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Abstract

Context: Software performance may suffer regressions caused by source code
changes. Measuring performance at each new software version is useful for
early detection of performance regressions. However, systematically running
benchmarks is often impractical (e.g., long running execution, prioritizing
functional correctness over non-functional).
Objective: In this article, we propose Horizontal Profiling, a sampling
technique to predict when a new revision may cause a regression by analyzing
the source code and using run-time information of a previous version. The
goal of Horizontal Profiling is to reduce the performance testing overhead by
benchmarking just software versions that contain costly source code changes.
Method: We present an evaluation in which we apply Horizontal Profiling
to identify performance regressions of 17 software projects written in the
Pharo programming language, totaling 1,288 software versions.
Results: Horizontal Profiling detects more than 80% of the regressions by
benchmarking less than 20% of the versions. In addition, our experiments show
that Horizontal Profiling has better precision and executes the benchmarks
in less versions that the state of the art tools, under our benchmarks.
Conclusions: We conclude that by adequately characterizing the run-time
information of a previous version, it is possible to determine if a new version is
likely to introduce a performance regression or not. As a consequence, a signif-
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icant fraction of the performance regressions are identified by benchmarking
only a small fraction of the software versions.

Keywords: Performance regression, software performance, software
evolution, performance regression prediction, regression benchmarking

1. Introduction

Performance regressions are caused by source code changes made along
the software development process. Identify which software version introduces
a performance regression is important for addressing performance regressions.
Measuring and comparing the performance of each software version under
the same workload is a common technique to spot which version causes the
performance regression. However, sometimes measuring the performance of
each software version is impractical for different factors, including: i) the
high-overhead of the benchmark execution [9], ii) difficulty in identifying
multiple executions to achieve comparable performance measurements [8],
and iii) the amount of software versions released by day [9]. Furthermore,
besides the performance testing activities, developers first need to test if the
new version remains functional. Functional regression testing could also be a
considerable time-consuming activity [12].

Understanding how and what source code changes affect software perfor-
mance may help reduce the overhead associated to performance regression
testing. For instance, given a particular source code change one may anticipate
whether or not it could affect software performance. Diverse empirical studies
analyze performance bug reports to better understand the roots of perfor-
mance bugs [9, 10, 14]. However, these studies voluntarily ignore performance
regressions that are not reported as a bug or bug-fix.

Previous work. This paper is an extension of a paper presented in ICPE’16 [1].
In this previous work, we conducted an empirical study of real-world per-
formance variations detected after analyzing the performance evolution of
17 open source projects along 1,288 software versions [1]. In particular, this
study addressed two research questions:

• RQ1: Are performance variations mostly caused by modifications of the
same methods? This question is particular critical to understand where
performance variations stem from. Consider a method m that causes a
performance regression when it is modified. It is likely that modifying
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m once more will impact the performance. Measuring the portion of
“risky” methods may be relevant for statically predicting the impact a
code revision may have.

• RQ2: What are the recurrent source code changes that affect performance
along software evolution? More precisely, we are interested in deter-
mining which source code changes mostly affect program performance
along software evolution and in which context. If performance variations
actually do match identified source code changes, then it is posible to
judge the impact of a given source code change on performance.

Our study reveals a number of facts for the source code changes that affect
the performance of the 17 open source systems we analyzed:

• Most performance variations are caused by source code changes made
in different methods. Therefore, keeping track of methods that partici-
pated in previous performance variations is not a good option to detect
performance variations.

• Most source code changes that cause a performance variation are directly
related to method call addition, deletion or swap.

Horizontal Profiling. Based on these findings, we also proposed Horizon-
tal Profiling, a sampling technique to statically identify versions that may
introduce a performance regression [1]. Horizontal Profiling collects run-time
metrics periodically (e.g., every k versions) and uses these metrics to analyze
the impact of each software version on performance. Horizontal Profiling
assigns a cost to each source code change based on the run-time history. The
goal of Horizontal Profiling is to reduce the performance testing overhead by
benchmarking just software versions that contain costly source code changes.
Assessing the accuracy of Horizontal Profiling leads to the third research
question:

• RQ3: How well can Horizontal Profiling prioritize the software versions
and reduce the performance testing overhead? This question is relevant
since the goal of Horizontal Profiling is to reduce the performance
regression testing overhead by only benchmarking designated versions.
We are interested in measuring the balance between the overhead of
exercising Horizontal Profiling and the accuracy of the prioritization.
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We evaluated our technique over 1,125 software versions. By profiling
the execution of only 17% of the versions, Horizontal Profiling is able to
identify 83% of the performance regressions greater than 5% and 100% of the
regressions greater than 50%.

PerfScope. Related to our approach, Huang et al. [9] propose a technique
to measure the risk of introducing performance regressions of a source code
change, together with a tool PerfScope. PerfScope uses a static approach
to measure the risk of a software version based on the worst case analysis.
PerfScope categorizes the source code change (i.e., extreme, high, and low)
and assigns a risk score to each category. Both approaches rely on the fact
that most performance regressions depend on 1) how expensive the involved
source changes are and 2) how frequently these changes are executed.

Empirical Comparison. In this paper extension, we present an empirical
comparison between Horizontal Profiling and a Pharo implementation of
PerfScope. We argue that PerfScope may not accurately assess the risk of per-
formance regression issues in dynamic languages, like the Pharo programming
language. In order to support our hypothesis we address a fourth research
question.

• RQ4: How well does Horizontal Profiling perform compared to the state-
of-the-art risk analysis tools using a dynamically typed language? We
are interested in comparing how well these approaches predict if a new
software version introduces a performance regression or not, in terms of
precision and recall.

We found that Horizontal Profiling can more accurately estimate the
expensiveness and frequency of source code changes. As a consequence, it
has a better precision and executes the benchmarks in less versions than
PerfScope, under our benchmarks. By using a dedicated profiling technique,
Horizontal Profiling does not require painful manual tuning, and it performs
well, independently of the performance regression threshold.

Outline. Section 2 motivates our work thought an empirical study about
the roots of performance variations. Section 3 presents and evaluates the
cost model based on the run-time history. Section 4 compares our proposed
technique with the state-of-the-art risk analysis tools. Section 5 discusses
threats to validity we face and how we are addressing them. Section 6
overviews related work. Section 7 concludes and presents an overview of our
future work.
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2. Understanding Performance Variations

To address our first two research questions. We conduct our study around
the Pharo programming language1. Our decision is motivated by a number
of factors: First, Pharo offers an extended and flexible reflective API, which
is essential for iteratively executing benchmarks over multiple application
versions and executions. Second, application instrumentation and monitoring
its execution are also cheap and with a low overhead. Third, the computational
model of Pharo is uniform and very simple, which means that applications
for which we have no knowledge are easy to download, compile and execute.

Pharo has a different syntax compared with C-like languages. Readers
unfamiliar with the syntax of Pharo might need an introduction to the Pharo
Syntax to better understand the examples presented in this paper. For this
purpose, we provide equivalent expressions for common cases in Table A.11
in the Appendix section.

2.1. The Pharo programming language

Pharo is an emerging object-oriented programming language that is close
to Python and Ruby. Pharo’s syntax follows the one of Smalltalk, and Pharo
has a minimal core and few but strong principles. In Pharo, sending a
message is the primitive syntactic construction from which all computations
are expressed. Loops, object creations, and conditional branches are all
realized via sending message. In addition, the virtual machine of Pharo is
relatively simple, which greatly reduces the number of source of bias. The
simplicity of both the language and executing environment greatly mitigate
possible biases resulting from the technical challenges we have to address to
run benchmark over multiple software revisions.

Although we conducted our experiment using Pharo, we have no indication
that our results and claims are not applicable to other programming languages
and environments.

2.2. Projects under Study

We pick 1,288 release versions of 17 software projects from the Pharo
ecosystem stored on the Pharo forges (SqueakSource2, SqueakSource3 3 and

1http://pharo.org
2http://www.squeaksource.com/
3http://ss3.gemstone.com/
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Table 1: Projects under Study.
Project Versions LOC Classes Methods
Morphic 214 41,404 285 7,385
Spec 270 10,863 404 3,981
Nautilus 214 11,077 173 2012
Mondrian 145 12,149 245 2,103
Roassal 150 6,347 227 1,690
Rubric 83 10,043 173 2,896
Zinc 21 6,547 149 1,606
GraphET 82 1,094 51 464
NeoCSV 10 8,093 9 125
XMLSupport 22 3,273 118 1,699
Regex 13 4,060 39 309
Shout 16 2,276 18 320
PetitParser 7 2,011 63 578
XPath 10 1,367 93 813
GTInspector 17 665 17 128
Soup 6 1,606 26 280
NeoJSON 8 700 16 139
Total 1,288 130,386 2,106 26,528

SmalltakHub4). The set of considered projects has a broad range of application:
user interface frameworks (Morphic and Spec), a source code highlighter
(Shout), visualization engines (Roassal and Mondrian), an HTTP networking
tool (Zinc), parsers (PetitParser, NeoCSV, XMLSupport, XPath, NeoJSON
and Soup), a chart builder (GraphET), a regular expression checker (Regex),
an object inspector (GTInspector) and code browsers and editors (Nautilus
and Rubric).

Table 1 summarizes each one of these projects and gives the number
of defined classes and methods along software evolution. It also shows the
number of lines of code (LOC) per project.

We chose these applications for our study for a number of reasons: (i) they
are actively supported and represent relevant assets for the Pharo community.
(ii) The community is friendly and interested in collaborating with researchers.
As a result, developers are accessible for us to ask questions about their
projects.

2.3. Source Code Changes

Before reviewing variation of performance, we analyze how source code
changes are distributed along all the methods of each software project. Such
analysis is important to contrast performance evolution later on.

4http://smalltalkhub.com/
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Figure 1: Source Code Changes histogram at method level.

Let M be the number of times that a method is modified along software
versions of each software project. Figure 1 gives the distribution of variable
M of all projects under study. The y-axis is the percentage of methods, and
x-axis is the number of modifications. One method has been modified 14
times. In total, 83% of the methods are simply defined without being modified
in subsequent versions of the application (M = 0).

There are 2, 846 methods (11%) modified only once (M = 1) in the
analyzed versions. Only 6% of the methods are modified more than once
(M > 1). Table 2 gives the number of methods that: i) are not modified
(M = 0), ii) are modified only once (M = 1), and iii) are modified more than
once (M > 1) for each software project. We found that in all but one project,
the number of methods modified more than once are relatively small compared
to the number of methods that are modified only once. The Mondrian project
is clearly an outlier since 28% of its methods are modified twice or more. A
discussion with the authors of Mondrian reveals the application went through
long and laborious maintenance phases on a reduced set of particular classes.

Similarly, we analyzed the occurrence of class modification: 59% of the
classes remain unmodified after their creation, 14% of the classes are modified
once (i.e., at least one method has been modified), and 27% of the classes
are modified more than once.

2.4. Benchmarks

In order to get reliable and repeatable execution footprints, we select a
number of benchmarks for each considered application. Each benchmark is a
representative execution scenario that we will carefully measure. Several of
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Table 2: M = number of times that a method is modified.
Project Methods M = 0 M = 1 M >1

Morphic 7,385 6,810 (92%) 474 ( 6%) 101 (1%)
Spec 3,981 2,888 (73%) 730 (18%) 363 (9%)
Rubric 2,896 2,413 (83%) 362 (13%) 121 (4%)
Mondrian 2,103 1,361 (65%) 146 (7%) 596 (28%)
Nautilus 2,012 1,646 (82%) 248 (12%) 118 (6%)
XMLSupport 1,699 1,293 (76%) 276 (16%) 130 (8%)
Roassal 1,690 1,379 (82%) 232 (14%) 79 (5%)
Zinc 1,606 1,431 (89%) 139 (9%) 36 (2%)
XPath 813 780 (96%) 33 (4%) 0 (0%)
PetitParser 578 505 (87%) 66 (11%) 7 (1%)
GraphET 464 354 (76%) 70 (15%) 40 (9%)
Shout 320 304 (95%) 12 (4%) 4 (1%)
Regex 309 303 (98%) 5 (2%) 1 (0%)
Soup 280 269 (96%) 11 (4%) 0 (0%)
NeoJSON 139 131 (94%) 7 (5%) 1 (1%)
GTInspector 128 119 (93%) 0 (0%) 9 (7%)
NeoCSV 125 84 (67%) 35 (28%) 6 (5%)

Total 26,528 22,070 (83%) 2,846 (11%) 1,612 (6%)

the applications already come with a set of benchmarks. If no benchmarks
were available, we directly contacted the authors and they kindly provided
benchmarks for us. Since these benchmarks have been written by the authors,
they are likely to cover part of the application for which its performance is
crucial.

At that stage, some benchmarks have to be worked or adapted to make
them runnable on a great portion of each application history. The benchmarks
we considered are therefore generic and do not directly involve features that
have been recently introduced. Identifying the set of benchmarks runnable
over numerous software versions is particularly time consuming since we
had to test each benchmark over a sequence of try-fix-repeat. We have 39
executable benchmarks runnable over a large portion of the versions.

All the application versions and the metrics associated with the bench-
marks are available online5.

5http://users.dcc.uchile.cl/~jsandova/hydra/
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2.5. Execution Time Measurements

Having a good execution time estimation is challenging, because there are
many factors that may affect the measurements, for instance, the just-in-time
compiler and no deterministic garbage collection. To reduce the bias in our
measurements, we follow three actions:

• Warming-up. We execute the benchmarks a number of times before
start our measurements.

• Compteur. We use the Compteur profiler, it uses the number of sent
message for estimate the average execution time of a given benchmark [2].
In particular, since most of computation in Pharo is done by sending
messages (even for the control structures and loops) the execution time
has a very high correlation with the number of sent messages. Therefore,
counting messages provides more deterministic and replicable results,
which is crucial in an empirical study.

• Multiple Executions. Besides the great advantages of message counting,
it is necessary consider that the number of sent message have a small
variation mainly due to the hash values (i.e., used on dictionaries), which
are generated by the Pharo Virtual Machine in a non-deterministic
fashion. Even do, it have been show that this variation is small, below
1% [2]. To reduce such variation, we execute the benchmark 5 times
(after the warming up session) and use the media for our experiments.

2.6. Performance Variations of Modified Methods

A software commit may introduce a scattered source code change, spread
over a number of methods and classes. We found 4,458 method modifications
among 1,288 analyzed software versions. Each software version introduces
3.46 method modifications on average. As a consequence, a performance
variation may be caused by multiple method source code changes within the
same commit.

We carefully conducted a quantitative study about source code changes
that directly affect method performance. Let V be the number of times that
a method is modified and becomes slower or faster after the modification. We
consider that the execution time of a method varies if the absolute value of the
variation of the accumulated execution time between two consecutive versions
of the method is greater than a threshold. In our situation, we consider
threshold = 5% over the total execution time of the benchmark. Below 5%, it
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appears that the variations may be due to technical consideration, such as
inaccuracy of the profiler [2].

Figure 2 gives the distribution of V for all methods of the projects under
study. In total, we found 150 method modifications where the modified
method becomes slower or faster. These modifications are made over 111
methods; 91 methods are modified only once (V = 1) and 20 more than once
(V > 1). Table 3 gives the number of methods for each software project.

Table 1
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Figure 2: Performance Variations of Modified Methods (threshold = 5%), 111 methods are
here reported.

False Positive. However, not all these 150 modifications are related to the
method performance variations because there are a number of false-positives.
Consider the change made in the open method on the class ROMondrianViewBuilder

. Example code with a leading “-” is from the previous version, while code
with a leading “+” is in the current version. Unmarked code (without a
leading “-” or “+”) is in both versions.

ROMondrianViewBuilder>>open
| whiteBox realView |
self applyLayout.
self populateMenuOn: viewStack.

− ˆ stack open
+ ˆ viewStack open
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Table 3: V= number of times that a method is modified and becomes slower/faster after
the modification. (threshold = 5%).

Project Methods V = 0 V = 1 V >1

Morphic 7,385 7,382 (100%) 2 (0%) 1 (0%)
Spec 3,981 3,944 (99%) 24 (1%) 13 (0%)
Rubric 2,896 2,896 (100%) 0 (0%) 0 (0%)
Mondrian 2,103 2,091 (99%) 11 (1%) 1 (0%)
Nautilus 2,012 2,008 (100%) 4 (0%) 0 (0%)
XMLSupport 1,699 1,689 (99%) 10 (1%) 0 (0%)
Roassal 1,690 1,675 (99%) 14 (1%) 1 (0%)
Zinc 1,606 1,597 (99%) 7 (0%) 2 (0%)
XPath 813 813 (100%) 0 (0%) 0 (0%)
PetitParser 578 566 (98%) 12 (2%) 0 (0%)
GraphET 464 459 (99%) 3 (1%) 2 (0%)
Shout 320 320 (100%) 0 (0%) 0 (0%)
Regex 309 309 (100%) 0 (0%) 0 (0%)
Soup 280 280 (100%) 0 (0%) 0 (0%)
NeoJSON 139 138 (99%) 1 (1%) 0 (0%)
GTInspector 128 128 (100%) 0 (0%) 0 (0%)
NeoCSV 125 119 (95%) 5 (4%) 1 (1%)

Total 26,528 26,417(99.6%) 91(0.33%) 20(0.07%)

This modification is only a variable renaming: the variable stack has been
renamed into viewStack. Our measurement indicates that this method is now
slower, which is odd since a variable renaming should not be the culprit
of a performance variation. A deeper look at the method called by open

reveals that the method applyLayout is also slower. Therefore, we conclude that
open is slower because of a slower dependent method, and not because of its
modification. Such a method is a false positive and its code modification
should not be considered as the cause of the performance variation.

Manually Cleaning the Data. We manually revised the 150 method
variations by comparing the call-graph (obtained during the execution) and
the source code modification. We then manually revised the source code (as we
just did with the method open). In total, we found 66 method modifications
(44%) that are not related with the method performance variation. The
remaining 84 method modifications (56%) cause a performance variation in
the modified method. These modifications are distributed along 11 projects;
Table 4 gives the distribution by project.
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Table 4: Method modifications that affect method performance (R= regression, I= im-
provement, R/I = regression in some benchmarks and Improvement in others).

Method Modifications Involved Mod. by
Project

R I R/I Total Methods Method

Spec 19 9 0 28 16 1.75
Roassal 7 5 0 12 11 1.09
Zinc 2 1 4 7 7 1.00
Mondrian 5 3 0 8 7 1.14
XMLSupport 6 0 0 6 6 1.00
GraphET 4 3 0 7 5 1.4
NeoCSV 0 5 0 5 5 1.00
PetitParser 5 0 0 5 5 1.00
Morphic 2 1 0 3 2 1.50
Nautilus 2 0 0 2 2 1.00
NeoJSON 0 1 0 1 1 1.00

Total 52 28 4 84 67 1.25

Summary. We found that 84 method modifications that cause a performance
variation (regression or improvement) were done over 67 methods, which means
1.25 modifications per method. Table 4 shows the ratio between method
modifications and methods with performance regression is less than two in
all projects. In addition, we found that the these methods were modified a
number of times along source code evolution without causing a performance
variation.Therefore, we answer our first research question as follows:

RQ1: Are performance variations mostly caused by modifica-
tions of the same methods? Most performance variations were caused
by source code changes made in different methods. Therefore, keeping
track of methods that participated in previous performance variations is
not a good option to detect performance variations.

2.7. Negative Performance Variations: Author Feedback

Accurately identifying the root of a negative performance variation is
difficult. We investigate this by surveying authors of method modifications
causing a negative variation. From the 84 method modifications mentioned,
we obtained author feedback for 21 of them. Each of 21 method modifications
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is the cause of a negative variation greater than 5%. We also provided
the benchmarks to the authors since it may be that the authors causing a
regression are not aware of the application benchmarks. These methods are
spread over four projects (Roassal, Mondrian, GraphET, and PetitParser).
Each author was contacted by email and we discussed the method modification
causing the regression.

For 6 (29%) out of 21 modifications, the authors were aware of the variation
at the time of the modification. The authors therefore consciously and
intentionally made the method slower by adding or improving functionalities.
We also asked them whether the regression could be avoided while preserving
the functionalities. They answered that they could not immediately see an
alternative to avoid or reduce the performance variation.

For 5 (24%) of the modifications, authors did not know that their new
method revision caused a performance variation. However, authors acknowl-
edged the variation and were able to propose an alternative method revision
that partially or completely removes the negative performance variation.

For the 10 remaining modifications, the authors did not know that they
caused a performance variation and no alternative could be proposed to
improve the situation.

This small and informal survey of practitioners indicates that a significant
number of performance negative variation are apparently inevitable. On
the other hand, such incertitude expressed by the authors regarding the
presence of a negative variation and providing change alternative highlights
the relevance of our study and research effort.

2.8. Categorizing Source Code Changes That Affect Method Performance

This section analyzes the cause of all source code changes that affect
method performance. We manually inspected the method source code changes
and the corresponding performance variation. We then classify the source
code changes into different categories based on the abstract syntax tree
modifications and the context in which the change is used. In our study, we
consider only code changes that are the culprits for performance variation
(regression or improvement), ignoring the other non-related source code
changes.

Subsequently, recurrent or significant source code changes are described.
Each source code change has a title, a brief description, followed by one source
code example taken from the examined projects.
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Method Call Addition. This source code change adds expensive method
calls that directly affect the method performance. This situation occurs 24
times (29%) in our set of 84 method modifications, all these modifications
cause performance regressions. Consider the following example:

GETDiagramBuilder>>openIn: aROView
self diagram displayIn: aROView.
+ self relocateView

The performance of openIn: dropped after having inserted the call to
relocateView.

Method Call Swap. This source code change replaces a method call with
another one. Such a new call may be either more or less expensive than
the original call. This source change occurs 24 times (29%) in our set of 84
method modifications; where 15 of them cause a performance regression and
9 a performance improvement.

MOBoundedShape>>heightFor: anElement
ˆ anElement
− cachedNamed: #cacheheightFor:
− ifAbsentInitializeWith: [ self computeHeightFor: anElement ]
+ cacheNamed: #cacheheightFor:
+ of: self
+ ifAbsentInitializeWith: [ self computeHeightFor: anElement ]

The performance of heightFor: dropped after having swapped the call to
cacheNamed:ifAbsentInitializeWith by cacheNamed: of:ifAbsentInitializeWith.

Method Call Deletion. This source code change deletes expensive method
calls in the method definition. This pattern occurs 14 times (17%) in our
set of 84 method modifications - all these modifications cause performance
improvements.

MOGraphElement>>resetMetricCaches
− self removeAttributesMatching: ''cache∗''
+ cache := nil.

This code change follows the intuition that removing a method call makes
the application faster.

Complete Method Change. This category groups the source code changes
that cannot be categorized in one of these situations, because there are many
changes in the method that contribute to the performance variation (i.e., a
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combination of method call additions and swaps). We have seen 9 complete
method rewrites (11%) among the 84 considered method modifications.

Loop Addition. This source code change adds a loop (i.e., while, for) and a
number of method calls that are frequently executed inside the loop. We have
seen 5 occurrences of this pattern (6%) - all of them cause a performance
regression.

ROMondrianViewBuilder>>buildEdgeFrom:to:for:
| edge |
edge := (ROEdge on: anObject from: fromNode to: toNode) + shape.

+ selfDefinedInteraction do: [:int | int value: edge ].
ˆ edge

Change Object Field Value. This source code change sets a new value in
an object field causing performance variations in the methods that depend on
that field. This pattern occurs 2 times in the whole set of method modifications
we have analyzed.

GETVerticalBarDiagram>>getElementsFromModels
ˆ rawElements with: self models do: [ :ele :model |

+ ele height: (barHeight abs).
count := count + 1].

On this example, the method height: is a variable accessor for the variable
height defined on the object ele.

Conditional Block Addition. This source code change adds a condition
and a set of instructions. These instructions are executed upon the condition.
This pattern occurs 2 times in the whole set of method modifications we
analyzed. Both of them cause a performance improvement.

ZnHeaders>>normalizeHeaderKey:
+ (CommonHeaders includes: string) ifTrue: [ ˆ string ].

ˆ (ZnUtils isCapitalizedString: string)
ifTrue: [ string ]
ifFalse: [ ZnUtils capitalizeString: string ]

Changing Condition Expression. This source code change modifies
the condition of a conditional statement. This change could introduce a
variation by changing the method control flow and/or the evaluation of the
new condition expression is faster/slower. This pattern occurs 2 times in the
whole set of method modifications we have analyzed.

15



NeoCSVWriter>>writeQuotedField:
| string |
string := object asString.
writeStream nextPut: $”.
string do: [ :each |

− each = $”
+ each == $”

ifTrue: [ writeStream nextPut: $”; nextPut: $” ]
ifFalse: [ writeStream nextPut: each ] ].

writeStream nextPut: $”

The example above simply replaces the equal operation = by the identity
comparison operator ==. The latter is significantly faster.

Change Method Call Scope. This source code change moves a method
call from one scope to another executed more or less frequently. We found 1
occurrence of this situation in the whole set of method modifications. Such a
change resulted in a performance regression.

GETCompositeDiagram>>transElements
self elements do: [ :each | | trans actualX |

+ pixels := self getPixelsFromValue: each getValue.
(each isBig)

ifTrue: [ | pixels |
− pixels := self getPixelsFromValue: each getValue.
...

ifFalse: [ ˆ self ].
...
]

Changing Method Parameter. The following situation changes the pa-
rameter of a method call. We found only 1 occurrence of this situation in the
whole set of method modifications.

ROMondrianViewBuilder>>buildEdgeFrom:to:for:
| edge |
edge := (ROEdge on: anObject from: fromNode to: toNode) + shape.

− selfDefinedInteraction do: [:int | int value: edge ].
+ selfDefinedInteraction do: [:int | int value: (Array with: edge) ].

ˆ edge'

Table 5 gives the frequency of each previously presented source code
change.
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Table 5: Source code changes that affect method performance (R= Regression, I= Improve-
ment, R/I = Regression in some benchmarks and Improvement in others).

Source Code Changes R I R/I Total

1 Method call additions 23 0 1 24 (29%)
2 Method call swaps 15 9 0 24 (29%)
3 Method call deletion 0 14 0 14 (17%)
4 Complete method change 6 0 3 9 (11%)
5 Loop Addition 5 0 0 5 (6%)
6 Change object field value 2 0 0 2 (2%)
7 Conditional block addition 0 2 0 2 (2%)
8 Changing condition expression 0 2 0 2 (2%)
9 Change method call scope 1 0 0 1 (1%)
10 Changing method parameter 0 1 0 1 (1%)

Total 52 28 4 84 (100%)

Categorizing Method Calls. Since most changes that cause a performance
variation (patterns 1,2,3) involve a method call, we categorize the method call
additions, deletions and swaps (totaling 62) in three different subcategories:

• Calls to external methods: 10% of the method calls correspond to
method of external projects (i.e., dependent projects).

• Calls to recently defined methods: 39% of the method calls correspond
to method that are defined in the same commit. For instance, a commit
that defines a new method and adds method calls to this method.

• Calls to existing project methods: 51% of the method calls correspond
to project methods that were defined in previous versions.

Summary. In total, we found that 73% of the source code changes that
cause a performance variation are directly related to method call addition,
deletion or swap (patterns 1,2,3). This percentage varies between 60% and
100% in all projects, with the only exception of the Zinc project that has
a 29%; most Zinc performance variations were caused by complete method
changes. Therefore, we answer our second research question as follows:
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RQ2: What are the recurrent source code changes that affect
performance along software evolution? Most source code changes
that cause a performance variation are directly related to method call
addition, deletion or swap.

2.9. Triggering a Performance Variation

To investigate whether a kind of change could impact the method perfor-
mance we compare changes that caused a performance variation with those
that do not. For this analysis, we consider the source code changes: loop
addition, method call addition, method call deletion and method call swap. 6

To fairly compare between changes that affect performance and changes
that do not affect performance, we consider changes in methods that are
executed by our benchmark set. Table 6 shows the number of times that a
source code change was done along software versions of all projects (Total),
and the number of times that a source code change caused a performance
variation (Perf. Variation) greater than 5% over the total execution time of
the benchmark.

Table 6: Comparison of source code changes that cause a variation with the changes
that do not cause a variation (R= regression, I= improvement, R/I = regression in some
benchmarks and Improvement in others).

Perf. Variations
Source Code Changes Total

R I R/I Total

Method call additions 231 23 0 1 24(10.39%)
Method call deletions 119 0 14 0 14(11.76%)
Method call swap 321 15 9 0 24 (7.48%)
Loop additions 8 5 0 0 5(62.5%)

Table 6 shows that these four source code changes are frequently done
along source code evolution; however just a small number of instances of these
changes cause a performance variation. After manually analyzing all changes
that cause a variation, we conclude that there are mainly two factors that
contribute to the performance variation:

6These changes correspond the top-4 most common changes, with the exception of
“Complete method change” which we did not consider in the analysis since it is not
straightforward in detecting this pattern automatically.
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• Method call executions. The number of times that a method call is
executed plays an important role to determine if this change can cause
a performance regression. We found that 92% of source code changes
were made over a frequently executed source code section.

• Method call cost. The cost of a method call is important for determining
the grade of performance variation. We found that 7 (8%) method calls
additions/deletions were only executed once and cause a performance
regression greater than 5%. In the other 92% the performance varies
depending on how many times the method call is executed and the cost
of each method call execution.

We believe these factors are good indicators to decide when a source code
change could introduce performance variation. We support this assumption
by using this criteria to detect performance regressions, as we describe in the
following sections.

3. Horizontal Profiling

We define Horizontal Profiling as a technique to statically detect per-
formance regressions based on benchmark execution history. The rationale
behind Horizontal Profiling is that if a software execution becomes slow for a
repeatedly identified situation (e.g., particular method modification), then
the situation can be exploited to reduce the performance regression testing
overhead.

3.1. LITO: A Horizontal Profiler

We built LITO to statically identify software versions that introduce a
performance regression. LITO takes as input (i) the source code of a software
version Vn and (ii) the profile (obtained from a traditional code execution
profiler) of the benchmarks execution on a previous software version Vm.
LITO identifies source code changes in the analyzed software version Vn, and
determines if that version is likely to introduce a performance regression or
not.

The provided execution profile is obtained from a dedicated code execution
profiler and is used to infer component dependencies and loop invariants.
As discussed later on, LITO is particularly accurate even if Vm is a version
distant from Vn.
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Using our approach, practitioners prioritize the performance analysis in
the selected versions by LITO, without the need to carry out costly benchmark
executions for all versions. The gain here is significant since LITO helps
identify software commits that may or may not introduce a performance
variation.

Execution Profile. LITO runs the benchmarks each k versions to collect
run-time information (e.g., each ten versions, k = 10). Based on the study
presented in previous sections, LITO considers three aspects to collect run-
time information in each sample:

• Control flow – LITO records sections of the source code and method
calls that are executed. This allows LITO to ignore changes made in
source code sections that are not executed by the benchmarks (e.g., a
code block associated with an if condition or a method that is never
executed).

• Number of executions – As we presented in the previous sections, the
method call cost itself is not enough to detect possible performance
regressions. Therefore LITO records the number of times that methods
and loops are executed.

•

• Method call cost – LITO estimates for each method m (i) the accumu-
lated total execution cost and (ii) the average execution cost for calling
m once during the benchmark executions. Note that LITO uses the
notion of cost as a proxy of the execution time. We denote u as the
unit of time we use in our cost model. We could have used a direct
time unit as milliseconds, however it has been shown that counting the
number of sent messages is significantly more accurate and this metric
is more stable than estimating the execution time [2].

LITO Cost Model. LITO abstracts all source code changes as a set of
method call additions and/or deletions. To LITO, a method call swap is
abstracted as a method call addition and deletion. Block additions such as
loops and conditional blocks are abstracted as a set of method call additions.

The LITO cost model is illustrated in Figure 3. Consider the modification
made in the method parseOn: in the class PPSequenceParser. In this method
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PPSequenceParser>>parseOn: aContext

  | memento elements element |                                              
  + memento := aPPContext remember.                                                            +  100*10 (addition)
  elements := Array new: parsers size.                                                                  +  0 
  1 to: parsers size do: [ :index |

    element := (parsers at: index) parseOn: aPPContext.                               +  0
    element isPetitFailure ifTrue: [                                                                   +  0

                                  - aStream position: start                                                          -   50*50   (deletion)
            + aPPContext restore: memento.                                            + 200*50  (addition)
            ^ element ].

           elements at: index put: element ].                                                              + 0

   ^ elements

Execution Profile obtained 
by executing benchmark b

m
et

ho
d-

bo
dy

do
:

ifT
ru

e:

method-body:   10 executions
                           (along the execution)

ifTrue:                 50 executions
                           (half of the times was true)

do:                     100 executions 
                           (10 for each method execution)

Number of executions:

Cost:

remember          100 u
                            (average execution time)
restore:               200 u
                            (average execution time)

position:             50 u
                            (average execution time)

Modification Cost

——————
8500  u

Method Modification

u = unit of time

parseOn:            1000 u
                            (average execution time)

Figure 3: LITO cost model example

revision, one line has been removed and two have been added: two method
call additions (remember and restore:) and one deletion (position:). In order to
determine whether the new version of parseOn: is slower or faster than the
original version, we need to estimate how the two call additions compare with
the call deletion in terms of execution time. This estimation is based on an
execution profile.

The LITO cost model assesses whether a software version introduces
a performance regression for a particular benchmark. The cost of each
call addition and deletion depends therefore on the benchmark b when the
execution profile is produced.

We consider an execution profile obtained from the execution of a bench-
mark on the version of the application that contains the original definition
of parseOn:. LITO determines whether the revised version of parseOn: does or
does not introduce a performance regression based on the execution profile of
the original version of parseOn:.

The execution profile indicates the number of times that each block
contained in the method parseOn: is executed. It further indicates the number
of executions of the code block contained in the iteration (i.e., do: [ :index | ... ]).
The profile also gives the number of times the code block contained in the
ifTrue: statement is executed. In Figure 3, the method parseOn: is executed
10 times, the iteration block is executed 100 times (i.e., 10 times per single
execution of parseOn: on average) and the conditional block is executed 50
times (e.g., 0.5 times per single execution of parseOn: on average).

The execution profile also has the cost of each method call. On the example,
the method parseOn: costs 1000u, and remember 100u, implying that remember
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is 10 times faster to execute than parseOn:. Where u refers to the number of
times the send message bytecode is executed by the virtual machine [2].

The modification cost estimates the cost difference between the new version
and original version of a method. On the example, the modification cost of
method parseOn: is 8500u, meaning that the method parseOn: spends 8500u
more than the previous version for a given benchmark b. For instance, if the
benchmark b execution cost is 10,000u, then the new version of the method
parseOn: results in a performance regression of 85%.

The average cost of calling each method is obtained by dividing the total
accumulated cost of a method m by the number of times m has been executed
during a benchmark execution. In our example, calling remember has an
average cost of 100u. The theoretical cost of a method call addition m is
assessed by multiplying the cost of calling m and the number of times that it
would be executed based on the execution profile (Figure 3 right hand).

Let Ai be a method call addition of a given method modification and Dj a
method call deletion. Let cost b be a function that returns the average cost of
a method call when executing benchmark b, and execb a function that returns
the number of times a method call is executed. Both functions lookup the
respective information in the last execution sample gathered by LITO.

Let MCb(m) be the cost of modifying the method m for a benchmark b,
na the number of method call additions and nd the number of method call
deletions. The method modification cost is the sum of the cost of all method
call additions less the cost of all method call deletions.

MCb(m) =
na∑
i=1

costb(Ai) ∗ execb(Ai)−
nd∑
j=1

costb(Dj) ∗ execb(Dj).

Let C be the cost of all method modifications of a software version, and
m the number of modified methods; we therefore have:

C[v, b] =
m∈v∑

MCb(m)

In case we have C[v, b] > 0 for a particular version v and a benchmark b,
we then consider that version v introduces a performance regression.

New Method, Loop Addition, and Conditions. Not all the methods
may have a computed cost. For example, a new method for which no historical
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data is available may incur a regression. In such a case, we statically determine
the cost for code modification with no historical profiling data.

We qualify as fast a method that is returning a constant value, an accessor
/ mutator, or doing arithmetic or logic operations. A fast method receives
the lowest method cost obtained from the previous execution profile. All
other methods receive a high cost, the maximal cost of all the methods in the
execution profile.

In the case when a method is modified with a new loop addition or a
conditional block, no cost has been associated with it. LITO hypothesizes
that the conditional block will be executed and the loop will be executed the
same number of times as the most executed loop in the execution profile.

The high cost we give to new methods, loop additions, and conditions
is voluntarily conservative. It assumes that these additions may trigger a
regression. As we show in Table 5, loop and conditional block additions
represent 6% and 2%, respectively, of the source code changes that affect
software performance.

Detecting Method Call Additions and Deletions. Horizontal profiling
also depends on accurately detecting method call additions and deletions.
LITO uses a very simple strategy to detect these method call differences.
LITO takes as input two software versions, it contrasts the versions method
by method through their abstract syntax tree (AST). Consider two versions
of the same method m and m′, where m′ is the newer version of the method.
The strategy is to find all the nodes of both trees that are equivalent. We
consider that two nodes of the AST are equivalent if they have the same
values (i.e., receiver, method name, and arguments) and the same path to the
root. As consequence, the method call nodes of m that have not a equivalent
in m′ are considered deleted, and the nodes that exist in m′ and does not
in m are considered added. For instance, when a developer move a line in
to a loop block, this line will have a different path to the root in the tree.
Therefore, the algorithm will consider two changes a deletion and an addition.
Our initially attempt, prior having the algorithm we just described, was to
solely rely on methods names and method signature. However, this is very
fragile when a method is renamed (history is then lost). In this naive initial
approach, the method is considered new and it will be a worst case scenario
as we describe in the previous paragraph. This is a common problem when
contrasting source code in different versions. However, in next sections we
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show that this fact have few impact in our benchmark. Note also that other
approach have the same limitation.

Mapping Run-time Information. Once the method call additions and
deletions are located. LITO maps each method call with its associated cost
and the number of executions from the profiling history. We use the method
signature to search the method call cost in the profiling history. For the
number of executions, we search the closest block closure node in the Abstract
Syntax Tree (i.e., the closest loop) from the method call to the root, then
we search an equivalent node in the profiling history to determine how many
times this block was executed in the past. Using the same definition of
equivalence presented in previous paragraph. Note that in Smalltalk the
loops and conditions are represented as a block closures node in the Abstract
Syntax Tree. If the block closure node does not have an equivalent in the
profiling history then as we mention before, we take the worst case scenario
described in previous paragraphs.

Project Dependencies. An application may depend on externally provided
libraries or frameworks. As previously discussed (Section 2), a performance
regression perceived by using an application may be in fact located in a
dependent and external application. LITO takes such analyses into account
when profiling benchmark executions. The generated profile execution contains
runtime information not only of the profiled application but also of all the
dependent code.

During our experiment, we had to ignore some dependencies when an-
alyzing the Nautilus project. Nautilus depends on two external libraries:
ClassOrganizer and RPackage. LITO uses these two libraries. We exclude
these two dependencies in order to simplify our analysis and avoid unwanted
hard-to-trace recursions. In the case of our experiment, any method call
toward ClassOrganizer or RPackage is considered costly.

3.2. Evaluation

To answer our third research questionwe evaluate LITO using project
versions where at least one benchmark can be executed. We use the following
3-step methodology to evaluate LITO:

S1. We run our benchmarks for all 1,125 software versions and measure
performance regressions.
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Table 7: Detecting performance regressions with LITO using a threshold=5% and a sample
rate of 20 (ver= versions, Perf. Reg. = Performance Regressions).

Perf. Evolution
Project Ver.

Selected
Versions

Perf.
Reg.

Detected
Perf. Reg.

Undetected
Perf. Reg. by benchmark

Spec 267 43(16%) 11 8 ( 73%) 3

Table 1

13501616.33 18068849.67 6608652.33 4405954.67

13387237.33 18041039.67 6551046.33 4407173.67

13385562 18446883 6547749 4406740.67

20525001 24613992.67 10089915.67 4357695

13485595 18579096.67 6599043 3917057.33

19628211 21583066 9669581 4381427.33

19633464.67 21681624 9671482.67 4378987.33

19627237.67 21620043.33 9666504 4377967

19595233.67 21619715.33 9654897.67 4375466.33

19597187.67 21644163 9654556 4376239.67

19654997 21706104.33 9683845.33 4383453.67

19656185.33 21631463 9683363 4382198

19661182.33 21714140.33 9691675.33 4387119.67

19602462.67 21673258.67 9662843.67 4381095.33

19606514 21757432.33 9662813 4381027

19900055.67 21929813.67 9780806.67 4381169.33

19901129.33 21943425.67 9778957.67 4381578.67

19930402.33 21991030.33 9793712 4385019.33

19874192 21931860 9765739.33 4379681.67

20045117 22015812 9849139.67 4388377.67

19898295.67 21966170.67 9790654.67 4397274.33

19898455 21963107 9792540.33 4396702.67

19905838 21979509.67 9791875 4398263

19901246.67 21969193.33 9791848.33 4399426.33

20214485 22144719.67 9926634.67 4397446.67

20206213.67 22151774.67 9917137 4394439.33

20203752 22130752.33 9914455.33 4389792.67

20205396.33 22137476.67 9917937 4393074

20203837.67 22166530 9918549.67 4392783.33

20208432.33 22144983.67 9916200.67 4391626.33

20206899.33 22116560.33 9919383.67 4391121.67

20204349 22159983.33 9921873 4391867

20206111 22171667 9919380.33 4393321.33

20203861.33 22180890 9917006 4392899.33

20209115.67 22473524 9916983.33 4394154.33

20205658.67 22464911 9921922.33 4394275.33

19628368.33 22186140.33 9646363 4363614.67

19644386.67 22192815.67 9662794.33 4371676.67

20472084.67 22497990.33 10070672.33 4361934.33

20526306.33 22540657.67 10102141 4369712

20464907.33 22457239.33 10071970.67 4357839.33

20613234 24746372.33 10147699 4371301.67

20554773 24635497 10113929.67 4654381.67

20524444 24603582 10091699.67 4647136

20552062 24607752.33 10111752.33 4362224

19768763.33 24215838.33 9726882.67 4342834

20899905.67 24798078 10311493.67 4393009

20950868.67 24812853.67 10346626.33 4393064.67

20956717 24824302.33 10345828.67 4395022.33

20955316.67 24809283.67 10345808.67 4387517.67

4695760.67 12849707 3864194 3910137.67

4679638.67 12906601.67 3857211.67 3918504.33

4676834 12912801.67 3851115 3920176.33

4704834.67 12905642.33 3877396 3920674.33

4706898.67 12885150.67 3877014.33 3922552.33

4703618 12908815 3877821.33 3920834.67

4715453.33 12878148 3889984.67 3924683.33

4712268.33 12911376.67 3892068 3927424.33

4703827.67 12824611 3881311.33 3919651.67

4700956.33 12833330.33 3878037.67 3922080

4700357 12881413.67 3878319.33 3922614.67

4700827 12836329 3878271 3925357.67

4702682.67 12826531.67 3879652.33 3927154.33

4689668.33 12835466.67 3868302 3922472.67

4691720.33 12817607.33 3868997.33 3920109.67

4692130.67 12839776.67 3865266.33 3921577.33

7532729.33 14465271 6708892.67 4740570

7533652 14454086.33 6707265 4738062.33

7532187.33 14448577.33 6708839.67 4735545.33

7536621.33 14468684.33 6710080.33 4733179.67

7531151.33 14440870.67 6711875.33 4733022

7528957.33 14436184.33 6703095 4728291.33

7533933.33 14436114.33 6707956 4731459.67

7532692.67 14457265 6706793.33 4731075.33

7525626.67 14427840.33 6699614 4729072

7530769.67 14434536.33 6706205 4729384

7543671 14446379.67 6719492 4728109.67

7590132 14406930.33 6765926.33 4743675.33

7579503.33 14384391.33 6755681 4737280.67

7584835.33 14388103 6760719.33 4740538

7585034.33 14386452.33 6761074.33 4740570.67

7593925.67 14397872.33 6770204.67 4745034

7593781.33 14410595 6769875 4744882.33

7581918.33 14392830 6757890 4738101.33

7834100 13937264 6997641.33 4495392.67

7848744.67 13936962.33 7011060.67 4497655.67

7854977 13915194.67 7016829.33 4500348

7854211.33 13931342.67 7016473.33 4500083.33

7938467.67 14103494.33 7113469 4505974

7924866.33 14109817 7100514.33 4501025.33

7930148.33 14115134.67 7108509 4503558.33

7951293 14116807 7128311.67 4513748.67

7950671.33 14147243.33 7128456 4513762.67

7942837.67 14094318.33 7119942.67 4510498

7943000.67 14087701 7119815 4510517.67

7942710 14075273.33 7119924 4510546.33

7945385.67 14088033 7118609.67 4510433

7966839.33 14068471.33 7141794 4510259

7966330 14068801.67 7141740.33 4510192

7966671 14085163.33 7141908 4510159.67

7969422 14060736.33 7144027 4510659.67

7980123 14094464.67 7152931 4515182.33

7971348.67 14097983.67 7148754 4502515

7982346.33 14091639 7159555 4510801.67

7982199 14095559 7159324.33 4510821

7993427 14133349.33 7171154.67 4515261.33

7970535 14071239 7152981.33 4500180.67

7977646 14079947 7160803 4502451

11519527 16577777.67 10703839.67 5523680

11518937.67 16575998.33 10703227 5523617.67

11489959.33 16591027.33 10673631.33 5515705.33

11483977.33 16545180 10668424.67 5514382.33

11485864.33 16554026 10669919 5514377

11506351.67 16620843.67 10690281 5522391.67

11607410.33 16494051 10787583.33 5540446.67

11618338.67 16437139.33 10798085.67 5542121

11615602.67 16395539.33 10796275.33 5546817

11620930.33 16395669.33 10801245.67 5549309.67

8074193.67 15499427.33 7239928.33 4504367

8074677.67 16160860 7240333.67 4500067.67

8056747.33 16092584 7221307.33 4495009.67

8207739.33 14709043.67 7372947.67 4536594.67

8205372.67 14702185.67 7370987

8229435.33 14809197 7394238

8209045.67 14732071.33 7374607

8210232 14712516.33 7375589.67 5048769.33

8226530.67 14796827 7391733.33 5050015.33

8213715 14716465.33 7379180 5050148.67

8216086.33 14479206 7380892 5049861.67

8231023.33 14760124 7396104.33 5052100.33

8226514.67 14836081 7390956.67 5050150.33

8228090.67 14828960.33 7392173.33 5050493.33

8282396 14885743 7452511 5061971.67

8233372.67 14768242.67 7402696.33 5027529

8270488.33 14842656.67 7440609.67 5062824.33

8301620.33 14794296 7472026.67 5067524

8310104 14790291.33 7480754 5068713.33

8315497.67 14870260.33 7485299 5069891.33

8307298.67 14872689.33 7477236 5068736.67

8326213.33 14815348.67 7496611 5072383

8322508.67 14842074.33 7492370 5071711.33

8333575.33 15377286.33 7503560 5070550.33

8336465.33 15455786.67 7506612 5070541

8347283.33 15386089.33 7517473.67 5072610

7930732 15666963.33 6765953.33 4936211.67

7935206.67 15718976 6770846 4938574

7936197.67 15669255.67 6772044.33 4938690.67

7943167.67 15729613 6779212 4939740

7936776.33 15677490.67 6772190.33 4939868

7933342 15705232.33 6769153 4938728

7945637.67 15667864 6781010.33 4940677.33

8005571 15885317.33 6689420 4894443.33

7982866.33 15892418 6667208.67 4902498.67

8022230.33 15889080.67 6704917.33 4918567.67

8001851.33 15856346.67 6683835.33 4912912.67

7998845.67 15863660.33 6679694.33 4913539.33

7995592.67 15653217 6676337.33 4914277.67

8019253 15927666.33 6698572 4915447

8014119 15894453.33 6693765 4915847

8007039 15899400.33 6687151 4914704

7825912 15818732.33 6716842 4922790

7795310 15813706.67 6686643 4919353

7791818 15781978 6684279 4912888

7940777 15747135.67 6833132 4909126

7797637 15769137.33 6690138 4913361

7807962 15846805.67 6700082 4914063

7810799 15846922 6702494 4914068

7827566 15875563 6719430 4919342.33

7844004 15857606.33 6728686 4906726

7900160 16041759.33 6774178 4960842

7870512 14802650.67 6747775 4954233

7807950 14720630.33 6700474 4957902

7810262 14703185.33 6702519 4960186

7797684 14729897 6690258 4957412

7805385 14735141 6698509 4957277

7900514 14805479 6786570 5008041

7902499.33 14821480.67 6788076 5008262

7907329 14765836 6792867 4983021

7900040 14782388.33 6785366 13104832

7926802 14824407 6813138

7925851 14782181.33 6811424 13221675.33

7894472 14826540.33 6779704 13006942

7891840 14780463.33 6776966 12977359.33

7925424 14788696.33 6809715 13063804

7907381 14771816 6792250 13119205.33

7927846 14822017.67 6812489 13203944.67

7923716 14859885 6808032 13135699

7944843 14831107 6829279 13196589.67

7938283 14827036 6822569 13223476

7943378 14805404 6827516 13187768

7933266.67 14797573.67 6817085.67 13205847

7997267 14739547 6862788 36597887.33

8030673.33 14795696.67 6894848 36780207.33

8029442.67 14790787.33 6892689 36717220.33

8158028 14875505.33 7020656 39541929.67

8173952.33 14859390.33 7036310.33 39465341

8184569 14848791.33 7046550 39477053.67

8173156 14839961.67 7036017.67 39472364.33

8182066.33 14839768.67 7044023.33 39605074

8186049 14869602.67 7047439.33 39714416.33

8178216.33 14869364 7039802.67 39533892.67

8171440.67 14853039 7033582 39433349.67

8170910 14847977.67 7033616 39432848

8175614 14830259.33 7038006.33 39514145.67

8179091.67 14865988.33 7040717 39554615.33

8184481 14854255 7046357 39652390

8212430 14884321.67 7071846 39721733.33

8197760 14915332.67 7058239 39523499.33

8199900 14883965 7061076.67 39603799.67

8204026 14881096.67 7064316.67 39647433

8216540.67 14836047 7076661.33 39887891.33

8231314 14941351.67 7091499.67 39740969

8204669.67 14843081.33 7064570 39476783.67

8197145 14823379 7057116 39561515.33

8203172 14859522.67 7063899 39616534.67

8207870 14885672 7067040.33 39497113.33

8211881 14895594.67 7070894 39557693.33

8205281 14852942 7066513.67 39476807

8216372 14830912.33 7073819.67 39624226.33

8209613.67 14832438.33 7066865 39520032.33

8213112 14865965.67 7070071 39622943

8205431 14870240 7062158.33 39483787

8212051 14839147.33 7069873 39517661.33

8212637.33 14836536.67 7069956.33 39517870

8217657 14613417.33 7074991 39598467

8174961.67 14812453 7032423 39593582

8204022.33 14804195.67 7061731 39543063.67

8204524 14801404.33 7062356.33 39516779

8191853 14826068.33 7051970 39537027

8195809 14881302 7055712.33 39605502

8186421 14861449.33 7046535.67 39553936

8185851.33 14791247.67 7046126.67 39553752

8188363 14800607.33 7047733 39640986

8222176 14851278 7073356.67 39601405

8220376 14821484.33 7071175 39329584.67

8408196 14871165 7263201 39449703

8637510 15003615 7491756 39418696

8639083 14997183.33 7492918 39412685

8643655 15131599.33 7496391 39430359

8639999 15062606.33 7491859.67 39514517

8639502 15053197.33 7492182 39475476

8637734 15124308.67 7490083 39433904.67

8664737 15095262 7514657 39477890

8677133 15067741.67 7526017 39479739.67

8676712 15104049.67 7525477.67 39484531.67

8683348 15148453.67 7531336 39439400

8683607 15134057.67 7531136 39444417

8685419 15129705.67 7532945 39489648

8756019 15158908.33 7601206.33 39618654

8766707 15147842.33 7610185 40281408.67

8772400 15166445.67 7616108.33 40372700

8810684 15171032 7650715 40456647

8806636 15179528.67 7647397 40482096

8814913 15196016.33 7654858 40693473

8817592 15153337 7657302 40588346

8820494 15184442.67 7659708 40369014

8815586 15155785 7654270 40692746.33

8817694 15193544.67 7656596 40313067.33

8832967 15220356 7670954 40368973.67

8036641 14423707 7197541 39978409

7748141 14343983.67 6925057 29827777

8558166 15097072 7413063 30518566

8561459 15064226.33 7417224 30558817

8551954 15065584 7408043 30417556

8533765 15028069 7388635 30414064

8552557 15070076 7407653 30437901

8547800 15067246 7403516 30456885

8555692 15046792.33 7410455 30558228

8553707 15086736 7409103 12761579

Nautilus 199 64 (32%) 5 5 (100%) 0

Table 1

b1

391897754.33

391995301.33

392820927.33

393112342.33

392999942

392975870

393062685

394047163

394101769

393836730.33

394522984.67

394668659.67

394730569.67

400835308.33

400791871.33

400956804.33

400810028.33

400773841.33

400932778

400675049.33

419313887.67

419378374

419358862

422722582

422708251

422792460.33

422856558.67

422819957

422693541.67

423086115.67

422878994.67

423112411.67

423081242.67

417775780.67

419152390.67

427501935.67

427517493

427582566.67

427729310

427841914

427839599.33

427945582.67

427997068.33

428446691.33

428515058.67

428334697

427990899

428033432.33

428002077.67

428089322

426209394.33

426175641.33

427734088

429265651.33

429227829.33

429121074.67

429169520

425705154.33

425666007

425802840

428623535

428613788.33

423633102

424135203

423965131

423794867.67

423456956.33

420475688

433442693

642404522.67

642414112

644786610.33

644739720

647766575.33

1070954811

1072931636.33

431297052.67

431003536

431374995

431423479.33

431892457.33

431843863.33

431995221.67

431915190.33

434650563

434638420.33

435190038.33

435647936.67

435753783

433873625

432022122

432109723.67

435792159.67

436100159.33

450253123.67

450223615.33

450329705.67

450383791

450358474.33

451356697.33

455661773

871807735.67

871547565.33

875279623.67

936867709.33

933956188.67

935758603.67

935975126.33

938460783.33

939022170.67

938954011.33

939142360.33

943257404.67

943371661.33

939110820.67

939107019

948671416.33

951207785

951251469

951301316

957240325.67

957455624

8361815

8331284.67

8244684.67

8279794

8295887.67

8289744.33

8279722

8348902.67

8348343.33

8340435.33

8344738

7662416.33

7655638.67

7676744.67

7671764

7645946.67

7719157.33

7684605

7680367.33

7682988.33

7704709

7683601.33

7679760.33

7685826.67

7658133

7657680

7651757.67

7655938.67

7657828.33

7655558

7652037.67

7658185

7677412.33

7681542.33

7651709.67

7652334.33

7652636.67

7655926

7728045.67

7725727

7756962.67

7751272.33

7861475.33

7864145.33

7857429.67

7862449

7861916

7862360

7862624.67

7881122.67

7880663.67

7821991

7812119

7828392.33

7827666

7833925.33

7833886.33

7823376

7810495

7817074.33

7817632

7814983

7817395.33

7810481.33

7807076.67

7803009.67

7802623.33

7805326.67

7805956

7804734.33

7806701.67

7823666.33

7811071.33

7809470

7796541.67

6760641.33

6350443.33

7801030.33

7807243.67

7801807

Mondrian 144 9 ( 6%) 2 2 (100%) 0

Table 1

b1 b2 b3

Untitled 1 46447201.8 68355025.2 12427257.67

Untitled 2 46447892.2 65093431.6 11795672.67

Untitled 3 46449400.2 65092966.4 11797036.33

Untitled 4 46448170.4 65094216 11796708

Untitled 5 46446678.2 65093765.6 11796391.67

Untitled 6 46448722.8 65093621.2 11797187

Untitled 7 46450204 65094754.6 11795930.33

Untitled 8 46447958.4 65092327 11797061.33

Untitled 9 46449712.8 65094035 11796782.33

Untitled 10 46448018.4 65093836 11796737.67

Untitled 11 46448588.8 65094735.2 11796791

Untitled 12 46448843 65093286.6 11796450.67

Untitled 13 46448081.2 65093158 11797242.33

Untitled 14 46448141.6 65094664 11797048

Untitled 15 46448972.6 65093102.6 11797559.33

Untitled 16 54448464.8 65093116.6 11797245

Untitled 17 54447880 65094440.6 11796736.33

Untitled 18 54449125 65095063 11798020.67

Untitled 19 46849553.8 65093956.8 11796043

Untitled 20 46850001.4 65094618.8 11798371

Untitled 21 46848249.6 65093918.6 11797182.33

Untitled 22 46848619.4 65094349.2 11797877

Untitled 23 46847825.4 65094603.4 11798029.33

Untitled 24 46849640.4 65094752.6 11798013.33

Untitled 25 46848946.4 65094894.2 11796856

Untitled 26 46849173.8 65093292.8 11795939.67

Untitled 27 46847561 65094410.4 11797460

Untitled 28 46849720.6 65094879.6 11796704.67

Untitled 29 46849214.2 65095148.2 11796879.67

Untitled 30 46847514.2 65094007.2 11796156

Untitled 31 46849452.4 65093248.4 11796970.67

Untitled 32 46847982 65092867.6 11796720

Untitled 33 46849025.2 65094218.6 11796326.67

Untitled 34 46848600.2 65095799.4 11797083.67

Untitled 35 46846937 65094201.8 11796121

Untitled 36 46849541.6 65094621 11798349

Untitled 37 46848422.8 65094615.4 11796546.33

Untitled 38 46848798 65094787.6 11796803.67

Untitled 39 46848869.8 65094568.2 11797700.33

Untitled 40 46849308 65095484.8 11795953

Untitled 41 46847810 65093410.2 11796755.67

Untitled 42 46850122.8 65092908.6 11797579.33

Untitled 43 46849572.8 65093142 11798122.67

Untitled 44 46848379.4 65092655.8 11795735.33

Untitled 45 46849080 65094508.6 11796803.33

Untitled 46 46847377.8 65095495.6 11797107.67

Untitled 47 64848515.2 47957233.8 8725709.67

Untitled 48 64167489.4 47625205.2 8711433.33

Untitled 49 63767907.6 47406940.2 8679830.33

Untitled 50 64047174.4 47735424.6 8695171.33

Untitled 51 64565918.4 47186646 8693820

Untitled 52 64566934 47407294.6 8676327

Untitled 53 64686117.6 48284757 8709054

Untitled 54 64809411.4 47626112 8707737.67

Untitled 55 65327157.2 47515281.2 8646418.33

Untitled 56 64046113.4 47513502.2 8710343

Untitled 57 65485754.2 47956072.6 8758209

Untitled 58 65367132.4 47626425.2 8729392

Untitled 59 63925969.8 47956551.2 8826709

Untitled 60 63887168.2 47623542.6 8643792.33

Untitled 61 63846319 47845819.2 8728785.67

Untitled 62 65244979.8 47846962.4 8676081.33

Untitled 63 66286538.2 47516678.2 8658676.67

Untitled 64 64167032 47625324 8792806.67

Untitled 65 64886414.2 47185328.6 8578533.33

Untitled 66 63966444.8 47735943.2 8610782.33

Untitled 67 63846206.4 47077013.2 8825212.33

Untitled 68 64128185.6 47406361.2 8845196

Untitled 69 64127933.4 48065941.6 8658952.67

Untitled 70 65727035.4 47846381.6 8629899

Untitled 71 64165869.2 47954766.6 8628929

Untitled 72 47954691.8 8727302.33

Untitled 73 47073990.2 8792340

Untitled 74 47626274.2 8710300.33

Untitled 75 48396679 8593190.33

Untitled 76 47185128.2 8663163.33

Untitled 77 48063696.8 8695267

Untitled 78 47515119.6 8826440.67

Untitled 79 47625918.2 8725445.67

Untitled 80 47296445.4 8661754.67

Untitled 81 47076852 8696015.67

Untitled 82 47405666.2 8710595.67

Untitled 83 48506815 8742021.67

Untitled 84 47625897 8713180

Untitled 85 47736430.4 8810068.67

Untitled 86 47295646.4 8643866.67

Untitled 87 48176356 8845591

Untitled 88 47844475 8775769.33

Untitled 89 47626387 8676247

Untitled 90 48287366.6 8661197.67

Untitled 91 47625381 8661462.67

Untitled 92 47846390 8659967

Untitled 93 48064315.6 8641993.67

Untitled 94 47295049 8763290

Untitled 95 47516382.6 8612047.67

Untitled 96 47406140.8 8760736

Untitled 97 47515830.2 8624732.33

Untitled 98 48174899 8661178

Untitled 99 47733952.2 8728360.67

Untitled 100 47626011.4 8641891.67

Untitled 101 47295404.8 8776404.33

Untitled 102 47516188.2 8611723.67

Untitled 103 47844763 8610170.33

Untitled 104 47846750.4 8841435.67

Untitled 105 47297038.6 8612665

Untitled 106 48066796.4 8661476.33

Untitled 107 47737443.6 8710044

Untitled 108 47734692.4 8726438.33

Untitled 109 48617276.2 8728247.67

Untitled 110 47845802.4 8659265.67

Untitled 111 47295817.4 8627249

Untitled 112 47405574.4 8626526.33

Untitled 113 47295152.6 8741849.67

Untitled 114 47790969 8728709.33

Untitled 115 47883784.67 8743403

Untitled 116 47334021.67 8824662

Untitled 117 47881363.33 8645622

Untitled 118 47148160.33 8827138

Untitled 119 46966437 8676318.33

Untitled 120 47514030 8712906.67

Untitled 121 47514184.67 8893756

Untitled 122 47698328 8678333

Untitled 123 47514489 8829430

Untitled 124 47701134 8760019.33

Untitled 125 48064798.67 8658186

Untitled 126 47882664 8746336

Untitled 127 47516493 8644681.67

Untitled 128 47515008.33 8776075.67

Untitled 129 47515374.33 8759695

Untitled 130 47700385 8679428.33

Untitled 131 47516501.33 8760656.33

Untitled 132 47515632.33 8644090

Untitled 133 47516021.67 8711528

Untitled 134 47702003.33 8744471.67

Untitled 135 47699272 8776341.67

Untitled 136 47331777.67 8744877.33

Untitled 137 47699248 8659665.33

Untitled 138 47332280.33 8610408

Untitled 139 47149004 8746741

Untitled 140 48431517.33 8727651

Untitled 141 47699013.67 8659174

Untitled 142 47514981.67 8626858

Untitled 143 46967617.67 8745123

Untitled 144 47332538.33 8646340

Untitled 145 47883038.67 8662364.33

Roassal 141 26 (18%) 3 3 (100%) 0

Table 1

52162411.33 7290524 44231290.67 8609745

52162178.67 7290470 44264257 8608842.33

52166010.33 7291214.67 44262531.67 8609152.67

52164666.33 7286423.67 44248420 8605872.33

52163771.33 7289975 44220211.33 8608863

52162286.33 7290960.67 44255194.33 8609548.33

52165480.67 7289950.33 44284465.67 8608235

52161870 7289459 44272482.67 8609142.33

52163408 7291394.33 44248435.67 8610500.67

52165414 7290686 44278797 8608258

52065241 7290576.67 44266223.33 8610261.33

52066157 7290881.67 44248860.67 8608845.67

52065535.67 7289867.67 44258528.67 8609621

52064024.67 7291726 44237655.33 8608809.33

52063521.33 7290895.33 44255928.67 8609601

52063338.33 7290149.67 44262482.67 8606640.33

52064574.33 7289735 44253228 8610153.67

52066458 7290499.33 44528948.33 8612180.67

30716949.67 52063902 7291271.33 44584703.67 8609834.67

30716249.67 52065005 7290959 44614288.33 8608403

30715800.67 52063413.67 7291381.67 44614956 8609821.67

30763479.67 52150042.67 8439816 44699788.67 9755857

30717191.67 52064998.67 7291924.33 44614393.33 8611721.67

30716854 52064894.33 7291559.67 44529794 8608807.67

30717456.33 52065388.67 7291003.33 44590786 8610613

30717509 52063856 7290813 44448082.67 8607706.33

30716047.67 52063273.33 7290309 44430953.67 8610251.67

30714758 52064128 7289985.33 44410411.33 8607296.33

30736411 52164468 7405414.33 44875442 8728804.33

30735639.33 52163091.33 7405738.67 44887952.33 8729536.67

30738620.67 52164048.67 7405946.67 44905553 8730939.33

30736814.33 52163718.67 7405588.67 44067411.33 8731482

30736658 52165201 7405970.33 44071728 8731689.67

30737928.33 52165469.33 7406589 44079315.33 8730633.33

30735724.33 52165145.33 7407171 44081645.33 8731456

30737279.67 52165150.33 7405745 44064086.67 8727821.33

30736974 52166939.33 7405934 44081309 8729549

30736455.33 52165773.33 7406229.33 44079587.33 8729716.33

30735590.67 52166252.33 7404960 44066401 8728394.67

30736532 52164035.67 7405551.33 44068659.67 8728495

30735451.33 52163509 7405953.33 44465728 8730327.67

30738168 52164004.67 7406436.33 44461681.67 8730484.33

30736943.33 52163909.33 7406884.33 44484790.67 8729712

30737291 52167280.33 7404554.67 44490209.67 8728863

30735968.67 52166571.33 7406341.67 44489789.33 8730129.67

30735972.67 52166001.33 7406008.67 44437897.33 8731052.33

30737202.67 52165044.67 7407812.33 44471193.33 7427384.33 8729876.67

30736537.67 52166593.33 7416448.33 44740662.67 7653285.67 8742663

30736590.67 52165104 7417142 44766208.33 7656099.33 8739880

30737879.67 52166211.33 7417579 44066109.67 7652031 8741168.33

30737365 52165366.33 7418411.67 44064849.67 7651661.67 8741648.67

30736904 52164993.33 7417828.67 44075259.33 7650421 8742633.67

30736338.67 52165798.67 7418609 44087200.33 7647503.33 8742064.67

30738228.67 52168322.67 7417579.67 44087384.67 7655684.33 8740973

30736422.67 52166533.33 7418474.33 44079301.33 7648063 8741124.67

30736255.33 52166736.33 7417154.33 44088529.67 7651182 8739985

30737155.33 52166385.67 7417932 44088437.67 7647284 8741448.67

30737418.33 52166482 7417217.33 44080748.33 7645235.67 8742358.33

30736226.67 52165474.33 7418398.33 43588146.67 7412161 8743607.33

30737414 52166208.67 7418398.33 43589574.33 7409313.67 8742532

30737023 52167509.33 7417269 43595033.67 7406734 8739547.33

30737556.67 52164597.67 7418481 43598066.33 7405331.67 8740851

30735284 52166116.67 7417269 43599205 7409980.33 8742613.67

30735573.33 52165677 7418301.67 43597796.67 7421495.67 8741180

30736556 52166128.67 7417600.67 43599245 7412771 8740991.67

30738204 52165723.33 7418408.67 43593578 7409219.33 8743102.67

30736472.67 52166107 7417817.67 43599450.33 7408431.33 8742547.67

30737282.67 52166035 7417028.33 43828562.67 7410816.67 8741456.67

30736602 52166299 7417310.33 43845908.67 7418739.33 8741359.67

30737365 52164695.67 7417717 43819434.33 7410017.33 8740418

30738414 52167906 7417904.67 43825220.33 7409348.33 8741083.67

30737970 52166152 7416988.33 43824160.67 7402525.33 8742208

30735818.67 52165719.67 7418872.33 43861872 7402153.33 8742214.67

30737327.67 52164794.33 7417549.67 43862036.33 7402533.67 8741923.33

30737958.33 52165492.67 7417940.33 43835113 7408709.67 8742346.67

30738011 52165039 7417441 43873594.33 7404802.67 8741253

30735615.67 52164946.67 7401219.33 43234585 7018583.67 8722722.67

30736261.67 152414234.67 7400705.33 202294629.67 9244253.67 8725705.67

30737520 152414888 7411584 202294567.33 9246000 8734473

30737539 152415568.33 7412392.33 202301879 9241787.33 8737146.67

30737667.67 152413762 7411788.67 202304368.33 9245135.33 8733543.33

30738697.67 152415787 7412506.33 202298360.33 9259840.33 8734653.67

30737017.33 152414871 7410739 202283132 9243546 8734959

30737310.33 152416003.67 7412312.33 202299384 9246207.33 8736056

30736140.33 152414879 7412311.33 202298668 9250412.33 8733128

30736849 152414938.67 7412876.33 202356758.67 9383209.33 8734784

30738210 152415142.67 7411820 202384950.67 9382321 8736164

30737832.67 152413518 7410562 202359044.67 9383344.33 8736593.33

30736849.67 152415152.33 7411207.67 202341412 9380778.67 8737106.33

30736867 152414442.33 7411747.33 202360347 9383260.33 8737439.33

30735390.67 152415177 7412941.33 202332471.33 9383046.67 8734252.33

30735205.67 152415241.33 7414297.67 202344289.67 9382808.33 8735753.33

30735458.67 152414632.33 7414476.33 202358715 9382042.33 8735079

30735884.33 152414366.67 7410934 202365107.33 9382221.33 8735976.33

30737531 152413150.67 7397238 202357076.67 9382126.67 8722075.67

30785464.67 102625496 8530529.67 217917500 9613684 9855276.33

30737401.33 102537679 7409926.67 217830783.33 9614295.33 8734640

30738299.67 102539002 7410749.33 217831082.67 9613010.33 8735747.33

30737681.33 102539736 7412599.67 217831557 9618853.33 8737482.33

30737304.67 102541539 7413699.67 217833350 9617196 8734395.33

30748335 102563956.67 7412395.67 217841495.67 9658039 8736960.67

30747890.67 102564900 7411420 217844054 9658493 8736140.33

30746284 102562653 7412092.33 217841554.33 9658272 8736244

30747095 102564692.33 7411778.67 217843161 9658080.67 8737160.33

30746104.67 102565435.67 7411755 217843192.33 9657488.33 8735869

30747898 102564208.67 7411256.67 217842665.33 9659775.33 8734979.33

30745717.33 102563616 7401571.67 217841187.67 9659187 8724650

46203369.33 102438922.33 7402143 217607449.33 303416317.67 8726746.33

46204534 102740435.33 7412735.33 218170500.67 9755192.33 8734637.67

46203539.67 102739670 7396665.33 218167528.33 9755976.33 8718781

46204276.33 102738215.67 7410153.67 218170426 9755576.67 8737433

46202912.33 102739886 7411905 218171117.67 9754593.33 8735768.33

46203197.67 102741130 7413461 218169153.33 9755283.67 8736696

46204622.33 102740468.67 7412684.33 218169362.33 9755607.33 27185120.67 8735133.33

46202224.33 102736634.33 7391244 218167417 9754038.67 27183936 8714319

46203064 102736893 7390000.67 218167665.67 9754578.33 27187132 8713812.33

46202968.33 102738622 7392095.67 218172038.67 9755499.33 27186797.33 8715304.67

46203131.67 102738467 7391105.33 218169620 9755122 27186058 8714019.67

46131719 102561290.67 7388867.67 218120110.33 9585451 27151721.33 8594751.67

46135952 102563644 7391706 218123385.67 9585846 27150890 8594382

46133339 102565763.33 7390264.33 218120351 9586852.33 27149371.67 8592257.33

46136779 102564011.33 7389431.33 218123118.67 9602416.67 27151929 8595726

46132456.67 102565249.67 7389388.33 218120227 9601777.33 27151735 8593602.33

46134529.67 102561983 7390199.67 218123299.67 9600894.67 27111003.33 8594273.67

46134006 102564295 7391789.67 218122762.67 9600943 27113933.33 8592891.33

46134091.33 102565145.33 7393545.67 218122403 9602139.67 27113103.33 8595191.67

46132847.67 102565167.33 7392149.33 218120193 9281732.67 27114941.33 8595167.33

46141070.33 102564121.33 7390324.33 218120489 9281061.67 27114616 8593332.67

46145110.67 102562070 7389283.33 218120629.33 9280004.67 27125518.33 8593504.33

46142614.67 102560770 7388450 218122151.33 9281521 27125623 8595595

46142757 102565731.33 7393690.67 218122544.67 9281576 27125811.67 8593226.33

46144366.33 102563909.33 7392348 218124023 9280792 27124483 8593390

46144188.67 102563463 7391007.33 218121842.67 9282114.33 27127217.67 8592988.33

46144372 102564144.67 7390131.33 218122600.33 9281299 27125374.33 8592274.67

46145073.33 102564688.67 7390289.33 218120213.33 9282430 27125115.67 8594037.33

46143675.33 102563699 7389254.67 218120894 9281593.67 27127730 8594238.33

46140763.33 102563630 7387717 218122648.67 9280613.33 27124204.67 8593031.33

46143445.33 102564978.33 7390159 218119904 9282092.67 27125394 8593937.67

46143643.33 102562241.33 7391647 218122046.33 9281100 27127250.33 8593884.67

46144531 102561867.33 7376658 218122140 9280314 27125344.33 8579121

46164190 102613824 7504609.67 218139824.33 9361548.33 27136946.33 8833986.33

46162300.67 102614077.67 7507749.67 218139858.33 9362086.33 27135094.67 8834558.33

46162434 102614286 7504737.33 218139810 9361171.33 27134070.67 8835956.67

46163533 102614743.67 7502474 218141216.67 9361137.67 27136016.67 8837150

46165591 102611147 7505381.33 218141237 9440247.33 27136091 8831756.33

46163193.67 102612786 7515722.67 218140587 9438202 27135200.67 8840986

Morphic 135 8 ( 6%) 2 1 ( 50%) 1

Table 1

b1 b2 b3

3878160 14998398

3878108 15004456

3878931 15005700

3471765 14600970

3470504 14588310

3471852 14594289.33

3471899 14595131

3461869 14578873.67

3461845 14419046

3477694 14445695.33

3460559 14430026.67

3459593 14417713

3466985 14425536

3466965 14426155.67

3458986 14416203

3459057 14416315

3459216 14440777

3459433.33 14441427.33

3459383.33 14443220

3460409 14455104

3459567 14442820

3459212 14436995.33

3458485.33 14429225

3459079 14437528.33

3459292.33 14438412.67

3463261.67 14459792.33

3454867.33 14440046.67

3458076 14425666

3458259 14426791.67

3437562 14359418.67

3438565.67 14371827.33

3438563.67 14413794.67

3439201.67 14389044.67

3440475 14414857.67

3438767 14385916

3441601 14405581.33

3438970.67 14392199.33

3444064 14439799.67

3444310.33 14468955.33

3442302.33 14440867

3442286.67 14441534.67

3427027 14405718.33

3429477.67 14439954

3426526.67 14396757.67

3426309.33 14396598.33

3426562 14396990.67

3426248.67 14397519

3426509 14397813.33

3427228.67 14410349.33

3427188.67 14410635.33

3426232.33 14398111

3430416.67 14639280.67

3428773.33 14632187.33

3545219.67 14647093

3456724 15698806.33

3459896 15755699

23026397 3548937 15469294

23157765.33 3551066 15490028

23096025.67 3550231 15476714.67

22785798.67 3439326 15402339.33

22787157.33 3439317 15402660

22783807.33 3439360 15403054.67

22839871 3447330 15415518

22787751 3446552 15404000

22952140 3448910 15440846.33

22914836.33 3447789 15422938

22853903.67 3408873 15399106.33

22982879 3410967 15430632.33

22905327.33 3409705 15411716

22827048 3408534 15393332

22933571.67 3410165 15418145

22823502 3408448 15395354

22984617.67 3410925 15441465

23030479.33 3517761.33 15455227.33

23121155.67 3518995 15476402.33

23027424.67 3517820.33 15455974.67

23010792 3517615 15456052.33

23003135 3517660 15456602.67

23128199.67 3519180.67 15480969

23010361 3517578 15457090

23172535 3520046 15495193

23075953.67 3518049 15439026.33

22983551.33 3516881.67 15418906.67

22984476.33 3518243 15421833.67

23022881.67 3518018.33 15427740.33

23019953 3518095 15428297.67

23014883.33 3518063 15428456.67

23018085.67 3518059 15428466.67

23016939.67 3518015 15427975.67

23024557 3517917.33 15428456.67

23021491.33 3518027 15429244.67

23018276.67 3518024 15429584.33

23010247.67 3518015 15430174.33

23017043.33 3518032 15430411.67

23012699.67 3518030 15430965.67

23020571.33 3518071 15430619.67

23027210 3518052 15431848

23019228 3518082 15431246.33

23023282 3518991.67 15430974

23033257.67 3518928.67 15433343

23019386 3518985.67 15432630.67

23022196 3519040 15433360.67

23027285 3518890 15433844

23017575.67 3514448.67 15428999

23015846.33 3514333 15429497

23003228.33 3514325.67 15429463.67

23015569 3514382 15429530.33

23128189 3539048.33 15458788.67

23009018.33 3493351.33 15352222.67

23008135.33 3497914 15357671

23005788.33 3497845 15355142

23005600 3497837 15355420

23071575 3499225 15360321

23087797.67 3499573 15360447

23090909.33 3499564 15361389

23021413.67 3537147 15362079

23025984.33 3536806 15362279

22993681 3536659 15356850

23075844.67 3498682 15359305

23093255 3498542 15360402

23079584.67 3498535 15360041.67

23081452.33 3498581 15360171

23053863.33 3498318 15354437.67

23137249.33 3499416 15372411

23054531.67 3498106 15354967

23114759.67 3499071 15366863

23046455.67 3498248 15354803

23136751.33 3499477 15373252.33

18333632.33 2917431 14540236

18207308.67 2917436 14539798

22940605 3498227 15355726

23010008 3499253 15374672

23020537.67 3499291 15374890

22945328.67 3498060 15357232

22968588.33 3498620 15363847

23018111 3499507 15375943

GraphET 68 20 (29%) 5 4 ( 80%) 1

Table 1

b1 b2 b3

17896594.67

17899007.67

17898499.33

17898092.33

17898124

18099215

17442995

17443372.33

17445031.67

17444898.67

17441983.67

17444498.33

17444586.67

14661508

14660936

14661777.33 16812399.33

14661027 17183493.33

14662401.33 17934617.67

14663804 17934272.67

14659928.67 17945738.67

14661654.33 17870487

14662514.33 17873209.33

14661709.33 17870392

14662431 17870933

14661428 17870476.67

14663298 18544282

14659431.33 18543904.33

14660628 18543074

14662583.33 18545098

17210313 18541050

17208500.33 18543715.33

17197559 17631636

17210052 17269449

17210389.33 17268557.67

17209637 17269072.67

17208610.33 17269188.67

16311160 14787997

16313741.67 14788023.33

16315163.33 14789245.67

16315756.33 14787645

16313148.67 14789847.33

16315119.33 14786878.33

16764881.67 15088885

16763526 15088818.33

16763176.33 15089770

17064458.33 15088246.67

19163070 16063639.33

35085375 19163191 16062166.67

39250472 19162575.33 16063176.67

39251036.67 19166646.33 16062655.67

39249903.33 19165780.67 16065430

39250707 19164007.67 15387197.67

39250252 19165118.67 16138694.33

39249568 19165013.33 16140334.67

39249899.67 19162495.33 16137795.33

39247935.67 19165148 16139539.33

39248764.67 19166369.33 16139337.67

40856321 19763922 17265763.67

40841513 19752600.33 17257197.67

40855250.33 19764458.33 17265738.33

40844149.33 19752711.67 17254212.67

47256042 22161264 21764073.67

47269005.67 22170743 21775471

47264481.67 22163632.33 21773345.67

47261383 22163350.33 21772404.67

47251446.67 22151672 21759241

47265716 22164418.67 21773837.67

47265571.67 22162952.67 21772975

47264021.67 22163597.33 21773938

47264534 22163535 21772050

47263330.67 22162736.33 21774208.33

Rubric 64 2 ( 3%) 0 0 (100%) 0

Table 1

6198015.67

6198020

6197131

6198290.67

6198330

6197628

6197183.33

6197869.67

6197172.33

6273781

6201077

6201085

6201511

6201082.33

6202361

6200339.67

6201519

6200838.67

6201125.33

6202347

6200372.33

6202347

6200354

6201502

6201556.33

6201126.67

6201104

6201133

6202374.67

6201899.33

6202384.33

6202363

6200934

6191319.67

6190163.67

6191322.67

6189296

6190079.33

6191414.33

6190045

6190086

6191418

6190087

6189667

6189404.33

6189396.33

6190071.67

6191395

6189399

6190052

6190066

6189358

6190053

6189447

6189389

6190514

6189408

6190060

6189657

6189405.67

6189447.33

6190051

6189424.67

6191418

6190080.67

XMLSupport 18 8 (44%) 4 4 (100%) 0

Table 1

10353916 12487365.33

12436729.33 14565641.67

12433606.67 14566785

12480803 17159349.33

12484029 17558345 17098423.67

12486427.33 17557157 17097485

12481413 17557133 17099893.67

12483389 17556341 17100837.33

12643401.33 17712552.67 17303579

12640145 17714207 17301147.33

12625011 17696842.67 17290477.33

12625737 17698035 17288037

15054038 20125561.67 19715676

17957866.67 23032239 22619452.67

17956840.67 23032359 22618380.33

17880491 22973467 22561238.67

17957884.67 23031296 22620745

17955862.67 23029970 22618898.67

17955675.67 23028539 22616687.67

Zinc 18 2 (11%) 0 0 (100%) 0

Table 1

492251581.33 327149239.67 11432188.33

492252742 327149339.67 11431330.33

492248041.67 327148030 11431419.33

492249279 327146999.33 11432701

492251760.67 327145589 11430013.33

492254579.33 327153600 11663869

492150250.67 327126873.67 11433890.33

492149685.33 327125350.67 11431690.67

492150771.67 327125850.67 11434843

492150998.33 327128390.33 11435249.67

492158393.67 327124041.67 11432586.33

492178711.33 327129178 11683402.33

492179182.33 327132786.67 11684062.67

492339683 327125153 11643753

492339715.33 327125151 11643751

26790345.67 47510921 9900006

26790351.67 47510921 9900006

26873589 47518703 9995003

26898578.33 47519203 10010003

26898594.67 47519201 10010001

GTInspector 16 1 ( 6%) 1 1 (100%) 0

Table 1

b1 b2

45757546 194367004

45756828 194367209

45757138.67 194366823.67

45756744 194366831

45758241 194366894

45757194 194366815

45765189 194372649

45756887 194367036

24082560 184338449

45757958 194366942

45756914 198864776

45758620 194366873.67

45758119 194367480

45757482 194366981.67

45757794 194367336.33

46187574 34151608

46187205 34151694

Shout 15 0 ( 0%) 1 0 ( 0%) 1

Table 1

41382383.67

39476597

39477436.33

39514944.67

42090509.67

37527033.33

37790407.67

39525973

39654089

39632193

23691840

23850583

22953647.67

22990368.67

23018929.67

23922661

Regex 12 1 ( 8%) 1 1 (100%) 0

Table 1

31448809

31447487.33

31449807

31450487

31451432.67

31451494.33

31449101

31449105.33

38050518

38094475

38092681.67

38098135

38098135

NeoCSV 9 3 (33%) 0 0 (100%) 0

Table 1

B1 2

74006743 91394194

32354876.67 42488596

32351877 42489016

32352624 42487168

32355160.33 42491606.33

32353464 42490366

32352768 42489622

32356881 42489394

32354106 42490804

32279320.67 42414772

NeoJSON 7 0 ( 0%) 0 0 (100%) 0

Table 1

21053621

20146044.67

20145456.67

20143456.67

20142857.33

20142857.33

20143776.67

20123909PetitParser 6 1 (17%) 1 1 (100%) 0

Table 1

3060905

3060905

3060905

3060905

3060905 20767001

8880940 19561231.33 31050001

8880940 19560778 31050001

Soup 4 0 ( 0%) 0 0 (100%) 0

Table 1

15576288

15577068.33

15575871.67

15572700.67

15577495.33

XPath 2 0 ( 0%) 0 0 (100%) 0

Table 1

8406396.33 56870318.33 2503490.33 9339384

8402087 57115337.33 2505132.33 9712868.33

6900930.67 57540127.33 2201218 9699705.67

Total 1125 188 (16.7%) 36 30 (83.3%) 6 (16.7%)

S2. We pick a sample of the benchmark executions, every k version, and
apply our cost model on all the 1,125 software versions. Our cost model
identifies software versions that introduce a performance regression.

S3. Contrasting the regressions found in S1 and S2. We measure the
accuracy of our cost model.

Step S1 - Exhaustive Benchmark Execution. Consider two successive
versions, vi and vi−1 of a software project P and a benchmark b. Let µ[vi, b]
be the mean execution time cost to execute benchmark b multiple times on
version vi. The execution time cost is measured in terms of sent messages
(u unit, as presented earlier). Since this metric has a great stability [2], we
executed each benchmark only 5 times and took the average number of sent
messages. It is known that the number of sent messages is linear to the
execution time in Pharo [2] and have reproducible over multiple executions.
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fD We define the time difference between versions vi and vi−1 for a given
benchmark b as:

D[vi, b] = µ[vi, b]− µ[vi−1, b] (1)

Consequently, the time variation is defined as:

∆D[vi, b] =
D[vi, b]

µ[vi−1, b]
(2)

For a given threshold, we say vi introduces a performance regression if
exists a benchmark bj such that ∆D[vi, bj] ≥ threshold.

Step S2 - Applying the Cost Model. Let C[vi, b] be the cost of all
modifications made in version vi from vi−1; using the run-time history of
benchmark b.

∆C[vi, b] =
C[vi, b]

µ[vj, b]
(3)

We have j, the closest inferior version number that has been sampled at
an interval k. If ∆C[vi, b] ≥ threshold in at least one benchmark, then LITO
considers that version vi may introduce a performance regression.

Step S3 - Contrasting ∆C[vi, b] with ∆D[vi, b]. The cost model previously
described (Section 3.1) is designed to favor the identification of performance
regression. Such design is reflected in the high cost given to new methods,
loop additions, and conditions. We therefore do not consider performance
optimizations in our evaluation.

Results. We initially analyze the software versions with LITO and collect the
run-time information each k = 20 versions, and a threshold of 5%. LITO is
therefore looking for all the versions that introduce a performance regression
of at least 5% in one of the benchmarks. These benchmarks are executed
every 20 software versions to produce execution profiles that are used for
all the software versions. LITO uses the cost model described previously to
assess whether a software version introduces a regression or not.

Table 7 gives the results of each software project. During this process
LITO selected 189 costly versions that represent 16.7% of the total analyzed
versions. These selected versions contain 83.3% of the versions that effectively
introduce a performance regression greater than 5%. In other words, based
on the applications we have analyzed, practitioners could detect 83.3% of
the performance regressions by running the benchmarks on just 16.8% of
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all versions, picked at a regular interval from the total software source code
history.

We further analyze the performance regression that LITO was not able
to detect and we found two main reasons. First, a number of performance
regressions were cause by changes in the project dependencies that we were
not able to collect runtime information. Second, in some cases the run-time
information was outdated. For instance, a method that was cheap to execute
when LITO took the sample become expensive the the run-time information
was not updated until the next sample. Therefore, a number of performance
regressions were not detected due the sampling strategy for collecting run-time
information.

Threshold. To understand the impact of the threshold in our cost model, we
carry out the experiment described above, but using different thresholds (5, 10,
15, 20, 25, 30, 35, 40, 45, and 50). Figure 4 shows the percentage of selected
versions and detected performance regressions by LITO. Figure 4 shows that
LITO detects all regressions greater than 50% (totaling 10). The figure
also shows that the number of selected versions decreases as the threshold
increases, meaning that LITO safely discards more versions because their cost
is not high enough to cause a regression with a greater threshold.

Therefore, we answer our third research question as follows:

RQ3: How well can Horizontal Profiling prioritize the software
versions and reduce the performance testing overhead? By pro-
filing the execution of only 17% of the versions, our model is able to
identify 83% of the performance regressions greater than 5% and 100% of
the regressions greater than 50%. Such versions are picked at a regular
interval from the software source code history.

Sample Rate. To understand the effect of the sample rate, we repeated the
experiment using multiple sample rates (10, 20, 30, 40, 50, 60, 70, 80, 90 and
100). Figure 5 shows the percentage of performance regressions detected by
LITO with the different sample rates. As expected, the accuracy of LITO
increased when we take a sample of the execution every 10 versions (sample
rate = 10). Consequently the accuracy gets worse when we take a greater
sample rate (i.e., >= 50). Figure 5 shows that sampling a software source
code history each 100 versions allows LITO to detect a great portion of the
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Table 1

% Selected 
Versions

% Detected Perf. 
Regressions

5 16.7 83.3

10 16.5 82.8

15 16.4 88.0

20 16.4 84.2

25 16.4 81.3

30 16.3 92.9

35 16.0 92.9

40 16.0 92.3

45 15.7 92.3

50 15.5 100.0
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Figure 4: The effect of the threshold on the percentage of detected performance regressions
and the percentage of selected versions by LITO (> threshold).

performance regression, for any threshold lower than 50%. Independent of the
sample rate, LITO detects a considerable fraction of performance regressions.
For instance, by taking only one sample LITO is able to detect between the
72 and 80% of the performance regressions depending of the performance
regression threshold. Independent of the sample rate and the threshold, our
results also show that LITO selects less than the 20% of the software versions.

Note that with a sample rate of 60 the recall is 100%. This is because
the samples were taken close to the versions that introduce the performance
regressions.

Overhead. The time to statically analyze a software version depends on the
number of methods, classes and lines of code. However, it is considerably
cheaper than executing the benchmarks in a software version. For instance,
LITO takes 12 seconds (on average) to analyze each software version. On the
other hand, each time that LITO collects the run-time information is seven
times (on average) more expensive than executing the benchmarks. Because
LITO instruments all method projects, and executes the benchmarks twice,
the first one to collect the average time of each method and the second one to
collect the number of executions of each source code section. Even with this,
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Table 1

5 10 20 30 40 50

10 83.33 86.21 84.21 92.86 92.31 100.00

20 83.33 82.76 84.21 92.86 92.31 100.00

30 80.56 82.76 84.21 92.86 92.31 100.00

40 77.78 75.86 78.95 85.71 84.62 90.00

50 75.00 75.86 78.95 85.71 84.62 90.00

60 77.78 79.31 84.21 92.86 92.31 100.00

70 75.00 75.86 78.95 85.71 84.62 90.00

80 72.22 72.41 73.68 78.57 76.92 80.00

90 75.00 75.86 78.95 85.71 84.62 90.00

100 72.22 72.41 73.68 78.57 76.92 80.00
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Figure 5: Evaluating LITO with sample rates of 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100.
(threshold = 5, 10, 20, 30 and 50)

the complete process of prioritizing the versions and executing a performance
testing over the prioritized versions is far less expensive than executing the
benchmarks over all application versions.

For instance, in our experiment, the process of conducting exhaustive
performance testing in all software versions takes 218 hours; on the other
hand, the process of prioritizing the versions and executing the benchmarks
only in the prioritized versions takes 54 hours (25%).

4. Empirical Comparison

Related to our approach, Huang et al. [9] proposed PerfScope, a technique
to measure the risk of introducing performance regressions for a code commit.
Both approaches, PerfScope and LITO’s Horizontal Profiling, rely on the fact
that performance variations largely depend on 1) how expensive the involved
source code changes are and 2) how frequently these changes are executed.
As we discussed in previous sections, these two factors are good indicators to
detect a large number of performance regressions.

To answer our fourth research question we carefully compare LITO against
PerfScope, using applications written in Pharo, a dynamically typed object-
oriented programming language. We therefore have implemented PerfScope
in Pharo and run the experiment as described below.
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4.1. PerfScope

PerfScope categorizes each source code added in the newer version using
a scale of risk levels: extreme, high, moderate and low. This categorization
is based on the expensiveness of the operation and the execution frequency,
using Table 8. As presented in the original paper describing PerfScope [9],
once the risk level distribution is measured, the total risk score of a new
version is measured with the following formula:

risk score = Nextreme ∗ 100 + Nhigh ∗ 10 + Nmoderate ∗
1

100
+ Nlow ∗

1

1000
(4)

Where Nx is the number of operations in the category x. If the risk score
is greater than a risk score threshold then PerfScope considers the new
version as risky, for instance, using a risk score threshold = 100 means that
all new versions with a risk score >= 100 are going to be considered risky.
Therefore, the precision and recall depend on the risk score threshold that
needs to be manually set. Establishing a good risk score threshold requires
some initial tuning, depending on the performance regression threshold.

Table 8: Risk matrix of a change’s expensiveness and frequency [9]
Frequency

Expensiveness
Frequent Normal Rare

Expensive Extreme High Moderate
Normal High Moderate Low
Minor Moderate Low Low

4.1.1. Expensiveness

To estimate the expensiveness of a source code change PerfScope uses a
static cost model. By using this cost model PerfScope determines if a change
is expensive or not.

Code Addition. The cost model is focused only in code added in the new
version. For instance, the expensiveness of added statements. The cost model
emphasizes on relative cost rather than an absolute cost. PerfScope expresses
the cost of an expression using an abstract unit, denoted as δ, instead of
actual CPU cycles. The cost is measured depending on the expression.

This cost model is applied only to source code added in the new version.
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• Method calls. A call instruction cost is equal to calling convention
overhead plus the callee’s cost.

• Blocks. A block is a section of code which is grouped together. A block
consists of one or more declarations and statements. A block’s cost is a
sum of the cost of those statements that live inside the basic block.

• Loops. We consider a loop as a code block that is continually repeated
until a certain condition is reached. The cost of a loop is the cost of
the code block multiplied by the number of times that this block will
be executed. For loops, PerfScope tries to statically infer the trip count
(maximum number of iterations). If its trip count can be statically
inferred, then PerfScope multiplies the code block cost by the trip count.
Otherwise, the loop is considered to be frequently executed and therefore
categorized as expensive.

• Control flow. For control flows, PerfScope adopts the worst case, taking
the maximum cost among the possible paths. For instance, consider
the method parse MessagePattern of the class SHParserST80 in the
Shout project:

SHParserST80>>parseMessagePattern
self isName

ifTrue: [self parseUnaryMessagePattern]
ifFalse: [self isBinary

ifTrue: [self parseBinaryMessagePattern]
ifFalse: [self failUnless: self isKeyword.

self parseKeywordMessagePattern]]

It has three possible paths, where one path should be executed depend-
ing on the results of the boolean expressions self isName and self isBinary.
PerfScope measures the cost of all possible paths, and takes the most
costly.

• Operations. An operation has an arbitrary and manually set cost which
could vary depending on the operands. For instance, + instruction has
a cost of 1δ, ∗ has cost of 4δ.

Code Deletion. The model described above deals only with code addition.
However, code changes can also be replaced or deleted statements (method
calls in the case of Pharo). For PerfScope the cost of a deleted change is
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zero and the cost of replacing is only the cost of the new program elements.
Because the code deletion cost can offset the total cost, and miss performance
regressions. For instance, an inaccurate estimation of the method call deletion
can lead to miss costly versions.

Expensiveness Thresholds. Once the cost of the expression is measured,
then PerfScope categorizes this expression as extreme, high, moderate or low.
This categorization is done using thresholds (in terms of δ). Such thresholds
may be computed by running the cost model on the whole program to obtain
a cost distribution for functions and basic blocks.

4.1.2. Frequency

PerfScope analyzes the intra-procedural scope that a change lies in. If
the change is enclosed in any loop and the trip count (maximum number of
iterations) of this loop including all its parent loops is statically determined,
the execution frequency of this change instruction is estimated by the product
of these trip counts. If any enclosing loop has a non-determined trip count, it
is considered a frequently executed loop. If a code change lies in recursive
functions, it is also considered to be a frequently executed loop.

Frequency Thresholds. Similarly to the instruction cost, PerfScope catego-
rizes the context that may be executed: frequently, normal or rarely executed.
This categorization is also done using a thresholds. Such thresholds may be
automatically computed by running the frequencies of the whole program [9] .

4.2. PerfScope for Pharo

To compare PerfScope with LITO in the context of dynamic languages
(which is the case of Pharo) and under the same benchmark, we implement
PerfScope in the Pharo programming language. This subsection describes a
number of considerations we take to implement PerfScope in Pharo.

Method Call Expensiveness. Since Pharo is a dynamically typed language,
it is difficult to measure the cost of a method call. More precisely, it is difficult
to statically detect which method is invoked by just knowing the method
name and the arguments. For this reason, if a method call has more than
one implementor, we first try to statically infer the possible types of the
receiver by checking if the receiver is created in the same method by directly
instantiating a class, or in the constructor of the class. If it is not possible and
there are multiple possible types for the receiver, then we take the method
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with the maximum cost. For instance, consider the method nodes:using: of
the class MOViewRenderer.

MOViewRenderer>>nodes: aCollection using: aShape
| nodes newNode |
...
nodes := aCollection collect:

[ :anEntity |
newNode := MONode new.
newNode model: anEntity.
...].

ˆ nodes

There are three method calls (collect:, new and model:). The cost of calling
the method collect: is one (the overhead of the call) plus the cost to execute
the method collect:. However, there are 22 possible method candidates of
collect: and it is not possible to statically detect which of these 22 methods
will be called. The method invoked during the execution depends on the class
of the object aCollection, typically a subclass of the class Collection. In this case,
we take the worst case and assume that the more expensive method will be
called. On the other hand, we have the method call model:, the receiver of
this method call is the variable newNode. The type of the variable newNode
can be statically inferred, because it has been initialized in the same method.
In the same fashion, the receiver of the method call new can be statically
inferred, because the receiver is the same class and new is a class method.
Note that this is the same criteria that LITO uses to look up the information
of a method call in the profile history. If there are multiple implementors for
a method call, LITO takes the worst case.

Operation Expensiveness. Since operations (i.e., +,−, ∗, /) are methods
implemented in Pharo with primitives calls, we consider that operations have
a constant cost of 1δ, because there is only one message involved to call the
primitive. Note that LITO uses a similar criteria.

Loop Frequency. PerfScope determines the trip count only if the loop has a
constant bound limit. In the case of Pharo, most if not all loops are associated
with object collections, and it is necessary to statically infer the size of the
collection to determine the loop boundaries or the trip count.

Statically determining the size of a collection is a difficult task because it
can grow and decrease over time. There are a number of expressions where the
collection size and therefore the loop boundary can be statically determined.
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It usually occurs when the collection is created and used in the same method.
For instance:

($a to: $z) do:[ :char | ... ].
(0 to: 256) do:[ :number |...].
#($a $e $i $o $u) do:[ :vocal | ...].

Similarly to PerfScope we consider particular cases for the static analysis.
For our implementation, we consider collections that are created in the same
method than the loop, and their size can be statically inferred. We also
considered the particular case of the method timesRepeat :

10 timesRepeat:[ ... ].

If it is not possible to statically infer the size, we consider that the loop
could be executed frequently. Note that if PerfScope can not estimate the
expensiveness or frequency of a code change, it assumes the worst case.
Therefore, the change is considered expensive and frequently executed. This
is because we cannot afford to miss potential risky versions. However, these
situation could trigger a great number of false positives.

Detecting Loops. Another particular problem is that the loops are normally
done by sending messages to the collections, where the loop body is passed
as parameter. Therefore, it is difficult to determine if a message could be
considered a loop. For instance, consider the following two expressions:

elements select: [ :each | ... ].
elements at: key ifAbsentPut:[ ... ].

Both expressions sent a code block as parameter, however just the first one
executes the block a number of times, depending on the size of the collection.
For this reason, we need to evaluate if a code block could be executed multiple
times. For our implementation, if the method name is registered in the
standard protocol “enumerating” of the class Collection (i.e., do:, reject:), we
consider that this message is a loop, and their arguments could be executed
multiple times.

4.3. Methodology

For the experiments, we detect performance regression greater than 5 %.
We run PerfScope and the Naive approach under the same software versions
that we use to evaluate LITO. We compare the different approaches in terms
of precision, recall, and reduction:
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• Precision, the percentage of selected versions that introduce a perfor-
mance regression. For instance, a precision of 50% means that one out
of two selected versions introduces a performance regression.

• Recall, the percentage of detected performance regressions. To measure
this metric, we initially run the benchmarks in all versions and detect
which versions introduce a performance regression. This metric measures
how many of these versions are selected.

• Reduction, the percentage of versions that have not been selected, and
therefore the benchmarks were not executed on them. This metric was
introduced by Huang et al. [9]. The goal of the performance prediction
tools is to run the benchmarks in the least amount of versions possible.
The reduction represents the percentage of versions where no benchmarks
is executed. For instance, we could have a reduction of 100% if we do
not run the benchmark in any version, but we will not be able to detect
any performance regression.

4.4. Baseline for Comparison

We compare our approach with 2 performance prediction approaches: a
naive approach, and PerfScope4Pharo.

• Naive Approach. It considers that a version is risky if at least one method
call was added in the newer version. This naive approach ignores the
source code changes done in test methods. In other words, this approach
considers any new piece of code as expensive and frequently executed.
This approach gives us a baseline to understand the importance of
estimating the expensiveness and frequency of source code changes.

• PerfScope4Pharo. A PerfScope implementation in Pharo, as described
in the previous sections.

PerfScope Thresholds. As we describe in Section Section 4.1, PerfScope
uses three thresholds to perform its analysis. For the experiment, we use the
following thresholds.

• Expensiveness thresholds. Following the line of the PerfScope evalua-
tion [9], we automatically computed these thresholds by running the cost
model on the whole program to obtain a cost distribution for functions
and basic blocks.
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• Frequency thresholds. Similar to the previous point, we automatically
computed these thresholds by running the frequencies of the whole
program [9].

• Risk score threshold. PerfScope measures the risk score of each software
version and uses a risk score threshold to mark the version as risky
or not. Therefore, the precision, recall and reduction of PerfScope
can vary depending on the chosen risk score threshold. To compare
PerfScope with the other approaches, we evaluate PerfScope using
different risk score threshold and pick the risk score threshold that
has the better trade-off between reduction and recall.

Risk Score Threshold Computing. We evaluate PerfScope using multiple
thresholds. Figure 6 gives the precision, recall and reduction of PerfScope
for the different risk score threshold we used. Figure 6 shows that a greater
risk score threshold leads to a higher reduction, but a lower recall.

In the past PerfScope was evaluated using a risk score threshold = 200
which has multiple implications. For instance, a new version will be categorized
as risky if it contains two or more source code changes categorized as extreme or
20 changes flagged as high, among other possible combinations. In our case, if
we use such threshold PerfScope detect less than the 60% of the performance
regressions (Figure 6). Since the goal is to execute the benchmarks in
the least number of software versions and detect the greater amount of
performance regressions, we pick a risk score threshold = 600 because this
risk score threshold has the better trade-off between reduction and recall.

Note that to get a good risk score threshold for each project, we had to
know in advance which versions introduce a regression or not. In practice, it
means that we may need to execute the benchmarks in all versions, which is
the problem we are trying to address. In addition, the goal of our comparison
is to show that LITO does not need a previous threshold configuration and
provide comparable results.

LITO Sample Rate. Contrary to PerfScope, LITO does not depend on
thresholds, but on the number of samples collected during the evolution.
Figure 7 shows the effect of the sample rate on the precision, recall and
reduction. As we showed in previous sections, a sample rate of k = 20
(collecting run-time information each 20 versions) has a good trade off between
reduction and recall (Figure 7).
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Table 1

precision recall reduction

0 5.00 97.00 32.00

100 5.00 83.00 49.00

200 6.00 75.00 57.00

300 6.00 75.00 62.00

400 7.00 72.00 67.00

500 8.00 72.00 70.00

600 8.00 72.00 72.00

700 8.00 64.00 75.00

800 9.00 64.00 76.00

900 9.00 64.00 77.00

1000 9.00 61.00 78.00

1100 9.00 58.00 79.00

1200 10.00 58.00 81.00

1300 10.00 56.00 81.00

1400 9.00 50.00 82.00

1500 8.00 42.00 83.00

1600 8.00 42.00 83.00

1700 8.00 39.00 85.00

1800 8.00 39.00 85.00

1900 8.00 36.00 85.00

2000 8.00 36.00 86.00
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Figure 6: PerfScope - Risk score tuning

However, we argue that even with a “large” sample rate LITO can lead
to good results. For this reason, we also compare LITO with a sample rate
of k = 50. Using a sample rate of k = 50 means that we will take between
1− 5 samples depending on the project, having 1.3 samples per project on
average. Note that LITO needs at least one sample to do the analysis.
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Figure 7: LITO - sample rate effect on the precision, recall and reduction

4.5. Comparison Results

We evaluate PerfScope and the Naive approach under the same 1,125
software versions than LITO. Figure 8 summarizes the results of LITO,
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PerfScope, and the Naive approach. It shows that PerfScope has better
precision and reduction than the Naive approach, and LITO has better
precision and reduction than PerfScope, even with a sample-rate of k =
50. Although the difference of precision and recall is small between LITO
and PerfScope, we have to consider that we compare LITO with the best
configuration setup of PerfScope (risk score threshold = 600). Note that
in practice, finding the optimal risk score threshold for PerfScope without
executing the benchmarks in all versions is a difficult task and it needs to be
done manually.

Precision Recall Reduction

Naive 0.05 0.97 0.33

PerfScope 0.08 0.72 0.72

LITO t=20 0.16 0.83 0.84

LITO t=50 0.15 0.75 0.84

0

0.2

0.4

0.6

0.8

1

Naive PerfScope LITO  
t=20

LITO  
t=50

Precision Recall Reduction

Figure 8: Comparison between different approaches, t = sample-rate

We found that the Naive approach discards 33% of software versions and
finds 97% of software versions that introduce a performance regression. This
means that just focusing the analysis in versions that contain method call
additions we are able to reduce the analysis by benchmarking only the 67%
of the software versions, and found almost all performance regressions. Note
that not all performance regressions are caused by method call additions.
As we discussed in the previous sections, a performance regression could be
caused by multiple source code changes in the same version. Therefore, any
approach that just considers method call additions is not able to detect the
100% of performance regressions. Besides this fact, the Naive approach has a
better recall than LITO and PerfScope. However, it has the worst precision
and reduction.

Results by Project. We also compare the results of LITO and PerfScope
at project level. Table 9 gives the results by project. It shows that LITO has
better precision and reduction in almost all the projects. The exceptions are
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Table 9: Precision, Recall and Reduction Comparison of PerfScope (PS) and LITO (LT)
using k=20

Precision(%) Recall(%) Reduction(%)
Project PS LT PS LT PS LT
Spec 11 19 73 73 72 84
Nautilus 6 8 100 100 58 68
Mondrian 5 22 100 100 71 94
Roassal 7 12 100 100 67 82
Morphic 3 13 50 50 77 94
GraphET 13 20 20 80 88 71
Rubric 0 0 - - 98 97
XMLSupport 36 50 100 00 39 50
Zinc 0 0 - - 78 89
GTInspector - 100 0 100 100 100
Shout 0 - 0 0 87 100
Regex 50 100 100 100 83 92
NeoCSV 0 0 - - 56 67
NeoJSON 0 - - - 86 100
PetitParser 33 100 100 100 50 83
Soup - - - - 100 100
XPath 0 - - - 50 100

the projects GraphET and Rubric. In the case of GraphET, PerfScope has
better reduction, but it has lower recall than LITO. In the case of Rubric,
the difference between reductions is minimal (only 1%).

Figure 9 summarizes the precision, reduction and recall of the different
approaches per project. It confirms that LITO has better precision and
reduction even with a sample rate of k = 50. Note that there are a number
of metrics that can not be computed depending on the project. For instance,
the project GTInspector has one performance regression, but PerfScope does
not select any versions(because the risk score of all versions was smaller
than the risk score threshold) and the precision of PerfScope can not be
computed. On the other hand, LITO only selects the version that causes the
performance regression and its precision is 100%. Figure 9 compares only the
metrics that can be computed by all approaches.

Therefore, we answer our fourth research question as follows:

RQ4: How well does Horizontal Profiling perform compared to
the state-of-the-art risk analysis tools using a dynamically typed
language? LITO estimates with a greater accuracy the expensiveness
and frequency of source code changes. As consequence, it has a higher
precision and reduction than PerfScope under our benchmarks.
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Figure 9: Precision, reduction and recall between different approaches

Table 10: Evaluation of PerfScope4Pharo and LITO over two additional projects
(prec=precision, red=reduction, Run.=runnable)

Versions LITO (%) PerfScope4Pharo (%)
Project

Total Run.
Reg.

Prec. Recall Red. Prec. Recall Red.
Roassal2 100 95 2 22 100 90,53 8 100 72,63
Artefact 100 52 1 9 100 78,84 6 100 65,38

4.6. Evaluation over new projects and versions

In the previous subsection we compare PerfScope4Pharo and LITO over
the same versions that we used in the empirical study. Since we designed
LITO based on the result of the empirical study, then LITO may be biased
in favor of the performance regressions that we manually analyzed. To
address this threat to validity, we analyze 200 software versions obtained
from two software systems. In this case, we are agnostic about roots of the
performance variations. We use the same configuration setups of both tools
(risk score threshold = 600 and sample− rate = 20). The results (Table 10)
shows similar results to our previous experiments. Both tools have a recall of
100%, but LITO has better precision and reduction.

4.7. Discussion

Although, in previous section, we show that LITO has similar results
than PerfScope, but without any preliminar configuration. We believe that
our experiment also helped us to identify the advantages and disadvantages
of each tool in the context of dynamic languages, which we discuss in this
section.

LITO Advantages:

40



• LITO uses run-time information of benchmarks past executions. This
allows LITO to estimate the expensiveness and frequency of source
code changes more accurately.

• LITO does not need an initial manual tuning. Regardless of the sample
rate, LITO performs better than PerfScope.

• In comparison to PerfScope, LITO considers method call deletions in
the cost model. As a result, LITO has better reduction than PerfScope.
LITO can consider method call deletions in the cost model because it
uses the number of sent messages to estimate the average execution
time. This metric has a small error margin. As a consequence, LITO
can estimate the trade-off between deletions and additions accurately.

LITO disadvantages:

• LITO does not accurately estimate the frequency and expensiveness
of new methods and loops, because new source code does not have
an execution history. In these cases, LITO considers these changes
expensive.

• Since Horizontal Profiling is a sampling technique, the accuracy of the
analysis could change depending on the way that we take samples along
software evolution.

PerfScope Disadvantages:

• Loop Boundaries. We perform a small experiment with PerfScope,
when we use run-time information to categorize the method calls in
three categories: expensive, normal, and minor. The results are similar,
therefore we conclude that one of the main challenges of PerfScope is
to statically detect loop boundaries, which is crucial in this kind of
analysis. In fact, PerfScope original implementation is for C/C++,
when it is possible to infer loop boundaries in many cases.

• Method Call Expensiveness. PerfScope relies on a good categorization
of the expensiveness of a new method call. However, in a dynamic
language, statically categorize the expensiveness is a difficult activity
because the lack of a static type system. As a consequence, it is difficult
to categorize a method call as “expensive”,“normal”, or “minor”. As
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such, if it is not possible to determine the implementor of a method call,
the algorithm takes a worst case marking these method calls normally
as “expensive”.

• Risk Score. Reflecting on the PerfScope cost model, the threshold may
be abstracted as how many high, low, moderate and extreme changes
should a new version have in order to consider it risky. For instance,
a threshold of 200 may be reached with two extreme changes, or with
one extreme and two high changes (see section Section 4.1). Therefore,
setting an adequate threshold is not an easy task. For instance, only
one method call addition may cause a major regression, and many
method call additions may not cause a performance difference. In other
words, the risk categorization (i.e., method call expensiveness and loop
boundaries) plays an important role, but as we discuss in previous
points it is not accurate. Another potential issue with the risk score are
method call deletions. Essentially, a method call addition may cause
a regression and a deletion may cause a speed up. Therefore, since
the risk score do not consider method call deletions, it may trigger a
number of false positives.

Baseline for Comparison. As we describe previously both approaches
have a number disadvantages. We implement the PerfScope risk model in
Pharo in order to understand how these disadvantages affect the analysis
in practice. Our results show that both approaches are applicable to Pharo
and have comparables results. However, we show that the risk model highly
depends of the risk threshold. In our experiment, we choose the optimal
threshold for all projects. Although it is possible also pick an optimal
threshold for each individual project, it would mean that the risk threshold is
not generalizable across projects. Moreover, choosing the optimal threshold
may involve running all versions, which is not practical.

Other Source Code Changes. In this experiment, we only consider method
call additions and deletions. In previous sections, we show that there are
different changes that could affect software performance. For instance, chang-
ing an object field, an argument or a condition expression. Huang et al. [9]
propose an extension of PerfScope that implements slicing techniques to detect
these kind of changes. This analysis is done after using the analysis with their
model, and in independent fashion. We believe that using a slicing technique
is still a good option even with LITO. We exclude from the comparison the
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slicing techniques, because if we use the same slicing infrastructure in both
approaches, the comparison results should be similar.

Dynamic and Reflective Features of Programming Languages. Dy-
namic and statically typed programming languages offer a number of dynamic
and reflective features, such as reflection. In the particular case of Smalltalk,
everything is done by sending messages, therefore LITO model will consider
these cases as a normal method call. However, this may not be the case of
other programming languages, such Java o C++. Therefore, there is not
evidence how the cost model of LITO or PerfScope will behave with this
languages. Our hypothesis is that these features should not affect too much
the analysis, because Callau et al. shows that dynamic features are not use
often in software projects [5]. In addition, they show that these features are
mostly used in core libraries, such us programming tools and testing.

Sample rate. We show that with different sample rates LITO has a good
precision and recall. However, it is not clear what is the best strategy to select
which version of the codebase to run the benchmarks. There are different
alternatives to pick samples along the evolution. For instance, random
sampling or a rule-based sample strategies. We plan to explore these different
sampling strategies as future work.

Continuous Performance Monitoring. This paper does a post mortem
analysis of a number of project and software versions to show the effectiveness
of our approach. It is relevant to highlight that horizontal profiling may be
used together with a continuous integration setup. In this case, we should
first collect run-time information on the first commit and then using this
information for detect performance regression in the incoming versions. Then
this run-time information may also update with different strategies. For
instance, after 20 versions as we show in our experiment.

5. Threats to Validity

To structure the threats to validity, we follow the Wohlin et al. [23] validity
system.

Construct Validity. The method modifications we have manually identi-
fied may not be exhaustive. We analyzed method modifications that cause
performance variations greater than 5%, over the total execution time of the
benchmark. Analyzing small performance variations, such as the one close
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to 5%, is important since it may sum up over multiple software revisions.
Detecting and analyzing smaller variations is difficult, because many factors
may distort variance to the observable performance, such as inaccuracy of
the profiler [2].

External Validity. This paper voluntarily focuses on the Pharo ecosys-
tem. We believe this study provides relevant findings about the performance
variation in the studied projects. We cannot be sure of how much the re-
sults generalize to other software projects beyond the specific scope this
study was conducted. As future work, we will replicate our experiments for
the JavaScript and Java ecosystem. In addition, we will analyze LITO’s
performance with multi-thread applications.

Internal Validity. We cover diverse categories of software projects and
representative software systems. To minimize the potential selection bias, we
collect all possible release versions of each software project, without favoring
or ignoring any particular version. We manually analyze each method modifi-
cation twice: the first time to understand the root-cause of the performance
variation and the second time to confirm the analysis.

Conclusion Validity. Having a fair comparison between Horizontal Pro-
filing and Perfscope is challenging. We show that Horizontal Profiling has
comparable results with PerfScope under our benchmarks, but this difference
is not significant. Our experiment reveals a high dependency of PerfScope to
the risk score threshold. Although it is possible to find an optimal threshold
configuration to achieve high precision and recall, it may require to execute all
benchmarks in all versions which is what we trying to avoid at the beginning.
However, our empirical comparison help us to illustrate the advantages of
Horizontal Profiling regarding PerfScope in the context of dynamic languages,
which is the case of the Pharo programming language.

6. Related Work

Performance Bug Empirical Studies. Empirical studies over perfor-
mance bug reports [10, 18] provide a better understanding of the common
root causes and patterns of performance bugs. These studies help practi-
tioners save manual effort in performance diagnosis and bug fixing. These
performance bug reports are mainly collected from the tracking system or
mailing list of the analyzed projects.
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Zaman et al. [24] study the bug reports for performance and non-performance
bugs in Firefox and Chrome. They studied how users perceive the bugs, how
bugs are reported, what developers discuss about the bug causes and the bug
patches. Their study is similar to that of Nistor et al. [17] but they go further
by analyzing additional information for the bug reports. Nguyen et al. [16]
interviewed the performance engineers responsible for an industrial software
system, to understand these regression-causes.

Sandoval et al. [20] have studied performance evolution against software
modifications and have identified a number of patterns from a semantic point
of view. They describe a number of scenarios that affect performance over
time from the intention of a software modification (vs the actual change as
studied in this paper).

We focus our research on performance variations. In this sense we consider
performance drops and improvements that are not reported as a bug or a
bug-fix. We contrast the performance variations with the source code changes
at method granularity. In addition, we analyze what kind of source code
changes cause performance variations in a large variety of applications.

Performance Bug Detection and Root-Cause Analysis. Great ad-
vances have been made to automate the performance bug detection and root-
cause analysis [7, 15, 21]. Jin et al. [10] propose a rule-based performance-bug
detection using rules implied by patches to found unknown performance prob-
lems. Nguyen et al. [16] propose the mining of a regression-causes repository
(where the results of performance tests and causes of past regressions are
stored) to assist the performance team in identifying the regression-cause of a
newly-identified regression. Bezemer et al. [3] propose an approach to guide
performance optimization processes and to help developers find performance
bottlenecks via execution profile comparison. Heger et al. [8] propose an
approach based on bisection and call context tree analysis to isolate the root
cause of a performance regression caused by multiple software versions.

We improve the performance regression overhead by prioritizing the soft-
ware versions. We believe that our work complements these techniques in order
to help developers address performance related issues. We do not attempt to
detect performance regression bugs or provide root-cause diagnosis.

Performance Regression Testing Prioritization. Different strategies
have been proposed in order to reduce the functional regression testing
overhead, such as test case prioritization [6, 19] and test suite reduction
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[4, 11, 13, 25]. However, few projects have been able to reduce the performance
regression testing overhead.

Huang et al. [9] propose a technique to measure the risk given to a code
commit in introducing performance regressions. Their technique uses a full
static approach to measure the risk of a software version based on worst case
analysis. They automatically categorize the source code change (i.e., extreme,
high, and low) and assign a risk score to each category; these scores may
require an initial tuning. However, a fully static analysis may not accurately
assess the risk of performance regression issues in dynamic languages. For
instance, statically determining the loop boundaries may not be possible
without special annotations [22]. Dynamic features of programming languages
such as dynamic dispatching, recursion and reflexion make this task more
difficult.

In this paper we propose a hybrid (dynamic and static) technique to
automatically prioritize the performance testing; it uses the run-time history
to track the control flow and the loop boundaries. Our technique reduces
a number of limitations of a fully static approach and does not need an
initial tuning. We believe that these techniques can complement each other to
provide a good support for developers and reduce the overhead of performance
regression testing.

7. Conclusion

This paper studies the source code changes that affect software performance
of 17 software projects along 1,288 software versions. We have identified
10 source code changes leading to a performance variation (improvement or
regression). Based on our study, we propose a new approach, Horizontal
Profiling, to reduce the performance testing overhead based on the run-time
history. We showed that LITO performs better than the state-of-the-art tools.

As future work, we will extend our model to prioritize benchmarks and
generalize Horizontal Profiling to identify memory and energy performance
regressions.
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Appendix A. Pharo Syntax

Table A.11: Pharo and Java syntax comparison
Pharo Java
element height. element.height();
element width: defaultWidth. element.width(defaultWidth);
element width: defaultWidth height: defaultHeight element widthheight(defaultWidth,defaultHeight);
c := Color new Color c = new Color();
self this
super super
ˆobject return object
array := #(1 2 3) Object[] array = {1,2,3};
(1 to:100) do:[ :each | ... ] for ( int each:= 1; each<=100; each++){ ... }
elements do:[ :each | ... ] for ( Object each: elements){ ... }

The Pharo model is very close to the one of Python and Ruby. The
most relevant syntactic elements of Pharo are: a space between an object
and a message name indicates a message send: object messageName; the
dot separates statements: statement1. statement2 ; square brackets denotes
code blocks or anonymous functions: [ statements ] ; and single quotes delimit
strings: ’a string’.
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