 should raise an exception stating that
“Buffer size, 20, is not multiple of 16”.

1 size = 4
2 numpy.setbufsize(size)
3

Listing 5. Example of using a buffer size that is too small

1 size = 20
2 numpy.setbufsize(size)
3

Listing 6. Example of using a buffer size that is not a multiple of 16

C. Wrong anchor on YAML object

The last experiment is the more complex one. In this case
Beacon will try to reproduce a very specific error on PyYAML’s
yaml module.

The expected result is a series of instructions that produces a
ScannerError with the mesage containing the string “while
scanning an anchor” and where the method compose should
be contained in the stacktrace.

For this some considerations should be taken into account.
Since Beacon searches for functions on a given module, it
can’t directly use classes. To overcome this issue, instead of
directly running the script on the yaml module, a wrapper for
the module with auxiliary functions to create and manage the
objects was implemented in such a way that the proposed tool
is executed over said module.

There are many ways of generating a ScannerError,
but we are interested in one that is specifically caused by an
invalid anchor on a YAML document. For this to happen the
document must have a string that starts with “&” and doesn’t
point to a valid reference. Aditionally, we impose that the stack
trace must contain a call to the function compose. Note that
this conditions makes it very unlikely to randomly generate
an input that causes this behaviour.

Knowing all this, it is easy to generate this error manually
with the following line:

1 yaml.compose("&", yaml.SafeLoader)
2

Listing 7. Generating xd

VI. EXPERIMENTAL RESULTS

To evaluate the performance of Beacon various criteria were
defined:

PC1: The time taken to reproduce an error.
PC2: The number of generations the algorithm needed to

reproduce the error4.
PC3: The number of instructions needed to reproduce the crash;

we will call this MCR length.
PC4: The accuracy of the result measured by the exception type

and, if provided, the MCR length, exception’s message
and a target method (see experiment V-C).

The tool was also evaluated, in terms of PC2 and PC4 for
different population and individual sizes.

Experiment PC1 (ms) PC2 PC3 (lines) PC4 (%)
V-A 105.31 4.09 2.06 93.75
V-B 149.04 3.97 1.13 100
V-C 9043.39 265.66 1.13 71.88

TABLE I
RESULTS WITH FIXED POPULATION AND INDIVIDUAL SIZES

Table I show the average results of running each experiment
32 times with a population of 64 individuals, each one com-
posed of 8 genes (statements). The results show very favorable
results for experiments V-A and V-B, with low execution times
and high accuracy. There’s a clear increase on the difficulty
of generating the MCR for the last experiment, which is the
expected behaviour given that the target error is much more
specific than the previous ones, but overall it can reproduce
the crash around 70% of the time.

To see the effect of variations the same experiments where
evaluated for different sizes of population and individuals, as

4With the purpose of reducing the execution time of the experiments the
algorithm is terminated when it reaches 500 generations



seen on figures 1 through 6. It’s also clear for this results that
experiment V-C is the one with the worst preformance. There
is not a clear pattern to determine which configuration is the
optimal one, specially when comparing the results of using
the same configurations across the three experiments. One
aspect to note is that even though there’s not a clear pattern,
population size seems to affect positively the performance of
Beacon, i.e. greater populations produce a better result. On the
other hand, the effect on performance of the individual sizes
is not clear; we can see that sizes between 10 and 14 seem
to produce an overall good performance but the information
is not enough to make a conclusion. For these results, all the
results are the average values of running each experiment 32
times for each configuration.

Note that, given the non-deterministic nature of the algo-
rithm, the results of every execution will produce slightly
different results. Some examples results generated by the
experiments are shown on listings 8-10

1 <class ’AttributeError’>
2 {
3 "x0": "create_list(size_0 = 5, size_1 = 6)",
4 "x1": "list_reduction(lst = x0)"
5 }
6 ’NoneType’ object has no attribute ’extend’
7

Listing 8. Example of a correct execution of experiment V-A

1 <class ’ValueError’>
2 {
3 "x0": "ndim(a = 91)",
4 "x1": "setbufize(size = x0)"
5 }
6 Buffer size, 0, is too small.
7

Listing 9. Example of a correct execution of experiment V-B

1 <class ’yaml.scanner.ScannerError’>
2 {
3 "x0": "compose(stream = &,
4 Loader = <class
5 ’yaml.cyaml.CSafeLoader’>)"
6 }
7 while scanning an anchor
8

Listing 10. Example of a correct execution of experiment V-C

VII. CONCLUSION

This paper presents the experience we have gained by
building a simple technique to reproduce software failure. Two
tools are presented to that aim, and three case studies shows
the usefulness and benefices of our approach.

As a future work, we will improve the fitness function to
be able to reproduce complex software failures.
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