
Improving the Success Rate of Applying the Extract

Method Refactoring

Juan Pablo Sandoval Alcocera,∗, Alejandra Siles Antezanaa, Gustavo
Santosb, Alexandre Bergelc

aDepartamento de Ciencias Exactas e Ingenieŕıa
Universidad Católica Boliviana “San Pablo”, Cochabamba, Bolivia

bFederal University of Technology - Paraná
c ISCLab, Department of Computer Science (DCC), University of Chile, Santiago, Chile

Abstract

Context: Most modern programming environments support refactorings.
Although refactorings are relevant to improve the quality of software source
code, they unfortunately suffer from severe usability issues. In particular,
the extract method refactoring, one of the most prominent refactorings, has
a failure rate of 49% when users attempt to use it.
Objective: Our main objective is to improve the success rate of applying
the extract method refactoring.
Methods: First, to understand the cause of refactoring failure, we
conducted a partial replication of Vakilian’s ICSE ’14 study about usability
issues of refactoring using IntelliJ IDEA. Second, we designed and
implemented TOAD, a tool that proposes alternative text selection for
source code refactoring for the Pharo programming language. Third, we
evaluated TOAD using a controlled experiment against the standard Pharo
code refactoring tool. Seven professional software engineers complemented
with three undergrad students participated in our experiments.
Conclusion: The causes we identified of failed extract method refactoring
attempts match Vakilian’s work. TOAD significantly reduces the number of

∗Corresponding Author
Email addresses: sandoval@ucbcba.edu.bo (Juan Pablo Sandoval Alcocer),

aesa1@estudiantes.ucbcba.edu.bo (Alejandra Siles Antezana),
abergel@dcc.uchile.cl (Alexandre Bergel)

Preprint submitted to Science of Computer Programming April 21, 2020

failed attempts to run the extract method refactoring at a lower cognitive
load cost.

Keywords: Refactoring, Usability

1. Introduction

Refactoring tools help developers to automatically perform many
predefined source code transformations and refactorings [1, 3, 12]. However,
besides the automated facilities provided by these tools, recent empirical
studies show that developers face a variety of usability issues [16]. These
issues range from unintuitive refactoring configuration to an unexpected
outcome from what the developer wanted to achieve. Such usability issues
ultimately discourage developers from using refactoring tools in the future.

First, to better understand usability issues that practitioners are
experiencing, we conducted a partial replication of a study conducted by
Vakilian et al. [16]. This first study allowed us to confirm that a wrong
selection of code segments is a prominent pattern when one applies the
Extract Method refactoring. We found that only 51% of the Extract
Method refactoring attempts were successful, where incorrect source code
selection is a major cause of misuse of the refactoring tool. Such a pattern
leads to a negative experience that defeats the main goal of programming
environments, which is to assist practitioners in conducting laborious and
repetitive tasks. We hypothesize some heuristics to guide the developer to
properly select the source code segment to be refactored.

And second, we designed and implemented TOAD, a tool that searches for
appropriate source code selection. An appropriate code selection is the one
that satisfies the necessary preconditions to perform a specific refactoring; in
our case, the Extract Method refactoring.

In this extension, we present a controlled experiment, in which we
empirically compare TOAD with Pharo’s standard refactoring tool. Our
results show that:

• When compared with the standard Pharo refactoring tool, TOAD
significantly reduces the number of failed attempts to apply the
Extract Method refactoring;

• Participants often consult alternative text selections (43% of the
refactoring attempts) and they also used an alternative text selection

2

instead of their first one (27%) when applying an Extract Method
refactoring;

• Offering optional alternatives in the refactoring tools does not overload
the refactoring process and reduces the participants cognitive load.

Outline. This paper is structured as follows. Section 2 presents a
replication study on IntelliJ IDEA that highlights the usability issues
related to Extract Method refactoring. Section 3 introduces TOAD, a tool
that recommends alternative source code selections for Extract Method.
Section 4 describes a controlled experiment that compares TOAD with
Pharo’s standard refactoring tool. Section 5 discusses threats to validity
and how we addressed them. Section 6 compares our work with related
work. Section 7 concludes our overall results.

Previous work. This article is an extension of a short paper presented at
the ICSE ’19 Student Research Competition Paper [13]. We extended our
previous papers in numerous different ways: (i) we doubled the number of
participants in our partial replication study (from 5 to 10); (ii) we detailed
the categorization of the patterns found during our partial-replication (iii)
we performed a controlled experiment to compare TOAD and the Pharo
Standard Refactoring Tool.

2. Of Usability and Refactoring Tools: A Partial-Replication Study

In 2014, Vakilian et al. [16] reported 15 categories of usability issues
that developers experienced while interacting with Eclipse refactoring tools.
Motivated by this work, we performed a user study to replicate it and to
better understand these usability issues. In particular, we focused on the
tools provided by IntelliJ IDEA for Extract Method refactoring. We selected
IntelliJ IDEA to complement Vakilian’s et al. work, which was done in
Eclipse.

We qualify our experiment as a partial replication because we use a
different programming language and programming environment.

2.1. Methodology

In our study we (i) identify the proportion of failed Extract Method
attempts and (ii) classify these failed attempts. We use the following
methodology:

3

S1 - selecting participants for our experiment;

S2 - defining relevant and representative tasks to be carry out by the
participants;

S3 - executing and monitoring work sessions;

S4 - quantitatively and qualitatively analyzing the observations.

Our methodology differs from the one used in the original Vakilian’s
study [16]. Vakilian et al. designed a tool that monitored refactoring
attempts. Since we focused on only one refactoring, we opted for a simpler
methodology. Analyzing screen recordings and transcripts of each
participant was considered enough to extract all the data necessary for our
replication.

2.2. Experimental Setup

Participants. Seven engineers and three undergrad students participate
in our user study. The engineers work in two Bolivian software companies.
Work experience ranges from two to seven years. The three students were
in their 5th and last year of University when we conducted the experiment.
The students have experience in refactoring tools acquired during their
Software Engineering lectures. Among the ten participants, three are
women. Engineers have experience in a large spectrum of different projects,
including web applications and domain specific libraries and interpreters.

Tasks. We previously selected five long methods from the JFreeChart
open-source project. Their size varies from 130 to 356 lines of code. We
randomly assigned one method to two participants separately (five
methods, ten participants). We requested each participant to split up a
long method into smaller ones using the tools provided by IntelliJ IDEA,
i.e., using the Extract Method refactoring. The methods are available
online for inspection1.

Data Collection and Analysis. We recorded the screen of each user
work session. During the session, we asked participants to vocally and
precisely describe their refactoring intentions and expectations. In total, we

1https://github.com/Aleli03/LinksToMethods

4

https://github.com/Aleli03/LinksToMethods

Table 1: Usability issues while using the extract method option by participants

Participant

Category
1 2 3 4 5 6 7 8 9 10

TOTAL

Change as Expected 7 2 7 8 7 4 13 5 5 0 58 (50.9%)
Invalid Source Code Selection 1 0 0 2 0 1 1 3 4 4 16 (14,0%)
Unexpected Source Code Change 2 1 0 0 2 1 1 0 0 6 13 (11,4%)
Ambiguous Return Value 0 4 0 6 0 0 1 1 0 0 12 (10,5%)
Confusing Messages 3 0 0 0 3 1 0 0 0 0 7 (6,1%)
Other 1 0 0 0 2 1 0 0 0 4 8 (7,0%)

TOTAL 114 (100%)

recorded 215 minutes of sessions, where participants performed 114
refactoring attempts. We consider a refactoring attempt to be each time
the user selected the option “Extract Method” in the IDE. We analyzed
and categorized each of these attempts according, but not restricted to
Vakilian’s et al. study. Recorded videos are also available online.2.

2.3. Findings

Out of the 114 refactoring attempts, 58 (50.8%) concluded with no
errors and the participants were satisfied with the refactoring result. We
carefully analyzed each attempt and categorized the usability issues they
experienced. Table 1 shows the usability issues we found with the
participants. We describe each category as follows: each one has a title, a
brief description, followed by an illustration example.

Invalid Code Selection. In 16 attempts (14%), participants selected a
code segment that did not meet the refactoring preconditions, leading to a
generic error message. For instance, consider the code selection in Figure 1
and its corresponding error message.

Figure 1: Example: Invalid Code Selection

2https://github.com/Aleli03/TOAD

5

https://github.com/Aleli03/TOAD

In this particular case, the source code selection does not meet the
preconditions because of the inclusion of the character “=”. If the selection
began after the character, there would not be an error.

Multiple Return Values. In 12 attempts (10.5%), participants selected
a code segment with two or more variables being referenced externally.
Consequently, the extracted method should have more than one return
value, which is not syntactically correct. For instance, consider the code
selection in Figure 2: to preserve the behavior the extracted method, it
should return two values, as shown in the error message.

Figure 2: Example: Multiple Return Values

The attempts to perform the Extract Method refactoring failed, however
IntelliJ IDEA proposes an alternative refactoring: “Extract Method Object”.

Unexpected Source Code Change. In 13 attempts (11.4%),
participants were not convinced by the result of the refactoring and they
rolled back the changes. This mainly happened when the IDE suggested
that the participants to extract and move the method to a new class
through the “Extract Method Object” refactoring option (Figure 2). The
fact that the IDE gives this option discourages the participants from
continuing the refactoring.

Confusing Message. In 7 attempts (6.1%), participants got a confusing
error message. For instance, one participant extracted a code snipped to be
moved to a new method and provided the name of an existing one. IntelliJ
IDEA provided an error message that was perceived as confusing (Figure 3).
The participant canceled the attempt and provided a new name instead of
opting for a guidance by the IDE. We define a confusing message a message
that makes the participant cancel the current flow and change the selection
or the method name.

Note that this category of failed refactoring was not reported in Vakilian’s
original work. Since we directly monitored participants we were able to

6

Figure 3: Example: Invalid Code Selection

identify confusing messages while Vakilian’s instead monitored the actions
performed in the IDE.

Others. In 8 of the attempts (7%), the IDE offered some options before
applying the refactoring, which confused the participants. For instance, a
popup recommended participants to apply the same refactoring to another
similar source code in the same class. However, after a few other attempts,
the participants got familiar with it. Two participants selected a code
segment and a refactoring option, but after a few minutes they canceled the
refactoring. In three attempts, the participants were curious about the
refactoring option “type parameter”, but after proceeding it no change is
perceived by the participants.

Overall, participants did not expect additional options. So, when an
expected popup menu appears for the first time, they thought that the menu
was not relevant to achieve their goals. As such, the participants quickly
closed the popup. However, the refactoring was not performed, so they tried
to do it again, and the second time the participants read the popup carefully
and got familiar with it.

Summary: Only 51% of the extract method refactoring attempts
are successful. The most prominent usability issues are related
to the source code selection.

3. TOAD: A Tool for Recommending Refactoring Alternatives

To tackle the usability issues related to source code selection described
in our replication study, we propose TOAD, a tool that proposes alternative
text selection for source code refactoring. TOAD is a refactoring tool which
provides refactoring alternatives implemented in the Pharo programming
language. Our hypothesis is that providing valid source code selection

7

alternatives improves the success rate of applying the extract method
refactoring. As we saw in the previous section, a great portion of failing
attempts are caused by invalid source code selections.

TOAD starts to operate when the user selects a code segment and then
applies an Extract Method refactoring. TOAD uses the code selection as
input and searches code sections that are syntactically correct and meet the
refactoring preconditions. Within the scope of this paper, we only consider
the Extract Method preconditions.

TOAD follows a three-step algorithm to show five valid source code
selection alternatives.

• Step 1: Source Selection Candidate – First, TOAD searches for all
possible code selection candidates in the method under analysis. For
this, we use a string search based brute force algorithm. Consider that
a method source code has n tokens and the extract method refactoring
has m preconditions P = p1, . . . , pm. A selection candidate may be
represented as a pair (i, j) where 0 ≤ i ≤ j ≤ n, where the source
code between the interval (i, j) meet all preconditions in P . For our
implementation in Pharo, we use the standard refactoring preconditions
and the standard string tokenizer to identify (i, j) combinations.

• Step 2: Filtering – We filter out selection candidates that do not contain
any character of the user selection. We focus on candidates that overlap
the code selected by the user (the input).

• Step 3: Refactoring Alternatives –TOAD only provides to the user
the five closest source selection candidates, prioritizing the ones that
overlap a great portion of the initial user selection. They are sorted
so that the closest alternative is shown in the middle, with shorter
alternatives on the left and longer ones on the right. In case there are
less than five alternatives, TOAD shows all of them. We limited the
alternatives to five, so as to not overload users, but our algorithm it is
not tied to this number.

This approach could easily generate a large number of refactoring
alternatives, from one statement to the entire method to be refactored.
Since we do not want to overload to the user with too many options, we
design a user interface that only shows five alternatives. These alternatives
may be selected using the buttons at the bottom of the interface. The

8

middle button gives an alternative closest to the source code selection (i.e.,
Figure 4 marked with 1), buttons on the right offer alternatives involving a
larger code section than the selected one (i.e., Figure 4 marked with 2),
buttons on the left one offer alternatives involving less code than the
selected one (i.e., Figure 4 marked with 3).

Figure 4 shows an example of TOAD usage. The selected source code does
not meet the conditions to apply Extract Method correctly (i.e., the selected
code is neither a set of statements nor an expression). TOAD (i) produces
five different selections that are relatively close to the original selection made
by the user and (ii) previews of the refactoring results for each alternative.
Figure 4 (right side) shows three alternatives that TOAD found that are close
to the user’ selection in Figure 4 (left side). TOAD also shows a preview of
the extracted method and how the original method would be modified.

Source Code Selection

1

2

3

Figure 4: TOAD in action: five adequate selections are suggested from an invalid selection
made by a user. The figure shows three of these suggestions.

9

Note that TOAD implements a simple approach to display the refactoring
alternatives to the user. The goal of TOAD is to show that a simple approach
may reduce failing attempts while refactoring. TOAD is available online 3.

4. Evaluation: a Controlled Experiment

This section describes the experiment we conducted to evaluate how
TOAD ’s recommendations were perceived by practitioners. We conducted
a controlled experiment and used Pharo’s standard refactoring tool as a
baseline. We opted for a controlled experiment to verify whether the use of
TOAD may be related to a reduction of failed attempts to perform the
Extract Method refactoring.

4.1. Experimental Setup

Participants. We selected ten participants that have experience in the
Pharo programming language. All of them are either authors of a Pharo
project or deeply involved in the development of a Pharo core functionality.
This is an important requirement for our experiment because we aim to
reduce bias related to a poor understanding of the proposed refactoring tasks.
Ensuring that participants have a fair comprehension of the code they will
work with is therefore relevant.

Table 2 details participants’ experience in software development, Pharo
and refactoring tools. Seven out of ten participants have experience using
refactoring tools. Participants are currently working in academia and
industry. Four are from Bolivia and six from Chile. These participants are
different from the ones that participated in our replication study.

Projects under Study. We asked each participant to select a Pharo project
they were working on. Table 3 shows the projects we used in the experiment.
Note that two participants (P6 and P9) were working on the Roassal project.
Therefore, they performed refactoring tasks on the same project. All the
other participants used different projects.

Setup. We previously determined the size of each method for each project
under analysis. We then ordered the methods from the largest to the smallest.
Each participant picked four methods to refactor. The list was later proposed

3https://github.com/Aleli03/TOAD

10

https://github.com/Aleli03/TOAD

Table 2: Participants (Pharo Exp. = Pharo Experience; Prev. Exp. Ref. = Previous
Experience with Refactoring Tools)

ID Main Activity
Soft. Dev.
Experience

(years)

Pharo
Exp.

(years)

Prev.
Exp.
Ref.

Country

P1 Software Engineer 2 1 3 Bolivia
P2 Software Engineer 0.5 0.5 3 Bolivia
P3 Undergrad Student 5 1 7 Bolivia
P4 PhD. Student 4 4 3 Chile
P5 Software Engineer 6 2 3 Bolivia
P6 PhD. Student 6 2 7 Chile
P7 PhD. Student 6 6 7 Chile
P8 Software Engineer 5 5 3 Chile
P9 Software Engineer 10 5 3 Chile
P10 PhD. Student 15 6 3 Chile

Table 3: Project under Study (Part. = Participants)

Project Name Short Description Part.

GitMultipileMatrix
A stacked adjacency matrix to
visualize software evolution

P1

TestDeviator
A test case generation technique
for GraphQL APIs

P2

DrTest
An extendable, plugins-based UI
for testing Pharo projects

P3

Regis
A Conference Registration
Website

P4

SmallSuiteGenerator
A Test Case Generator for Pharo

P5

Roassal
A script system for advanced
interactive visualizations.

P6, P9

Live Robot Programming
A live programming language for
robot behaviors using nested state
machines

P7

KerasBridge
A Pharo bridge for Keras
(a deep learning library)

P8

GToolkit Documenter
A tool for creating and consuming
live documents inside the
development environment

P10

11

to each of the participants and their respective projects. The refactoring task
consisted of splitting up each of the four methods using the Extract Method
refactoring. Note that we excluded methods from our list that are either data
holders or tests. Only methods having a logic relevant to the application
under analysis were proposed.

Task and Treatments. Our experiment compares the refactoring
experience between two treatments: PharoStandard, the standard Extract
Method refactoring available on Pharo, and TOAD, the tool for
recommending Extract Method refactoring alternatives. Participants were
requested to refactor four large (previous selected) methods, two of them
using the Pharo standard Extract Method tool and two using TOAD.

Work Session. For each treatment {PharoStandard, TOAD}, we followed
the next steps.

1. Learning material – We provided learning material to the participants.
We also performed a demo to let participants get familiar with the tools.

2. The task – We requested each participant to refactor two large
methods. We describe the method selection for each project in the
experiment setup.

3. Video Recording – We recorded each refactoring session. We asked
participants to follow the think-aloud protocol by vocally describing
their refactoring intentions and expectations. The think-aloud protocol
is a method used to collect data by encouraging participants to say
whatever comes into their mind as they complete the task.

4. Task Load Index – After each session, we requested each participant
to fill in the NASA Task Load Index 4 [4] to assess the cognitive
workload using six dimensions: mental demand, physical demand,
temporal demand, performance, effort, and frustration. Each
participant rates her/his perceived workload across these six
dimensions to determine an overall workload rating. Participants
assign to each dimension a value between 1 (low) to 20 (high).

4https://humansystems.arc.nasa.gov/groups/TLX/

12

https://humansystems.arc.nasa.gov/groups/TLX/

5. Participants Feedback – At the end of each session we informally
interviewed each participant and asked open questions to not pressure
participants into giving an answer we expected.

Video Analysis. We analyzed each video session and categorized all the
Extract Method attempts based on categories defined in our replication
study. Additionally, we measured how many times users inspect the
alternative options and when they apply another alternative rather than
the initially selected in the source code.

Pilot. Before running the work sessions with all participants, we performed a
pilot with a refactoring expert that has academic and industrial backgrounds.
This experiment helps us make some improvements:

• Source Code To Refactor – In the pilot, we provided to the participant
the longest methods of Roassal project and asked her/his to refactor
them. We noticed that: i) the user was not confident enough to refactor
an unfamiliar method, and ii) some methods did not contain any logic
(i.e., methods that contain long meta description) and some of them are
expected to be long (i.e., script examples). For this reason, we refined
our way of selecting the candidate methods to refactor. We developed
a script to list the methods that have the most lines of code in the
project and discarded the ones that do not have any application logic.
Then we let the participant decide which ones are good candidates for
refactoring.

• Learning Material – To complete the Extract Method refactoring,
one must provide a new method name. Although apparently simple
and intuitive, we encountered some issues related to this. A candidate
provided the argument names in addition to the method name.
However, both the standard Pharo refactoring tool and TOAD expect
the method name only, with semicolons to denote the location of an
argument, and without spaces. Therefore, we updated the learning
material to indicate the only the method name is compulsory.
Additionally, we encouraged the pilot participant to refactor a toy
method using the refactoring tools as a preliminary and learning task.

13

4.2. Results

4.2.1. Observations

Considering all refactoring sessions, our participants performed 204
Extract Method attempts. Table 4 summarizes the attempts for each
participant.

Table 4: Participants extract method refactoring attempts

Participant
Pharo Standard Attempts TOAD Attempts

Success Fail Total
Success
Rate (%)

Success Fail Total
Success
Rate (%)

P1 6 7 13 46% 8 2 10 80%
P2 1 13 14 7% 6 2 8 75%
P3 6 4 10 60% 5 2 7 71%
P4 13 2 15 87% 12 8 20 60%
P5 5 4 9 56% 6 0 6 100%
P6 8 5 13 61% 3 0 3 100%
P7 8 15 23 35% 4 2 6 67%
P8 4 2 6 67% 8 2 10 80%
P9 6 5 11 54% 4 0 4 100%
P10 5 3 8 62% 5 3 8 63%

TOTAL 62 60 122 51% 61 21 82 74%

Success Rate. All participants have a different number of attempts. We
define a metric Success Rate, which is the ratio between the number of times
the participants use the extract method refactoring tool successfully and the
total number of times the open the tool.

In total, 122 attempts were done using the Pharo Standard tool, from
which only 51% of the attempts were considered successful. The remaining
attempts ended with the participant canceling or closing the tool window,
or undoing the changes. The remaining attempts, 82, were performed using
TOAD, which represents 32% fewer attempts than with the Pharo standard
tool. With TOAD, 74% of the attempts were successful. Figure 5 presents
the distribution of the success rate among all participants.

We run the Mann Whitney statistical test (also called Wilcoxon rank-sum
test) over the success rate of the two treatments (two-tailed, confidence level
= 95%). The null hypothesis is that the distributions of both groups are

14

●

20

40

60

80

100

Pharo X.TOAD

Su
cc

es
s

Ra
te

Pharo
Standard TOAD

Figure 5: Extract Method Success Rate

identical.5 The test indicates that the distribution is statistically different
(P-value = 0.0154, Mann-Whitney U=18.50). We can reject the null-
hypothesis and conclude that there is a causal effect between the
treatment (i.e., PharoStandard or TOAD) independent variable
and the success rate dependent variable.

Categorization of Attempts. To better understand the reasons behind
failed refactoring attempts, we carefully analyzed and categorized each one
of the attempts. Table 5 details the categories of failed attempts and their
frequencies.

• Invalid source code selection – Attempts where Pharo provides error
the messages such as “invalid source code selection” at the bottom left
of the window. This error only appears when one uses the standard
Pharo tools since TOAD proposes only valid alternatives.

• Errors – Both treatments have some errors that appeared during our
experiment. In the case of the Pharo Tool, it mainly shows two errors:
i) a null pointer exception and ii) cannot extract assignments to

5Having the two identical distributions means that there is a 50% probability that a
success rate randomly picked for Pharo Standard is greater than a success rate randomly
picked for TOAD.

15

Table 5: Categorization of Extract Method attempts

Pharo Standard Tool

Category Frequency

Change as expected 62 (50,82%)
Invalid source code selection 21 (17,21%)
First was sent to nil 15 (12,30%)
Canceled Operations 11 (9,02%)
Cannot extract assignments to temporaries 9 (7,38%)
New parameter required 2 (1,64%)

TOAD

Category Frequency

Change as expected 61 (74,39%)
Cascade message not allowed 11 (13,41%)
Operation cancelled 7 (8,54%)
Different argument order required 2 (2,44%)
New parameter required 1 (1,21%)

temporaries, which is an error triggered by the IDE itself, and not the
refactoring engine.

• Operation cancelled – When participants change their mind and
simply cancel the refactoring by pressing the cancel button in the user
interface.

• Missing Options – In three attempts, participants wanted to add a
method argument while creating the new extracted method, but Pharo
did not allow this feature, despite the fact that our learning material
explicitly mentions this restriction. Therefore, after extracting a new
method, they manually added the argument they wanted. In the case
of TOAD, users wanted to change the order of the arguments, but our
prototype does not provide this capability. So, the participant manually
performed this transformation.

When compared with the standard Pharo refactoring tool,
TOAD significantly reduces the number of failed attempts to
apply the Extract Method refactoring.

Refactoring Alternatives. From the text selection provided by a
participant, TOAD offers five possible text selections and their

16

corresponding preview of the refactoring. When TOAD opens, the first
proposed selection is the one made by the participant (or a close selection if
the provided one is incorrect). After entering the name for the new
extracted method, the user can either accept the selection provided by
TOAD or choose an alternative one.

Table 6 details the number of times each participant inspected TOAD and
how many times the participants changed their refactoring intentions to one
alternative provided by TOAD. Overall, participants inspected an alternative
text selection in 43% of attempts and they selected an alternative selection
in 27% of attempts.

Table 6: Participants Refactoring Alternative Usage Frequency

Participant
Total
Attempts

Alternative
Inspection

Alternative
Selection

P1 10 5 2
P2 8 3 1
P3 7 5 4
P4 20 8 7
P5 6 5 2
P6 3 2 2
P7 6 2 0
P8 10 0 0
P9 4 3 3
P10 8 2 1

TOTAL 82 35 (43%) 22 (27%)

Participants consulted, in a large proportion, alternative text
selections (43% of the refactoring attempts) and used an
alternative text selection instead of their selection (27%) when
doing an extract method refactoring.

4.2.2. Task Load & Participants Feedback

The NASA-Task Load Index (TLX) is a widely used technique for
measuring subjective mental workload [4]. The NASA TLX is a
questionnaire in which participants estimate their cognitive workload using
numerical scales. Six different scales are considered: mental demand,
physical demand, temporal demand, performance, effort, and frustration.
Figure 6 summarizes the participant perception about the task they were
asked to do.

17

●

●

0

5

10

15

20

A B A.1 B.1 A.2 B.2 A.3 B.3 A.4 B.4 A.5 B.5Mental
Demand

Physical
Demand

Temporal
Demand Performance Effort Frustration

TOAD Pharo Standard Refactoring Tool

Figure 6: Task Load: Participant Perceptions

Mental Demand. Five participants indicated that the task was more
demanding while using the Pharo standard tool. Some participants
reported some effort in selecting a correct code segment for extraction,
mainly because the method they were refactoring was complex to analyze.
Four of them indicated they had the same mental demand with both tools.
One of them indicated that it was easier to refactor with the standard tool
since the code was easy to understand and he/she knew exactly what to
extract.

Think-aloud protocol. We encouraged the participants to follow the
think-aloud protocol to collect information that were not apparent from the
interactivity. Some participants felt uncomfortable with this, and preferred
to stay quiet instead.

Performance and Temporal Demand. Since we did not impose a time
limit on the participants, all the participants performed the activity until
they were satisfied with the new version of the method. There is no notable
difference in terms of performance and temporal demand. All of them
indicated that they performed the task at almost the same level of success.

Effort and Frustration. Nine out of ten participants indicated that they
required less effort using TOAD and had less frustration. They manifested
that TOAD helped focus on which parts they should refactor instead of

18

focusing on whether the source code selection met the refactoring
preconditions. Even when some of them did not choose the alternatives
provided by TOAD, the tool shows the closest code segment that satisfies
the preconditions.

Total Cognitive Load. Figure 7 presents the distribution of the total
cognitive load. After using a treatment we asked the participant to fill the
NASA TLX. We collected two data points for each participant: the
cognitive footprint for TOAD and another footprint for the PharoStandard
refactoring tool. Each participant has an overall score defined as the sum of
each workload scale. A low value indicates that the task was not cognitively
demanding while a high value indicates that the task was cognitively
demanding.

20

40

60

80

100

PHaro.sum TOAD.SUM

Sc
or

e

Pharo
Standard
TLX Sum

TOAD
TLX Sum

Figure 7: Total cognitive load (lower is better)

We executed Wilcoxon matched-pairs signed-rank test over the total
cognitive load (two-tailed, confidence level = 95%). The null hypothesis is
that the distribution of the cognitive load across participants is the same
for both TOAD and PharoStandard. The test indicated that the
distribution is statistically different (P-value = 0.0391, Sum of signed ranks
(W) = 35). Therefore, we can reject the null hypothesis and
conclude that there is a causal effect between the treatment (i.e.,

19

PharoStandard or TOAD) independent variable and the total
cognitive load.

Adding the refactoring alternatives as an option in the
refactoring tools does not perceptibly overload the refactoring
process and reduce the participants’ cognitive load.

5. Threats to Validity

5.1. Internal Validity

Participants. Participants’ experience with Pharo may influence the
results. If we compare Table 1 and Table 4, we see that P2 (0.5 years of
experience) has a significantly high failure rate using Pharo tools (93%),
but a much lower failures rate (25%) using TOAD. P10 (15 years of
experience) has an almost identical failure rate using Pharo tools (38%) and
TOAD (37%). This suggests that experience has a relevant influence on the
results.

Baseline. We compare our tool against the Pharo standard refactoring tool
which has a different way to display the refactoring preview than TOAD
has. During the feedback session, we asked participants about the source
code preview. Although they manifested that TOAD has a good preview
visualization, they did not feel that the preview influences the refactoring
task. Also, two participants manifested that they focused on analyzing the
source code they selected instead of the preview both tools provide.

Refactored Method. The size and complexity of candidate methods to
refactor may be a bias in our results. To mitigate this issue, we first selected
the longest methods in each project together with each participant. Then,
we randomly assigned the order in which these methods should be refactored
without favoring any tool.

Required task effort. We did not want to pressure participants in a way
that could hamper the representativity of our experiment. As a
consequence, we did not monitor the time to complete those tasks. From
our pre-experimental pilot and after having run the experiment, we did not
find evidence that the tasks require different efforts to complete. We
therefore conclude that the tasks are comparable.

20

Learning Effect. To reduce the learning effect between experiments, during
each session, we randomly selected which treatment will be used first. In the
end, we had five participants that used TOAD at first, and five participants
that used the Pharo Standard Tool.

TOAD Implementation. TOAD implements a simple approach to show
a number of source code selection alternatives for extracting methods. There
are different options to compute the selection alternatives and show them
to the participant. However, the goal of TOAD is to show that a simple
approach is enough to gain in usability.

Unexpected Errors. As reported in the result section, both TOAD and
the standard Pharo refactoring tool raised a number of errors during the
experiment. From one side, the Pharo tool reports a number of null pointer
exceptions, on the other side TOAD report a number of parsing errors due
that the standard Pharo parser could not handle particular AST
combinations with cascade messages. However, we believe that these errors
do not jeopardise our results since these errors rarely appear and in almost
the same frequency.

Cognitive load. The comparison of the survey of cognitive load suggests
that TOAD has lower cognitive load. It is likely that looking for alternate
code selections reduces cognitive load, while previewing the alternate
refactoring increases the cognitive load. However, this increase, if it exists,
it is not perceptible by the participant.

5.2. External Validity

Pharo Programming Language. Our experiment focused on the Pharo
programming language. Although refactoring tools have similar user
interfaces and options along most IDEs in different programming languages,
we have no evidence about the impact of refactoring alternatives in other
IDEs. However, as we see in our replication study, IntelliJ IDEA has
similar usability issues than the Pharo Standard refactoring tools.
Therefore, our findings will be useful for IDEs other than Pharo.

Other Refactoring Options. The notion of refactoring alternative
presented in this article is likely to be applicable to other refactorings,
including pushing / pulling refactoring, extract temporal variables. We
have no evidence that it is not the case. However we leave this as future
work.

21

6. Related Work

Previous researchers investigated the lack of trust in refactoring tools.
In addition to usability problems investigated in our replication study,
developers do not understand what most of the refactorings do [11], and
they regularly face overly strong preconditions in current IDEs [8].
Consequently, developers prefer to perform changes manually and
sometimes repetitively, even though there is automated support in the IDE.

Previous studies on the usability of refactoring tools [10, 15, 16] record
Eclipse IDE usage information from developers, for instance, which
commands they executed, failures from automated refactorings, the context
of the failure, among others. Complementary to these studies, we
video-recorded refactoring sessions from participants, where we asked
participants to speak about their refactoring intentions and expectations
(i.e.,, following the think aloud protocol). Additionally, we experimented
with the IntelliJ IDE and the Pharo Programming Environment.

These challenges lead researchers to improve the experience of wizard-
based refactoring, such as the ones proposed in most IDEs. Lee et al. [5]
proposed drag-and-drop actions to invoke the refactoring tool. Ge et al. [2]
proposed to detect manual refactoring actions and recommend additional
code changes to automatically complete the refactoring. Maruyama and
Hayashi [6] proposed to record a failed refactoring attempt; then the tool
automatically resumes the refactoring when preconditions are satisfied by
further code editions.

Identifying refactoring opportunities have also been proposed in the past.
Tsantalis et al. [14] proposed an approach to help developers to identify
code fragments that may be extracted to new methods. Mkaouer et al. [7]
proposed a tool that suggests refactoring opportunities to developers based
on their feedback and introduced code changes.

Our tool takes a different stance by guiding the developer to achieve a
correct code selection. Murphy-Hill and Black [9] proposed a similar
approach to assist code selection by highlighting the entirety of a partially
selected statement, such as the one presented in Figure 4. However, the
correct selection of a statement may not be sufficient to meet all the
preconditions of the Extract Method refactoring. External access to
variables and ambiguous return values may also trigger refactoring errors.
TOAD searches and proposes multiple code selections including the one
selected by developer, and not only the closest selection. The recommended

22

code selections are previously tested, thus the tool guarantees that the
preconditions are satisfied.

7. Conclusions

This article investigated the usability issues from the classical Extract
Method refactoring. We first presented a replication study to highlight and
analyze usability issues that developers face using IntelliJ IDEA’s refactoring
tools. Our results are comparable with the original study by Vakilian et
al. [16], in which they found similar usability issues. Their experiment was
conducted on Eclipse and they did not associate usability issues with the
practitioner’s perception, such as unexpected source code modifications or
confusing error messages.

We then described TOAD, our solution to address the issue of wrongly
selecting code to be refactored. TOAD recommends refactoring alternatives,
which tackles some of these usability issues, such as invalid code selections
and unexpected source code changes. Our evaluation of TOAD indicates
that it has a significant impact on reducing the number of failed refactoring
attempts, while participants benefit from a decrease of cognitive load when
compared with the standard Pharo refactoring engine.

As a future work, we plan to research on the consequences of having a
preview window. In particular, we will measure how the preview window
impacts practitioners when picking particular alternate refactorings.

Acknowledgements

We are deeply grateful to Lam Research(4800054170 and 4800043946) and
the FONDECYT project 1200067 for having partially sponsored the work
presented in this article. We thank Renato Cerro for his help in reviewing
an early draft of the manuscript.

References

[1] Fowler, M., 1999. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, Boston, MA, USA.

[2] Ge, X., DuBose, Q.L., Murphy-Hill, E., 2012. Reconciling manual
and automatic refactoring, in: 2012 34th International Conference on
Software Engineering, ACM. pp. 211–221.

23

[3] Griswold, W.G., 1992. Program Restructuring As an Aid to Software
Maintenance. Ph.D. thesis. Seattle, WA, USA. UMI Order No. GAX92-
03258.

[4] Hart, S.G., Staveland, L.E., 1988. Development of nasa-tlx (task load
index): Results of empirical and theoretical research. Human mental
workload 1, 139–183.

[5] Lee, Y.Y., Chen, N., Johnson, R.E., 2013. Drag-and-drop refactoring:
Intuitive and efficient program transformation, in: 2013 35th
International Conference on Software Engineering, ACM. pp. 23–32.

[6] Maruyama, K., Hayashi, S., 2017. A tool supporting postponable
refactoring, in: Proceedings of the 39th International Conference on
Software Engineering Companion, IEEE Press. pp. 133–135.

[7] Mkaouer, M.W., Kessentini, M., Bechikh, S., Deb, K., Ó Cinnéide,
M., 2014. Recommendation system for software refactoring using
innovization and interactive dynamic optimization, in: Proceedings of
the 29th ACM/IEEE International Conference on Automated Software
Engineering, ACM. pp. 331–336.

[8] Mongiovi, M., Gheyi, R., Soares, G., Ribeiro, M., Borba, P., Teixeira,
L., 2018. Detecting overly strong preconditions in refactoring engines.
IEEE Transactions on Software Engineering 44, 429–452.

[9] Murphy-Hill, E., Black, A.P., 2008. Breaking the barriers to successful
refactoring: Observations and tools for extract method, in: Proceedings
of the 30th International Conference on Software Engineering, ACM.
pp. 421–430.

[10] Murphy-Hill, E., Parnin, C., Black, A.P., 2012. How we refactor, and
how we know it. IEEE Transactions on Software Engineering 38, 5–18.
doi:10.1109/TSE.2011.41.

[11] Negara, S., Chen, N., Vakilian, M., Johnson, R.E., Dig, D., 2013.
A comparative study of manual and automated refactorings, in:
Proceedings of the 27th European Conference on Object-Oriented
Programming, Springer-Verlag, Berlin, Heidelberg. pp. 552–576.

24

http://dx.doi.org/10.1109/TSE.2011.41

[12] Opdyke, W.F., 1992. Refactoring Object-oriented Frameworks. Ph.D.
thesis. Champaign, IL, USA. UMI Order No. GAX93-05645.

[13] Siles Antezana, A., 2019. Toad: A tool for recommending auto-
refactoring alternatives, in: Companion Proceedings of the 41th
International Conference on Software Engineering.

[14] Tsantalis, N., Chatzigeorgiou, A., 2011. Identification of extract method
refactoring opportunities for the decomposition of methods. Journal of
Systems and Software 84, 1757 – 1782.

[15] Vakilian, M., Chen, N., Negara, S., Rajkumar, B.A., Bailey, B.P.,
Johnson, R.E., 2012. Use, disuse, and misuse of automated refactorings,
in: Proceedings of the 34th International Conference on Software
Engineering, IEEE Press, Piscataway, NJ, USA. pp. 233–243. URL:
http://dl.acm.org/citation.cfm?id=2337223.2337251.

[16] Vakilian, M., Johnson, R.E., 2014. Alternate refactoring paths reveal
usability problems, in: Proceedings of the 36th International Conference
on Software Engineering, ACM. pp. 1106–1116.

25

http://dl.acm.org/citation.cfm?id=2337223.2337251

	Introduction
	Of Usability and Refactoring Tools: A Partial-Replication Study
	Methodology
	Experimental Setup
	Findings

	TOAD: A Tool for Recommending Refactoring Alternatives
	Evaluation: a Controlled Experiment
	Experimental Setup
	Results
	Observations
	Task Load & Participants Feedback

	Threats to Validity
	Internal Validity
	External Validity

	Related Work
	Conclusions

