
Learning from Source Code History to Identify
Performance Failures

Juan Pablo Sandoval
Alcocer

PLEIAD Lab
DCC, University of Chile
jsandova@dcc.uchile.cl

Alexandre Bergel
PLEIAD Lab

DCC, University of Chile
abergel@dcc.uchile.cl

Marco Tulio Valente
Federal University of Minas

Gerais, Brazil
mtov@dcc.ufmg.br

ABSTRACT
Source code changes may inadvertently introduce perfor-
mance regressions. Benchmarking each software version is
traditionally employed to identify performance regressions.
Although effective, this exhaustive approach is hard to carry
out in practice. This paper contrasts source code changes
against performance variations. By analyzing 1,288 software
versions from 17 open source projects, we identified 10 source
code changes leading to a performance variation (improve-
ment or regression). We have produced a cost model to
infer whether a software commit introduces a performance
variation by analyzing the source code and sampling the
execution of a few versions. By profiling the execution of
only 17% of the versions, our model is able to identify 83%
of the performance regressions greater than 5% and 100% of
the regressions greater than 50%.

Keywords
Performance variation; performance analysis; performance
evolution

1. INTRODUCTION
Software evolution refers to the dynamic change of charac-

teristics and behavior of the software over time [17]. These
progressive changes may negatively decrease the quality of
the software and increase its complexity [3, 15]. Such dete-
rioration may also affect the application performance over
time [20]. Testing software continuously helps detect possible
issues caused by source code changes [2, 8].

Diverse approaches have been proposed to detect perfor-
mance regressions along software evolution [5, 18, 22, 26].
The most commonly employed technique is exhaustively ex-
ecuting all benchmarks over all versions: comparing the
performance metrics of the recently released version with
the previous ones are then used to spot performance vari-
ations [5, 11]. However, such approaches are highly time
consuming because benchmarks can take days to execute [12].
Furthermore, there are a number of factors (e.g., garbage

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPE’16, March 12-18, 2016, Delft, Netherlands
© 2016 ACM. ISBN 978-1-4503-4080-9/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2851553.2851571

collection, JIT compiler) that can affect the measurements
and benchmarks need to be executed multiple times to reduce
the measurement bias [22]. For this reason, testing software
performance periodically (e.g., daily or per release basis) is
an expensive task. It has been shown that by identifying
the relations between source code changes and performance
variations, it is possible to estimate whether a new software
version introduces a performance regression or not; without
executing the benchmarks [12].

Existing research [12, 13, 24, 30] predominantly catego-
rizes recurrent performance bugs and fixes by analyzing a
random sample of performance bug reports. These studies
voluntary ignore performance related issues that are not re-
ported as a bug or bug fix. Therefore, in this paper, we aim
to bridge this gap by conducting a comprehensive study of
real-world performance variations detected by analyzing the
performance evolution of 17 open source projects along 1,288
software versions. The two research questions addressed in
this study are:

• RQ1 – Are performance variations mostly caused by
modifications of the same methods? This question is
particularly critical to understanding what performance
variation stems from. Consider a method m that causes
a performance regression when it is modified. It is
likely that modifying m once more will impact the
performance. Measuring the proportion of such “risky”
methods is relevant for statically predicting the impact
a code revision may have.

• RQ2 – What are the recurrent source code changes
that affect performance along software evolution? More
precisely, we are interested in determining which source
code changes mostly affect program performance along
software evolution and in which context. If performance
variations actually do match identified source code
changes, then it is posible to judge the impact of a
given source code change on performance.

Findings. Our experiments reveal a number of facts for the
source code changes that affect the performance of the 17
open source systems we analyzed:

• Most performance variations are caused by source code
changes made in different methods. Therefore, keeping
track of methods that participated in previous per-
formance variations is not a good option to detect
performance variations.

http://dx.doi.org/10.1145/2851553.2851571

• Most source code changes that cause a performance
variation are directly related to method call addition,
deletion or swap.

Based on the result of our study, we propose horizontal
profiling, a sampling technique to statically identify versions
that may introduce a performance regression. It collects
run-time metrics periodically (e.g., every k versions) and
uses these metrics to analyze the impact of each software
version on performance. Horizontal profiling assigns a cost
to each source code change based on the run-time history.
The goal of horizontal profiling is to reduce the performance
testing overhead, by benchmarking just software versions that
contain costly source code changes. Assessing the accuracy
of horizontal profiling leads to the third research question:

• RQ3 – How well can horizontal profiling prioritize the
software versions and reduce the performance testing
overhead? This question is relevant since the goal of
horizontal profiling is to reduce the performance regres-
sion testing overhead by only benchmarking designated
versions. We are interested in measuring the balance
between the overhead of exercising horizontal profiling
and the accuracy of the prioritization.

We evaluate our technique over 1,125 software versions.
By profiling the execution of only 17% of the versions, our
model is able to identify 83% of the performance regressions
greater than 5% and 100% of the regressions greater than
50%. These figures are therefore comparable with the related
work: Huang et al. [12] have proposed a static approach and
identify 87% (without using program slicing) of regression
with 14% of software versions. However, by using a dedicated
profiling technique, our cost model does not require painful
manual tuning, and it performs well, independently of the
performance regression threshold. Moreover, our hybrid
technique (static and dynamic) is applicable to a dynamically
typed and object-oriented programming languages.

Outline. Section 2 describes the projects under study and
the benchmarks used to detect performance variations. Sec-
tion 3 contrasts source code changes with the performance
variations. Section 4 presents and evaluates the cost model
based on the run-time history. Section 5 discusses threats to
validity we face and how we are addressing them. Section 6
overviews related work. Section 7 concludes and presents an
overview of our future work.

2. EXPERIMENTAL SETUP

2.1 Project under Study
We conduct our study around the Pharo programming

language1. Our decision is motivated by a number of factors:
First, Pharo offers an extended and flexible reflective API,
which is essential to iteratively execute benchmarks over
multiple application versions and executions. Second, appli-
cation instrumentation and monitoring its execution are also
cheap and with a low overhead. Third, the computational
model of Pharo is uniform and very simple, which means
that applications for which we have no knowledge are easy
to download, compile and execute.

1http://pharo.org

Table 1: Projects under Study
Project Versions LOC Classes Methods
Morphic 214 41,404 285 7,385
Spec 270 10,863 404 3,981
Nautilus 214 11,077 173 2012
Mondrian 145 12,149 245 2,103
Roassal 150 6,347 227 1,690
Rubric 83 10,043 173 2,896
Zinc 21 6,547 149 1,606
GraphET 82 1,094 51 464
NeoCSV 10 8,093 9 125
XMLSupport 22 3,273 118 1,699
Regex 13 4,060 39 309
Shout 16 2,276 18 320
PetitParser 7 2,011 63 578
XPath 10 1,367 93 813
GTInspector 17 665 17 128
Soup 6 1,606 26 280
NeoJSON 8 700 16 139
Total 1,288 130,386 2,106 26,528

We pick 1,288 release versions of 17 software projects from
the Pharo ecosystem stored on the Pharo forges (Squeak-
Source2, SqueakSource3 3 and SmalltakHub4). The set of
considered project have a broad range of application: user
interface frameworks (Morphic and Spec), a source code
highlighter (Shout), visualization engines (Roassal and Mon-
drian), a HTTP networking tool (Zinc), parsers (PetitParser,
NeoCSV, XMLSupport, XPath, NeoJSON and Soup), a chart
builder (GraphET), a regular expression checker (Regex),
an object inspector (GTInspector) and code browsers and
editors (Nautilus and Rubric).

Table 1 summarizes each one of these projects and gives
the number of defined classes and methods along software
evolution. It also shows the average lines of code (LOC) per
project.

These applications have been selected for our study for
a number of reasons: (i) they are actively supported and
represent relevant assets for the Pharo community. (ii) The
community is friendly and interested in collaborating with re-
searchers. As a result, developers are accessible in answering
our questions about their projects.

2.2 Source Code Changes
Before reviewing variation of performance, we analyze how

source code changes are distributed along all the methods of
each software project. Such analysis is important to contrast
performance evolution later on.

Let M be the number of times that a method is modified
along software versions of each software project. Figure 1
gives the distribution of variable M of all projects under
study. The y-axis is the percentage of methods, and x-
axis is the number of modifications. One method has been
modified 14 times. In total, 83% of the methods are simply
defined without being modified in subsequent versions of the
application (M = 0).

There are 2, 846 methods (11%) modified only once (M =
1) in the analyzed versions. Only 6% of the methods are
modified more than once (M > 1). Table 2 gives the number
of methods that: i) are not modified (M = 0), ii) are modified
only once (M = 1), and iii) are modified more than once
(M > 1) for each software project. We have found that in all

2http://www.squeaksource.com/
3http://ss3.gemstone.com/
4http://smalltalkhub.com/

http://pharo.org
http://www.squeaksource.com/
http://ss3.gemstone.com/
http://smalltalkhub.com/

Table 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

26528 11 4 1 0 0 0 0 0 0 0 0 0 0 0

 %
 M

et
ho

ds

0

2

4

6

8

10

12

M = number of times that a method was modified
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 1: Source Code Changes histogram at
method level

but one project, the number of methods that are modified
more than once are relatively small compared to the number
of methods that are modified once. The Mondrian project is
clearly an outlier since 28% of its methods are modified twice
or more. A discussion with the authors of Mondrian reveals
the application went through long and laborious maintenance
phases on a reduced set of particular classes.

Table 2: M = number of times that a method is
modified
Project Methods M = 0 M = 1 M >1
Morphic 7,385 6,810 (92%) 474 (6%) 101 (1%)
Spec 3,981 2,888 (73%) 730 (18%) 363 (9%)
Rubric 2,896 2,413 (83%) 362 (13%) 121 (4%)
Mondrian 2,103 1,361 (65%) 146 (7%) 596 (28%)
Nautilus 2,012 1,646 (82%) 248 (12%) 118 (6%)
XMLSupport 1,699 1,293 (76%) 276 (16%) 130 (8%)
Roassal 1,690 1,379 (82%) 232 (14%) 79 (5%)
Zinc 1,606 1,431 (89%) 139 (9%) 36 (2%)
XPath 813 780 (96%) 33 (4%) 0 (0%)
PetitParser 578 505 (87%) 66 (11%) 7 (1%)
GraphET 464 354 (76%) 70 (15%) 40 (9%)
Shout 320 304 (95%) 12 (4%) 4 (1%)
Regex 309 303 (98%) 5 (2%) 1 (0%)
Soup 280 269 (96%) 11 (4%) 0 (0%)
NeoJSON 139 131 (94%) 7 (5%) 1 (1%)
GTInspector 128 119 (93%) 0 (0%) 9 (7%)
NeoCSV 125 84 (67%) 35 (28%) 6 (5%)
Total 26,528 22,070 (83%) 2,846 (11%) 1,612 (6%)

Similarly, we analyzed the occurrence of class modification:
59% of the classes remain unmodified after their creation,
14% of the classes are modified once (i.e., at least one method
has been modified), and 27% of the classes are modified more
than once.

2.3 Benchmarks
In order to get reliable and repeatable execution foot-

prints, we select a number of benchmarks for each considered
application. Each benchmark represents a representative
execution scenario that we will carefully measure. Several of
the applications already come with a set of benchmarks. If no
benchmarks were available, we directly contacted the authors
and they kindly provided benchmarks for us. Since these
benchmarks have been written by the authors, they are likely
to cover part of the application for which its performance is
crucial.

At that stage, some benchmarks have to be worked or
adapted to make them runnable on a great portion of each
application history. The benchmarks we considered are there-
fore generic and do not directly involve features that have

been recently introduced. Identifying the set of benchmarks
runnable over numerous software versions is particularly time
consuming since we had to test each benchmark over a se-
quence of try-fix-repeat. We have 39 executable benchmarks
runnable over a large portion of the versions.

All the application versions and the metrics associated to
the benchmarks are available online5.

3. UNDERSTANDING PERFORMANCE
VARIATIONS OF MODIFIED METHODS

A software commit may introduce a scattered source code
change, spread over a number of methods and classes. We
found 4,458 method modifications among 1,288 analyzed soft-
ware versions. Each software version introduces 3.46 method
modifications on average. As a consequence, a performance
variation may be caused by multiple method source code
changes within the same commit.

3.1 Performance Variations of Modified Meth-
ods

We carefully conducted a quantitative study about source
code changes that directly affect the method performance.
Let V be the number of times that a method is modified and
becomes slower or faster after the modification. We consider
that the execution time of a method varies if the absolute
value of the variation of the accumulated execution time
between two consecutive versions of the method is greater
than a threshold. In our situation, we consider threshold =
5% over the total execution time of the benchmark. Below
5%, it appears that the variations may be due to technical
consideration, such as inaccuracy of the profiler [4].

Figure 2 gives the distribution of V for all methods of
the projects under study. In total, we found 150 method
modifications where the modified method becomes slower or
faster. These modifications are made over 111 methods; 91
methods are modified only once (V = 1) and 20 more than
once (V > 1). Table 3 gives the number of methods for each
software project.

Table 1

1 2 3 4 5 6 7 8

26528 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0

 %
 M

et
ho

ds

0.0

0.1

0.2

0.3

0.4

V= number of times that a method is modified and  
 becomes slower/faster after the modification

1 2 3 4 5 6 7 8

Figure 2: Performance Variations of Modified Meth-
ods (threshold = 5%), 111 methods are here re-
ported.

5http://users.dcc.uchile.cl/˜jsandova/hydra/

http://users.dcc.uchile.cl/~jsandova/hydra/

Table 3: V= number of times that a method is mod-
ified and becomes slower/faster after the modifica-
tion. (threshold = 5%)
Project Methods V = 0 V = 1 V >1
Morphic 7,385 7,382 (100%) 2 (0%) 1 (0%)
Spec 3,981 3,944 (99%) 24 (1%) 13 (0%)
Rubric 2,896 2,896 (100%) 0 (0%) 0 (0%)
Mondrian 2,103 2,091 (99%) 11 (1%) 1 (0%)
Nautilus 2,012 2,008 (100%) 4 (0%) 0 (0%)
XMLSupport 1,699 1,689 (99%) 10 (1%) 0 (0%)
Roassal 1,690 1,675 (99%) 14 (1%) 1 (0%)
Zinc 1,606 1,597 (99%) 7 (0%) 2 (0%)
XPath 813 813 (100%) 0 (0%) 0 (0%)
PetitParser 578 566 (98%) 12 (2%) 0 (0%)
GraphET 464 459 (99%) 3 (1%) 2 (0%)
Shout 320 320 (100%) 0 (0%) 0 (0%)
Regex 309 309 (100%) 0 (0%) 0 (0%)
Soup 280 280 (100%) 0 (0%) 0 (0%)
NeoJSON 139 138 (99%) 1 (1%) 0 (0%)
GTInspector 128 128 (100%) 0 (0%) 0 (0%)
NeoCSV 125 119 (95%) 5 (4%) 1 (1%)
Total 26,528 26,417(99.6%) 91(0.33%) 20(0.07%)

False Positive. However, not all these 150 modifications are
related to the method performance variations because there
are a number of false-positives. Consider the change made
in the open method on the class ROMondrianViewBuilder:

ROMondrianViewBuilder>>open
| whiteBox realView |
self applyLayout.
self populateMenuOn: viewStack.
− ˆ stack open
+ ˆ viewStack open

This modification is only a variable renaming: the variable
stack has been renamed into viewStack. Our measurement
indicates that this method is now slower, which is odd since a
variable renaming should not be the culprit of a performance
variation. A deeper look at the method called by open reveals
that the method applyLayout is also slower. Therefore, we
conclude that open is slower because of a slower dependent
method, and not because of its modification. Such a method
is a false positive and its code modification should not be
considered as the cause of the performance variation.

Example code with a leading “-” is from the previous
version, while code with a leading “+” is in the current
version. Unmarked code (without a leading “-” or “+”) is in
both versions.

Manually Cleaning the Data. We manually revised the
150 method variations by comparing the call-graph (obtained
during the execution) and the source code modification. We
then manually revised the source code (as we just did with the
method open). In total, we found 66 method modifications
(44%) that are not related with the method performance
variation. The remaining 84 method modifications (56%)
cause a performance variation in the modified method. These
modifications are distributed along 11 projects; table 4 gives
the distribution by project.

Summary. Are performance variations mostly caused by
modifications of the same methods? We found that 84 method
modifications that cause a performance variation (regression
or improvement) were done over 67 methods, which means
1.25 modifications per method. Table 4 shows the ratio
between method modifications and methods is less than two
in all projects. In addition, we found that the these methods

Table 4: Method modifications that affect method
performance (R= regression, I= improvement, R/I
= regression in some benchmarks and Improvement
in others)

Method Modifications Involved Mod. by
Project

R I R/I Total Methods Method
Spec 19 9 0 28 16 1.75
Roassal 7 5 0 12 11 1.09
Zinc 2 1 4 7 7 1.00
Mondrian 5 3 0 8 7 1.14
XMLSupport 6 0 0 6 6 1.00
GraphET 4 3 0 7 5 1.4
NeoCSV 0 5 0 5 5 1.00
PetitParser 5 0 0 5 5 1.00
Morphic 2 1 0 3 2 1.50
Nautilus 2 0 0 2 2 1.00
NeoJSON 0 1 0 1 1 1.00
Total 52 28 4 84 67 1.25

were modified a number of times along source code evolution
without causing a performance variation.

Most performance variations were caused by source
code changes made in different methods. Therefore,
keeping track of methods that participated in previous
performance variations is not a good option to detect
performance variations.

3.2 Understanding the Root of Performance
Regressions

Accurately identifying the root of a performance regres-
sion is difficult. We investigate this by surveying authors
of method modifications causing a regression. From the 84
method modifications mentioned in Section 3.1, we obtained
author feedback for 21 of them. Each of 21 method modi-
fications is the cause of a regression greater than 5%. We
also provided the benchmarks to the authors since it may be
that the authors causing a regression are not aware of the
application benchmarks. These methods are spread over four
projects (Roassal, Mondrian, GraphET, and PetitParser).
Each author was contacted by email and we discussed about
the method modification causing a regression.

For 6 (29%) of these 21 modifications, the authors were
aware of the regression at the time of the modification. The
authors therefore consciously and intentionally made the
method slower by adding or improving functionalities. We
also asked them whether the regression could be avoided
while preserving the functionalities. They answered that
they could not immediately see an alternative to avoid or
reduce the performance regression.

For 5 (24%) of the modifications, authors did not know that
their new method revision caused a performance regression.
However, authors acknowledged the regressions and were
able to propose an alternative method revision that partially
or completely removes the regression.

For the 10 remaining modifications, author did not know
that they caused a performance regression and no alternative
could be proposed to improve the situation.

This is a preliminary result and we can not draw any strong
conclusion from only 21 method modifications. However, this
small and informal survey of practitioners indicates that a
significant number of performance regressions are apparently
inevitable. On the other hand, such incertitude expressed

by the authors regarding the presence of a regression and
providing change alternative highlights the relevance of our
study and research effort.

3.3 Categorizing Source Code Changes That
Affect Method Performance

This section analyzes the cause of all source code changes
that affect method performance. We manually inspected the
method source code changes and the corresponding perfor-
mance variation. We then classify the source code changes
into different categories based on the abstract syntax tree
modifications and the context in which the change is used.
In our study, we consider only code changes that are the cul-
prits for performance variation (regression or improvement),
ignoring the other non-related source code changes.

Subsequently, recurrent or significant source code changes
are described. Each source code change has a title, a brief
description, followed by one source code example taken from
the examined projects.

Method Call Addition. This source code change adds
expensive method calls that directly affect the method per-
formance. This situation occurs 24 times (29%) in our set
of 84 method modifications, all these modifications cause
performance regressions. Consider the following example:

GETDiagramBuilder>>openIn: aROView
self diagram displayIn: aROView.
+ self relocateView

The performance of openIn: dropped after having inserted
the call to relocateView.

Method Call Swap. This source code change replaces a
method call with another one. Such a new call may be either
more or less expensive than the original call. This source
change occurs 24 times (29%) in our set of 84 method modi-
fications; where 15 of them cause a performance regression
and 9 a performance improvement.

MOBoundedShape>>heightFor: anElement
ˆ anElement
− cachedNamed: #cacheheightFor:
− ifAbsentInitializeWith: [self computeHeightFor:

anElement]
+ cacheNamed: #cacheheightFor:
+ of: self
+ ifAbsentInitializeWith: [self computeHeightFor:

anElement]

The performance of heightFor: dropped after having swapped
the call to cacheNamed:ifAbsentInitializeWith by cacheNamed:
of:ifAbsentInitializeWith.

Method Call Deletion. This source code change deletes
expensive method calls in the method definition. This pattern
occurs 14 times (17%) in our set of 84 method modifications
- all these modifications cause performance improvements.

MOGraphElement>>resetMetricCaches
− self removeAttributesMatching: ''cache∗''
+ cache := nil.

This code change follows the intuition that removing a
method call makes the application faster.

Complete Method Change. This category groups the
source code changes that cannot be categorized in one of
these situations, because there are many changes in the

method that contribute to the performance variation (i.e.,
a combination of method call additions and swaps). We
have seen 9 complete method rewrites (11%) among the 84
considered method modifications.

Loop Addition. This source code change adds a loop (i.e.,
while, for) and a number of method calls that are frequently
executed inside the loop. We have seen 5 occurrences of this
pattern (6%) - all of them cause a performance regression.

ROMondrianViewBuilder>>buildEdgeFrom:to:for:
| edge |
edge := (ROEdge on: anObject from: fromNode to:

toNode) + shape.
+ selfDefinedInteraction do: [:int | int value: edge].

ˆ edge

Change Object Field Value. This source code change sets
a new value in an object field causing performance variations
in the methods that depend on that field. This pattern
occurs 2 times in the whole set of method modifications have
analyzed.

GETVerticalBarDiagram>>getElementsFromModels
ˆ rawElements with: self models do: [:ele :model |

+ ele height: (barHeight abs).
count := count + 1].

On this example, the method height: is a variable accessor
for the variable height defined on the object ele.

Conditional Block Addition. This source code change
adds a condition and a set of instructions. These instructions
are executed upon the condition. This pattern occurs 2 times
in the whole set of method modifications we analyzed. Both
of them cause a performance improvement.

ZnHeaders>>normalizeHeaderKey:
+ (CommonHeaders includes: string) ifTrue: [ˆ string].

ˆ (ZnUtils isCapitalizedString: string)
ifTrue: [string]
ifFalse: [ZnUtils capitalizeString: string]

Changing Condition Expression. This source code change
modifies the condition of a conditional statement. This
change could introduce a variation by changing the method
control flow and/or the evaluation of the new condition ex-
pression is faster/slower. This pattern occurs 2 times in the
whole set of method modifications we have analyzed.

NeoCSVWriter>>writeQuotedField:
| string |
string := object asString.
writeStream nextPut: $”.
string do: [:each |
− each = $”
+ each == $”

ifTrue: [writeStream nextPut: $”; nextPut: $”]
ifFalse: [writeStream nextPut: each]].

writeStream nextPut: $”

The example above simply replaces the equal operation
= by the identity comparison operator ==. The latter is
significantly faster.

Change Method Call Scope. This source code change
moves a method call from one scope to another executed more
or less frequently. We found 1 occurrence of this situation

Table 5: Source code changes that affect method
performance (R= Regression, I= Improvement, R/I
= Regression in some benchmarks and Improvement
in others)
Source Code Changes R I R/I Total
1 Method call additions 23 0 1 24 (29%)
2 Method call swaps 15 9 0 24 (29%)
3 Method call deletion 0 14 0 14 (17%)
4 Complete method change 6 0 3 9 (11%)
5 Loop Addition 5 0 0 5 (6%)
6 Change object field value 2 0 0 2 (2%)
7 Conditional block addition 0 2 0 2 (2%)
8 Changing condition expression 0 2 0 2 (2%)
9 Change method call scope 1 0 0 1 (1%)
10 Changing method parameter 0 1 0 1 (1%)

Total 52 28 4 84 (100%)

in the whole set of method modifications. Such a change
resulted in a performance improvement.

GETCompositeDiagram>>transElements
self elements do: [:each | | trans actualX |

+ pixels := self getPixelsFromValue: each getValue.
(each isBig)

ifTrue: [| pixels |
− pixels := self getPixelsFromValue: each

getValue.
...

ifFalse: [ˆ self].
...
]

Changing Method Parameter. The following situation
changes the parameter of a method call. We found only
1 occurrence of this situation in the whole set of method
modifications.

ROMondrianViewBuilder>>buildEdgeFrom:to:for:
| edge |
edge := (ROEdge on: anObject from: fromNode to:

toNode) + shape.
− selfDefinedInteraction do: [:int | int value: edge].
+ selfDefinedInteraction do: [:int | int value: (Array with:

edge)].
ˆ edge'

Table 5 gives the frequency of each previously presented
source code change.

Categorizing Method Calls. Since most changes that cause
a performance variation (patterns 1,2,3) involve a method
call. We categorize the method call additions, deletions and
swaps (totaling 62) in three different subcategories:

• Calls to external methods: 10% of the method calls cor-
respond to method of external projects (i.e., dependent
projects).

• Calls to recently defined methods: 39% of the method
calls correspond to method that are defined in the same
commit. For instance, a commit that defines a new
method and adds method calls to this method.

• Calls to existing project methods: 51% of the method
calls correspond to project methods that were defined
in previous versions.

Summary. RQ2: What are the most common types of source
code changes that affect performance along software evolu-
tion? We found, in total, that 73% of the source code changes

that cause a performance variation are directly related to
method call addition, deletion or swap (patterns 1,2,3). This
percentage varies between 60% and 100% in all projects,
with the only exception of the Zinc project that has a 29%;
most Zinc performance variations were caused by complete
method changes.

Most source code changes that cause a performance
variation are directly related to method call addition,
deletion or swap.

3.4 Triggering a Performance Variation
To investigate whether a kind of change could impact

the method performance we compare changes that caused
a performance variation with those that do not cause a
performance variation. For this analysis, we consider the
source code changes: loop addition, method call addition,
method call deletion and method call swap 6.

To fairly compare between changes that affect performance
and changes that do not affect performance, we consider
changes in methods that are executed by our benchmark set.
Table 6 shows the number of times that a source code change
was done along software versions of all projects (Total), and
the number of times that a source code change cause a
performance variation (Perf. Variation) greater than 5% over
the total execution time of the benchmark.

Table 6: Comparison of source code changes that
cause a variation with the changes that do not cause
a variation (R= regression, I= improvement, R/I =
regression in some benchmarks and Improvement in
others)

Perf. Variations
Source Code Changes Total

R I R/I Total
Method call additions 231 23 0 1 24(10.39%)
Method call deletions 119 0 14 0 14(11.76%)
Method call swap 321 15 9 0 24 (7.48%)
Loop additions 8 5 0 0 5(62.5%)

Table 6 shows that these four source code changes are
frequently done along source code evolution; however just
a small number of instances of these changes cause a per-
formance variation. After manually analyzing all changes
that cause a variation, we conclude that there are mainly
two factors that contribute to the performance variation:

• Method call executions. The number of times that a
method call is executed plays an important role to deter-
mine if this change can cause a performance regression.
We found that 92% of source code changes were made
over a frequently executed source code section.

• Method call cost. The cost of a method call is important
to determine the grade of performance variation. We
found that 7 (8%) method calls additions/deletions were
only executed once and cause a performance regression
greater than 5%. In the other 92% the performance
vary depending on how many times the method call is
executed and the cost of each method call execution.

6These changes correspond the top-4 most common changes,
with the exception of “Complete method change” which we
did not consider in the analysis since it is not straightforward
to detect this pattern automatically.

PPSequenceParser>>parseOn: aContext

 | memento elements element |
 + memento := aPPContext remember. + 100*10 (addition)
 elements := Array new: parsers size. + 0
 1 to: parsers size do: [:index |

 element := (parsers at: index) parseOn: aPPContext. + 0
 element isPetitFailure ifTrue: [+ 0

 - aStream position: start - 50*50 (deletion)
 + aPPContext restore: memento. + 200*50 (addition)
 ^ element].

 elements at: index put: element]. + 0

 ^ elements

Execution Profile obtained
by executing benchmark b

m
et

ho
d-

bo
dy

do
:

ifT
ru

e:

method-body: 10 executions
 (along the execution)

ifTrue: 50 executions
 (half of the times was true)

do: 100 executions
 (10 for each method execution)

Number of executions:

Cost:

remember 100 u
 (average execution time)
restore: 200 u
 (average execution time)

position: 50 u
 (average execution time)

Modification Cost

——————
8500 u

Method Modification

u = unit of time

parseOn: 1000 u
 (average execution time)

Figure 3: LITO cost model example

We believe these factors are good indicators to decide when
a source code change could introduce performance variation.
We support this assumption by using this criteria to detect
performance regressions, as we describe in the following
sections.

4. HORIZONTAL PROFILING
We define horizontal profiling as a technique to statically

detect performance regressions based on benchmark execu-
tion history. The rationale behind horizontal profiling is that
if a software execution becomes slow for a repeatedly iden-
tified situation (e.g., particular method modification), then
the situation can be exploited to reduce the performance
regression testing overhead.

4.1 LITO: A Horizontal Profiler
We built LITO to (mostly) statically identify software

versions that introduce a performance regressions. LITO
takes as input (i) the source code of a software version Vn and
(ii) the profile (obtained from a traditional code execution
profiler) of the benchmarks execution on a previous software
version Vm. LITO identifies source code changes in the
analyzed software version Vn, and determines if that version
is likely to introduce a performance regression or not.

The provided execution profile is obtained from a dedi-
cated code execution profiler and is used to infer components
dependencies and loop invariants. As discussed later on,
LITO is particularly accurate even if Vm is a version distant
from Vn.

Using our approach, practitioners prioritize the perfor-
mance analysis in the selected versions by LITO, without the
need to carry out costly benchmark executions for all versions.
The gain here is significant since LITO helps identify soft-
ware commits that may or may not introduce a performance
variation.

Execution Profile. LITO runs the benchmarks each k ver-
sions to collect run-time information (e.g., each ten versions,
k = 10). Based on the study presented in previous sections,
LITO considers three aspects to collect run-time information
in each sample:

• Control flow – LITO records sections of the source code
and method calls that are executed. This allows LITO
to ignore changes made in source code sections that

are not executed by the benchmarks (e.g., a code block
associated to an if condition or a method that is never
executed).

• Number of executions – As we presented in the previ-
ous sections, the method call cost itself is not enough
to detect possible performance regressions. Therefore
LITO records the number of times that methods and
loops are executed.

• Method call cost – LITO associates the average execu-
tion time of each method as the cost of executing each
method call. Note that LITO does not estimate the
execution time variation itself, it uses this average as a
metric to detect possible performance regressions.

• Method execution time – LITO estimates for each
method m (i) the accumulated total execution time
and (ii) the average execution time for calling m once
during the benchmarks executions.

LITO Cost Model. LITO abstracts all source code changes
as a set of method calls additions and/or deletions. To LITO,
a method call swap is abstracted as a method call addition
and deletion. Block additions, such as loops and conditional
blocks, are abstracted as a set of method call additions.

The LITO cost model is illustrated in Figure 3. Consider
the modification made in the method parseOn: in the class
PPSequenceParser. In this method revision, one line has been
removed and two have been added: two method call additions
(remember and restore:) and one deletion (position:). In order
to determine whether the new version of parseOn: is slower
or faster than the original version, we need to estimate how
the two call additions compare with the call deletion in terms
of execution time. This estimation is based on an execution
profile.

The LITO cost model assesses whether a software version
introduces a performance regression for a particular bench-
mark. The cost of each call addition and deletion depends
therefore on the benchmark b when the execution profile is
produced.

We consider an execution profile obtained from the execu-
tion of a benchmark on the version of the application that
contains the original definition of parseOn:. LITO determines

whether the revised version of parseOn: does or does not in-
troduce a performance regression based on the execution
profile of the original version of parseOn:.

The execution profile indicates the number of times that
each block contained in the method parseOn: is executed. It
further indicates the number of executions of the code block
contained in the iteration (i.e., do: [:index | ...]). The profile
also gives the number of times the code block contained in
the ifTrue: statement is executed. In Figure 3, the method
parseOn: is executed 10 times, the iteration block is executed
100 times (i.e., 10 times per single execution of parseOn: on
average) and the conditional block is executed 50 times (e.g.,
0.5 time per single execution of parseOn: on average).

LITO uses the notion of cost [12] as a proxy of the execution
time. We denote u as the unit of time we use in our cost
model. In our setting, u refers to the number of times the send
message bytecode is executed by the virtual machine. We
could have used a direct time unit as milliseconds, however it
has been shown that counting the number of sent messages
is significantly more accurate and this metric is more stable
than estimating the execution time [4]. On the example, the
method parseOn: costs 1000u, and remember 100u, implying
that remember is 10 times faster to execute than parseOn:.

The modification cost estimates the cost difference between
the new version and original version of a method. On the
example, the modification cost of method parseOn: is 8500u,
meaning that the method parseOn: spends 8500u more than
previous version for a given benchmark b. For instance, if the
benchmark b execution time is 10,000u, then the new version
of the method parseOn: results in a performance regression
of 85%.

The average cost of calling each method is obtained by
dividing the total accumulated cost of a method m by the
number of times m has been executed during a benchmark
execution. In our example, calling remember has an average
cost of 100u. The theoretical cost of a method call addition
m is assessed by multiplying the cost of calling m and the
number of times that it would be executed based on the
execution profile (Figure 3 right hand).

Let Ai be a method call addition of a given method modifi-
cation and Dj a method call deletion. Let be costb a function
that returns the average cost of a method call when executing
benchmark b, and execb a function that returns the number
of times a method call is executed. Both functions lookup the
respective information in the last execution sample gathered
by LITO.

Let MCb(m) be the cost of modify the method m for
a benchmark b, na the number of method call additions
and nd the number of method call deletions. The method
modification cost is the sum of the cost of all method call
additions less the cost of all method call deletions.

MCb(m) =
na∑
i=1

costb(Ai) ∗ execb(Ai)−
nd∑
j=1

costb(Dj) ∗ execb(Dj).

Let C be the cost of all method modifications of a software
version, and m the number of modified methods, we therefore
have:

C[v, b] =

m∈v∑
MCb(m)

In case we have C[v, b] > 0 for a particular version v and
a benchmark b, we then consider that version v introduces a
performance regression.

New Method, Loop Addition, and Conditions. Not all
the methods may have a computed cost. For example, a new
method, for which no historical data is available, may incur
a regression. In such a case, we statically determine the cost
for code modification with no historical profiling data.

We qualify as fast a method that is returning a constant
value, an accessor / mutator, or doing arithmetic or logic
operations. A fast method receives the lowest method cost
obtained from the previous execution profile. All other meth-
ods receive a high cost, the maximal cost of all the methods
in the execution profile.

In case a method is modified with a new loop addition or
a conditional block, no cost has been associated to it. LITO
hypothesizes that the conditional block will be executed and
the loop will be executed the same number of times as the
most recently executed enclosing loop in the execution profile.

The high cost we give to new methods, loop additions, and
conditions is voluntarily conservative. It assumes that these
additions may trigger a regression. As we show in Table 5,
loop and conditional block additions represent 6% and 2%,
respectively, of the source code changes that affect software
performance.

Project Dependencies. An application may depend on
externally provided libraries or frameworks. As previously
discussed (Section 3), a performance regression perceived by
using an application may be in fact located in a dependent
and external application. LITO takes such analysis into
account when profiling benchmark executions. The generated
profile execution contains runtime information not only of
the profiled application but also of all the dependent code.

During our experiment, we had to ignore some dependen-
cies when analyzing the Nautilus project. Nautilus depends
on two external libraries: ClassOrganizer and RPackage.
LITO uses these two libraries. We exclude these two depen-
dencies in order to simplify our analysis and avoid unwanted
hard-to-trace recursions. In the case of our experiment, any
method call toward ClassOrganizer or RPackage is considered
costly.

4.2 Evaluation
For the evaluation, we use the project versions where at

least one benchmark can be executed. In total, we evaluate
LITO over 1,125 software versions. We use the following
3-steps methodology to evaluate LITO:

S1. We run our benchmarks for all 1,125 software versions
and measure performance regressions.

S2. We pick a sample of the benchmark executions, every
k versions, and apply our cost model on all the 1,125
software versions. Our cost model identifies software
versions that introduce a performance regression.

S3. Contrasting the regressions found in S1 and S2 will
measure the accuracy of our cost model.

Step S1 - Exhaustive Benchmark Execution. Consider
two successive versions, vi and vi−1 of a software project
P and a benchmark b. Let µ[vi, b] be the mean execution
time to execute benchmark b multiple times on version vi.

Table 7: Detecting performance regressions with LITO using a threshold=5% and a sample rate of 20.
Performance Evolution

Project Versions
Selected
Versions

Performance
Regressions

Detected
Perf. Reg.

Undetected
Perf. Reg. by benchmark

Spec 267 43(16%) 11 8 (73%) 3

Table 1

13501616.33 18068849.67 6608652.33 4405954.67

13387237.33 18041039.67 6551046.33 4407173.67

13385562 18446883 6547749 4406740.67

20525001 24613992.67 10089915.67 4357695

13485595 18579096.67 6599043 3917057.33

19628211 21583066 9669581 4381427.33

19633464.67 21681624 9671482.67 4378987.33

19627237.67 21620043.33 9666504 4377967

19595233.67 21619715.33 9654897.67 4375466.33

19597187.67 21644163 9654556 4376239.67

19654997 21706104.33 9683845.33 4383453.67

19656185.33 21631463 9683363 4382198

19661182.33 21714140.33 9691675.33 4387119.67

19602462.67 21673258.67 9662843.67 4381095.33

19606514 21757432.33 9662813 4381027

19900055.67 21929813.67 9780806.67 4381169.33

19901129.33 21943425.67 9778957.67 4381578.67

19930402.33 21991030.33 9793712 4385019.33

19874192 21931860 9765739.33 4379681.67

20045117 22015812 9849139.67 4388377.67

19898295.67 21966170.67 9790654.67 4397274.33

19898455 21963107 9792540.33 4396702.67

19905838 21979509.67 9791875 4398263

19901246.67 21969193.33 9791848.33 4399426.33

20214485 22144719.67 9926634.67 4397446.67

20206213.67 22151774.67 9917137 4394439.33

20203752 22130752.33 9914455.33 4389792.67

20205396.33 22137476.67 9917937 4393074

20203837.67 22166530 9918549.67 4392783.33

20208432.33 22144983.67 9916200.67 4391626.33

20206899.33 22116560.33 9919383.67 4391121.67

20204349 22159983.33 9921873 4391867

20206111 22171667 9919380.33 4393321.33

20203861.33 22180890 9917006 4392899.33

20209115.67 22473524 9916983.33 4394154.33

20205658.67 22464911 9921922.33 4394275.33

19628368.33 22186140.33 9646363 4363614.67

19644386.67 22192815.67 9662794.33 4371676.67

20472084.67 22497990.33 10070672.33 4361934.33

20526306.33 22540657.67 10102141 4369712

20464907.33 22457239.33 10071970.67 4357839.33

20613234 24746372.33 10147699 4371301.67

20554773 24635497 10113929.67 4654381.67

20524444 24603582 10091699.67 4647136

20552062 24607752.33 10111752.33 4362224

19768763.33 24215838.33 9726882.67 4342834

20899905.67 24798078 10311493.67 4393009

20950868.67 24812853.67 10346626.33 4393064.67

20956717 24824302.33 10345828.67 4395022.33

20955316.67 24809283.67 10345808.67 4387517.67

4695760.67 12849707 3864194 3910137.67

4679638.67 12906601.67 3857211.67 3918504.33

4676834 12912801.67 3851115 3920176.33

4704834.67 12905642.33 3877396 3920674.33

4706898.67 12885150.67 3877014.33 3922552.33

4703618 12908815 3877821.33 3920834.67

4715453.33 12878148 3889984.67 3924683.33

4712268.33 12911376.67 3892068 3927424.33

4703827.67 12824611 3881311.33 3919651.67

4700956.33 12833330.33 3878037.67 3922080

4700357 12881413.67 3878319.33 3922614.67

4700827 12836329 3878271 3925357.67

4702682.67 12826531.67 3879652.33 3927154.33

4689668.33 12835466.67 3868302 3922472.67

4691720.33 12817607.33 3868997.33 3920109.67

4692130.67 12839776.67 3865266.33 3921577.33

7532729.33 14465271 6708892.67 4740570

7533652 14454086.33 6707265 4738062.33

7532187.33 14448577.33 6708839.67 4735545.33

7536621.33 14468684.33 6710080.33 4733179.67

7531151.33 14440870.67 6711875.33 4733022

7528957.33 14436184.33 6703095 4728291.33

7533933.33 14436114.33 6707956 4731459.67

7532692.67 14457265 6706793.33 4731075.33

7525626.67 14427840.33 6699614 4729072

7530769.67 14434536.33 6706205 4729384

7543671 14446379.67 6719492 4728109.67

7590132 14406930.33 6765926.33 4743675.33

7579503.33 14384391.33 6755681 4737280.67

7584835.33 14388103 6760719.33 4740538

7585034.33 14386452.33 6761074.33 4740570.67

7593925.67 14397872.33 6770204.67 4745034

7593781.33 14410595 6769875 4744882.33

7581918.33 14392830 6757890 4738101.33

7834100 13937264 6997641.33 4495392.67

7848744.67 13936962.33 7011060.67 4497655.67

7854977 13915194.67 7016829.33 4500348

7854211.33 13931342.67 7016473.33 4500083.33

7938467.67 14103494.33 7113469 4505974

7924866.33 14109817 7100514.33 4501025.33

7930148.33 14115134.67 7108509 4503558.33

7951293 14116807 7128311.67 4513748.67

7950671.33 14147243.33 7128456 4513762.67

7942837.67 14094318.33 7119942.67 4510498

7943000.67 14087701 7119815 4510517.67

7942710 14075273.33 7119924 4510546.33

7945385.67 14088033 7118609.67 4510433

7966839.33 14068471.33 7141794 4510259

7966330 14068801.67 7141740.33 4510192

7966671 14085163.33 7141908 4510159.67

7969422 14060736.33 7144027 4510659.67

7980123 14094464.67 7152931 4515182.33

7971348.67 14097983.67 7148754 4502515

7982346.33 14091639 7159555 4510801.67

7982199 14095559 7159324.33 4510821

7993427 14133349.33 7171154.67 4515261.33

7970535 14071239 7152981.33 4500180.67

7977646 14079947 7160803 4502451

11519527 16577777.67 10703839.67 5523680

11518937.67 16575998.33 10703227 5523617.67

11489959.33 16591027.33 10673631.33 5515705.33

11483977.33 16545180 10668424.67 5514382.33

11485864.33 16554026 10669919 5514377

11506351.67 16620843.67 10690281 5522391.67

11607410.33 16494051 10787583.33 5540446.67

11618338.67 16437139.33 10798085.67 5542121

11615602.67 16395539.33 10796275.33 5546817

11620930.33 16395669.33 10801245.67 5549309.67

8074193.67 15499427.33 7239928.33 4504367

8074677.67 16160860 7240333.67 4500067.67

8056747.33 16092584 7221307.33 4495009.67

8207739.33 14709043.67 7372947.67 4536594.67

8205372.67 14702185.67 7370987

8229435.33 14809197 7394238

8209045.67 14732071.33 7374607

8210232 14712516.33 7375589.67 5048769.33

8226530.67 14796827 7391733.33 5050015.33

8213715 14716465.33 7379180 5050148.67

8216086.33 14479206 7380892 5049861.67

8231023.33 14760124 7396104.33 5052100.33

8226514.67 14836081 7390956.67 5050150.33

8228090.67 14828960.33 7392173.33 5050493.33

8282396 14885743 7452511 5061971.67

8233372.67 14768242.67 7402696.33 5027529

8270488.33 14842656.67 7440609.67 5062824.33

8301620.33 14794296 7472026.67 5067524

8310104 14790291.33 7480754 5068713.33

8315497.67 14870260.33 7485299 5069891.33

8307298.67 14872689.33 7477236 5068736.67

8326213.33 14815348.67 7496611 5072383

8322508.67 14842074.33 7492370 5071711.33

8333575.33 15377286.33 7503560 5070550.33

8336465.33 15455786.67 7506612 5070541

8347283.33 15386089.33 7517473.67 5072610

7930732 15666963.33 6765953.33 4936211.67

7935206.67 15718976 6770846 4938574

7936197.67 15669255.67 6772044.33 4938690.67

7943167.67 15729613 6779212 4939740

7936776.33 15677490.67 6772190.33 4939868

7933342 15705232.33 6769153 4938728

7945637.67 15667864 6781010.33 4940677.33

8005571 15885317.33 6689420 4894443.33

7982866.33 15892418 6667208.67 4902498.67

8022230.33 15889080.67 6704917.33 4918567.67

8001851.33 15856346.67 6683835.33 4912912.67

7998845.67 15863660.33 6679694.33 4913539.33

7995592.67 15653217 6676337.33 4914277.67

8019253 15927666.33 6698572 4915447

8014119 15894453.33 6693765 4915847

8007039 15899400.33 6687151 4914704

7825912 15818732.33 6716842 4922790

7795310 15813706.67 6686643 4919353

7791818 15781978 6684279 4912888

7940777 15747135.67 6833132 4909126

7797637 15769137.33 6690138 4913361

7807962 15846805.67 6700082 4914063

7810799 15846922 6702494 4914068

7827566 15875563 6719430 4919342.33

7844004 15857606.33 6728686 4906726

7900160 16041759.33 6774178 4960842

7870512 14802650.67 6747775 4954233

7807950 14720630.33 6700474 4957902

7810262 14703185.33 6702519 4960186

7797684 14729897 6690258 4957412

7805385 14735141 6698509 4957277

7900514 14805479 6786570 5008041

7902499.33 14821480.67 6788076 5008262

7907329 14765836 6792867 4983021

7900040 14782388.33 6785366 13104832

7926802 14824407 6813138

7925851 14782181.33 6811424 13221675.33

7894472 14826540.33 6779704 13006942

7891840 14780463.33 6776966 12977359.33

7925424 14788696.33 6809715 13063804

7907381 14771816 6792250 13119205.33

7927846 14822017.67 6812489 13203944.67

7923716 14859885 6808032 13135699

7944843 14831107 6829279 13196589.67

7938283 14827036 6822569 13223476

7943378 14805404 6827516 13187768

7933266.67 14797573.67 6817085.67 13205847

7997267 14739547 6862788 36597887.33

8030673.33 14795696.67 6894848 36780207.33

8029442.67 14790787.33 6892689 36717220.33

8158028 14875505.33 7020656 39541929.67

8173952.33 14859390.33 7036310.33 39465341

8184569 14848791.33 7046550 39477053.67

8173156 14839961.67 7036017.67 39472364.33

8182066.33 14839768.67 7044023.33 39605074

8186049 14869602.67 7047439.33 39714416.33

8178216.33 14869364 7039802.67 39533892.67

8171440.67 14853039 7033582 39433349.67

8170910 14847977.67 7033616 39432848

8175614 14830259.33 7038006.33 39514145.67

8179091.67 14865988.33 7040717 39554615.33

8184481 14854255 7046357 39652390

8212430 14884321.67 7071846 39721733.33

8197760 14915332.67 7058239 39523499.33

8199900 14883965 7061076.67 39603799.67

8204026 14881096.67 7064316.67 39647433

8216540.67 14836047 7076661.33 39887891.33

8231314 14941351.67 7091499.67 39740969

8204669.67 14843081.33 7064570 39476783.67

8197145 14823379 7057116 39561515.33

8203172 14859522.67 7063899 39616534.67

8207870 14885672 7067040.33 39497113.33

8211881 14895594.67 7070894 39557693.33

8205281 14852942 7066513.67 39476807

8216372 14830912.33 7073819.67 39624226.33

8209613.67 14832438.33 7066865 39520032.33

8213112 14865965.67 7070071 39622943

8205431 14870240 7062158.33 39483787

8212051 14839147.33 7069873 39517661.33

8212637.33 14836536.67 7069956.33 39517870

8217657 14613417.33 7074991 39598467

8174961.67 14812453 7032423 39593582

8204022.33 14804195.67 7061731 39543063.67

8204524 14801404.33 7062356.33 39516779

8191853 14826068.33 7051970 39537027

8195809 14881302 7055712.33 39605502

8186421 14861449.33 7046535.67 39553936

8185851.33 14791247.67 7046126.67 39553752

8188363 14800607.33 7047733 39640986

8222176 14851278 7073356.67 39601405

8220376 14821484.33 7071175 39329584.67

8408196 14871165 7263201 39449703

8637510 15003615 7491756 39418696

8639083 14997183.33 7492918 39412685

8643655 15131599.33 7496391 39430359

8639999 15062606.33 7491859.67 39514517

8639502 15053197.33 7492182 39475476

8637734 15124308.67 7490083 39433904.67

8664737 15095262 7514657 39477890

8677133 15067741.67 7526017 39479739.67

8676712 15104049.67 7525477.67 39484531.67

8683348 15148453.67 7531336 39439400

8683607 15134057.67 7531136 39444417

8685419 15129705.67 7532945 39489648

8756019 15158908.33 7601206.33 39618654

8766707 15147842.33 7610185 40281408.67

8772400 15166445.67 7616108.33 40372700

8810684 15171032 7650715 40456647

8806636 15179528.67 7647397 40482096

8814913 15196016.33 7654858 40693473

8817592 15153337 7657302 40588346

8820494 15184442.67 7659708 40369014

8815586 15155785 7654270 40692746.33

8817694 15193544.67 7656596 40313067.33

8832967 15220356 7670954 40368973.67

8036641 14423707 7197541 39978409

7748141 14343983.67 6925057 29827777

8558166 15097072 7413063 30518566

8561459 15064226.33 7417224 30558817

8551954 15065584 7408043 30417556

8533765 15028069 7388635 30414064

8552557 15070076 7407653 30437901

8547800 15067246 7403516 30456885

8555692 15046792.33 7410455 30558228

8553707 15086736 7409103 12761579

Nautilus 199 64 (32%) 5 5 (100%) 0

Table 1

b1

391897754.33

391995301.33

392820927.33

393112342.33

392999942

392975870

393062685

394047163

394101769

393836730.33

394522984.67

394668659.67

394730569.67

400835308.33

400791871.33

400956804.33

400810028.33

400773841.33

400932778

400675049.33

419313887.67

419378374

419358862

422722582

422708251

422792460.33

422856558.67

422819957

422693541.67

423086115.67

422878994.67

423112411.67

423081242.67

417775780.67

419152390.67

427501935.67

427517493

427582566.67

427729310

427841914

427839599.33

427945582.67

427997068.33

428446691.33

428515058.67

428334697

427990899

428033432.33

428002077.67

428089322

426209394.33

426175641.33

427734088

429265651.33

429227829.33

429121074.67

429169520

425705154.33

425666007

425802840

428623535

428613788.33

423633102

424135203

423965131

423794867.67

423456956.33

420475688

433442693

642404522.67

642414112

644786610.33

644739720

647766575.33

1070954811

1072931636.33

431297052.67

431003536

431374995

431423479.33

431892457.33

431843863.33

431995221.67

431915190.33

434650563

434638420.33

435190038.33

435647936.67

435753783

433873625

432022122

432109723.67

435792159.67

436100159.33

450253123.67

450223615.33

450329705.67

450383791

450358474.33

451356697.33

455661773

871807735.67

871547565.33

875279623.67

936867709.33

933956188.67

935758603.67

935975126.33

938460783.33

939022170.67

938954011.33

939142360.33

943257404.67

943371661.33

939110820.67

939107019

948671416.33

951207785

951251469

951301316

957240325.67

957455624

8361815

8331284.67

8244684.67

8279794

8295887.67

8289744.33

8279722

8348902.67

8348343.33

8340435.33

8344738

7662416.33

7655638.67

7676744.67

7671764

7645946.67

7719157.33

7684605

7680367.33

7682988.33

7704709

7683601.33

7679760.33

7685826.67

7658133

7657680

7651757.67

7655938.67

7657828.33

7655558

7652037.67

7658185

7677412.33

7681542.33

7651709.67

7652334.33

7652636.67

7655926

7728045.67

7725727

7756962.67

7751272.33

7861475.33

7864145.33

7857429.67

7862449

7861916

7862360

7862624.67

7881122.67

7880663.67

7821991

7812119

7828392.33

7827666

7833925.33

7833886.33

7823376

7810495

7817074.33

7817632

7814983

7817395.33

7810481.33

7807076.67

7803009.67

7802623.33

7805326.67

7805956

7804734.33

7806701.67

7823666.33

7811071.33

7809470

7796541.67

6760641.33

6350443.33

7801030.33

7807243.67

7801807

Mondrian 144 9 (6%) 2 2 (100%) 0

Table 1

b1 b2 b3

Untitled 1 46447201.8 68355025.2 12427257.67

Untitled 2 46447892.2 65093431.6 11795672.67

Untitled 3 46449400.2 65092966.4 11797036.33

Untitled 4 46448170.4 65094216 11796708

Untitled 5 46446678.2 65093765.6 11796391.67

Untitled 6 46448722.8 65093621.2 11797187

Untitled 7 46450204 65094754.6 11795930.33

Untitled 8 46447958.4 65092327 11797061.33

Untitled 9 46449712.8 65094035 11796782.33

Untitled 10 46448018.4 65093836 11796737.67

Untitled 11 46448588.8 65094735.2 11796791

Untitled 12 46448843 65093286.6 11796450.67

Untitled 13 46448081.2 65093158 11797242.33

Untitled 14 46448141.6 65094664 11797048

Untitled 15 46448972.6 65093102.6 11797559.33

Untitled 16 54448464.8 65093116.6 11797245

Untitled 17 54447880 65094440.6 11796736.33

Untitled 18 54449125 65095063 11798020.67

Untitled 19 46849553.8 65093956.8 11796043

Untitled 20 46850001.4 65094618.8 11798371

Untitled 21 46848249.6 65093918.6 11797182.33

Untitled 22 46848619.4 65094349.2 11797877

Untitled 23 46847825.4 65094603.4 11798029.33

Untitled 24 46849640.4 65094752.6 11798013.33

Untitled 25 46848946.4 65094894.2 11796856

Untitled 26 46849173.8 65093292.8 11795939.67

Untitled 27 46847561 65094410.4 11797460

Untitled 28 46849720.6 65094879.6 11796704.67

Untitled 29 46849214.2 65095148.2 11796879.67

Untitled 30 46847514.2 65094007.2 11796156

Untitled 31 46849452.4 65093248.4 11796970.67

Untitled 32 46847982 65092867.6 11796720

Untitled 33 46849025.2 65094218.6 11796326.67

Untitled 34 46848600.2 65095799.4 11797083.67

Untitled 35 46846937 65094201.8 11796121

Untitled 36 46849541.6 65094621 11798349

Untitled 37 46848422.8 65094615.4 11796546.33

Untitled 38 46848798 65094787.6 11796803.67

Untitled 39 46848869.8 65094568.2 11797700.33

Untitled 40 46849308 65095484.8 11795953

Untitled 41 46847810 65093410.2 11796755.67

Untitled 42 46850122.8 65092908.6 11797579.33

Untitled 43 46849572.8 65093142 11798122.67

Untitled 44 46848379.4 65092655.8 11795735.33

Untitled 45 46849080 65094508.6 11796803.33

Untitled 46 46847377.8 65095495.6 11797107.67

Untitled 47 64848515.2 47957233.8 8725709.67

Untitled 48 64167489.4 47625205.2 8711433.33

Untitled 49 63767907.6 47406940.2 8679830.33

Untitled 50 64047174.4 47735424.6 8695171.33

Untitled 51 64565918.4 47186646 8693820

Untitled 52 64566934 47407294.6 8676327

Untitled 53 64686117.6 48284757 8709054

Untitled 54 64809411.4 47626112 8707737.67

Untitled 55 65327157.2 47515281.2 8646418.33

Untitled 56 64046113.4 47513502.2 8710343

Untitled 57 65485754.2 47956072.6 8758209

Untitled 58 65367132.4 47626425.2 8729392

Untitled 59 63925969.8 47956551.2 8826709

Untitled 60 63887168.2 47623542.6 8643792.33

Untitled 61 63846319 47845819.2 8728785.67

Untitled 62 65244979.8 47846962.4 8676081.33

Untitled 63 66286538.2 47516678.2 8658676.67

Untitled 64 64167032 47625324 8792806.67

Untitled 65 64886414.2 47185328.6 8578533.33

Untitled 66 63966444.8 47735943.2 8610782.33

Untitled 67 63846206.4 47077013.2 8825212.33

Untitled 68 64128185.6 47406361.2 8845196

Untitled 69 64127933.4 48065941.6 8658952.67

Untitled 70 65727035.4 47846381.6 8629899

Untitled 71 64165869.2 47954766.6 8628929

Untitled 72 47954691.8 8727302.33

Untitled 73 47073990.2 8792340

Untitled 74 47626274.2 8710300.33

Untitled 75 48396679 8593190.33

Untitled 76 47185128.2 8663163.33

Untitled 77 48063696.8 8695267

Untitled 78 47515119.6 8826440.67

Untitled 79 47625918.2 8725445.67

Untitled 80 47296445.4 8661754.67

Untitled 81 47076852 8696015.67

Untitled 82 47405666.2 8710595.67

Untitled 83 48506815 8742021.67

Untitled 84 47625897 8713180

Untitled 85 47736430.4 8810068.67

Untitled 86 47295646.4 8643866.67

Untitled 87 48176356 8845591

Untitled 88 47844475 8775769.33

Untitled 89 47626387 8676247

Untitled 90 48287366.6 8661197.67

Untitled 91 47625381 8661462.67

Untitled 92 47846390 8659967

Untitled 93 48064315.6 8641993.67

Untitled 94 47295049 8763290

Untitled 95 47516382.6 8612047.67

Untitled 96 47406140.8 8760736

Untitled 97 47515830.2 8624732.33

Untitled 98 48174899 8661178

Untitled 99 47733952.2 8728360.67

Untitled 100 47626011.4 8641891.67

Untitled 101 47295404.8 8776404.33

Untitled 102 47516188.2 8611723.67

Untitled 103 47844763 8610170.33

Untitled 104 47846750.4 8841435.67

Untitled 105 47297038.6 8612665

Untitled 106 48066796.4 8661476.33

Untitled 107 47737443.6 8710044

Untitled 108 47734692.4 8726438.33

Untitled 109 48617276.2 8728247.67

Untitled 110 47845802.4 8659265.67

Untitled 111 47295817.4 8627249

Untitled 112 47405574.4 8626526.33

Untitled 113 47295152.6 8741849.67

Untitled 114 47790969 8728709.33

Untitled 115 47883784.67 8743403

Untitled 116 47334021.67 8824662

Untitled 117 47881363.33 8645622

Untitled 118 47148160.33 8827138

Untitled 119 46966437 8676318.33

Untitled 120 47514030 8712906.67

Untitled 121 47514184.67 8893756

Untitled 122 47698328 8678333

Untitled 123 47514489 8829430

Untitled 124 47701134 8760019.33

Untitled 125 48064798.67 8658186

Untitled 126 47882664 8746336

Untitled 127 47516493 8644681.67

Untitled 128 47515008.33 8776075.67

Untitled 129 47515374.33 8759695

Untitled 130 47700385 8679428.33

Untitled 131 47516501.33 8760656.33

Untitled 132 47515632.33 8644090

Untitled 133 47516021.67 8711528

Untitled 134 47702003.33 8744471.67

Untitled 135 47699272 8776341.67

Untitled 136 47331777.67 8744877.33

Untitled 137 47699248 8659665.33

Untitled 138 47332280.33 8610408

Untitled 139 47149004 8746741

Untitled 140 48431517.33 8727651

Untitled 141 47699013.67 8659174

Untitled 142 47514981.67 8626858

Untitled 143 46967617.67 8745123

Untitled 144 47332538.33 8646340

Untitled 145 47883038.67 8662364.33

Roassal 141 26 (18%) 3 3 (100%) 0

Table 1

52162411.33 7290524 44231290.67 8609745

52162178.67 7290470 44264257 8608842.33

52166010.33 7291214.67 44262531.67 8609152.67

52164666.33 7286423.67 44248420 8605872.33

52163771.33 7289975 44220211.33 8608863

52162286.33 7290960.67 44255194.33 8609548.33

52165480.67 7289950.33 44284465.67 8608235

52161870 7289459 44272482.67 8609142.33

52163408 7291394.33 44248435.67 8610500.67

52165414 7290686 44278797 8608258

52065241 7290576.67 44266223.33 8610261.33

52066157 7290881.67 44248860.67 8608845.67

52065535.67 7289867.67 44258528.67 8609621

52064024.67 7291726 44237655.33 8608809.33

52063521.33 7290895.33 44255928.67 8609601

52063338.33 7290149.67 44262482.67 8606640.33

52064574.33 7289735 44253228 8610153.67

52066458 7290499.33 44528948.33 8612180.67

30716949.67 52063902 7291271.33 44584703.67 8609834.67

30716249.67 52065005 7290959 44614288.33 8608403

30715800.67 52063413.67 7291381.67 44614956 8609821.67

30763479.67 52150042.67 8439816 44699788.67 9755857

30717191.67 52064998.67 7291924.33 44614393.33 8611721.67

30716854 52064894.33 7291559.67 44529794 8608807.67

30717456.33 52065388.67 7291003.33 44590786 8610613

30717509 52063856 7290813 44448082.67 8607706.33

30716047.67 52063273.33 7290309 44430953.67 8610251.67

30714758 52064128 7289985.33 44410411.33 8607296.33

30736411 52164468 7405414.33 44875442 8728804.33

30735639.33 52163091.33 7405738.67 44887952.33 8729536.67

30738620.67 52164048.67 7405946.67 44905553 8730939.33

30736814.33 52163718.67 7405588.67 44067411.33 8731482

30736658 52165201 7405970.33 44071728 8731689.67

30737928.33 52165469.33 7406589 44079315.33 8730633.33

30735724.33 52165145.33 7407171 44081645.33 8731456

30737279.67 52165150.33 7405745 44064086.67 8727821.33

30736974 52166939.33 7405934 44081309 8729549

30736455.33 52165773.33 7406229.33 44079587.33 8729716.33

30735590.67 52166252.33 7404960 44066401 8728394.67

30736532 52164035.67 7405551.33 44068659.67 8728495

30735451.33 52163509 7405953.33 44465728 8730327.67

30738168 52164004.67 7406436.33 44461681.67 8730484.33

30736943.33 52163909.33 7406884.33 44484790.67 8729712

30737291 52167280.33 7404554.67 44490209.67 8728863

30735968.67 52166571.33 7406341.67 44489789.33 8730129.67

30735972.67 52166001.33 7406008.67 44437897.33 8731052.33

30737202.67 52165044.67 7407812.33 44471193.33 7427384.33 8729876.67

30736537.67 52166593.33 7416448.33 44740662.67 7653285.67 8742663

30736590.67 52165104 7417142 44766208.33 7656099.33 8739880

30737879.67 52166211.33 7417579 44066109.67 7652031 8741168.33

30737365 52165366.33 7418411.67 44064849.67 7651661.67 8741648.67

30736904 52164993.33 7417828.67 44075259.33 7650421 8742633.67

30736338.67 52165798.67 7418609 44087200.33 7647503.33 8742064.67

30738228.67 52168322.67 7417579.67 44087384.67 7655684.33 8740973

30736422.67 52166533.33 7418474.33 44079301.33 7648063 8741124.67

30736255.33 52166736.33 7417154.33 44088529.67 7651182 8739985

30737155.33 52166385.67 7417932 44088437.67 7647284 8741448.67

30737418.33 52166482 7417217.33 44080748.33 7645235.67 8742358.33

30736226.67 52165474.33 7418398.33 43588146.67 7412161 8743607.33

30737414 52166208.67 7418398.33 43589574.33 7409313.67 8742532

30737023 52167509.33 7417269 43595033.67 7406734 8739547.33

30737556.67 52164597.67 7418481 43598066.33 7405331.67 8740851

30735284 52166116.67 7417269 43599205 7409980.33 8742613.67

30735573.33 52165677 7418301.67 43597796.67 7421495.67 8741180

30736556 52166128.67 7417600.67 43599245 7412771 8740991.67

30738204 52165723.33 7418408.67 43593578 7409219.33 8743102.67

30736472.67 52166107 7417817.67 43599450.33 7408431.33 8742547.67

30737282.67 52166035 7417028.33 43828562.67 7410816.67 8741456.67

30736602 52166299 7417310.33 43845908.67 7418739.33 8741359.67

30737365 52164695.67 7417717 43819434.33 7410017.33 8740418

30738414 52167906 7417904.67 43825220.33 7409348.33 8741083.67

30737970 52166152 7416988.33 43824160.67 7402525.33 8742208

30735818.67 52165719.67 7418872.33 43861872 7402153.33 8742214.67

30737327.67 52164794.33 7417549.67 43862036.33 7402533.67 8741923.33

30737958.33 52165492.67 7417940.33 43835113 7408709.67 8742346.67

30738011 52165039 7417441 43873594.33 7404802.67 8741253

30735615.67 52164946.67 7401219.33 43234585 7018583.67 8722722.67

30736261.67 152414234.67 7400705.33 202294629.67 9244253.67 8725705.67

30737520 152414888 7411584 202294567.33 9246000 8734473

30737539 152415568.33 7412392.33 202301879 9241787.33 8737146.67

30737667.67 152413762 7411788.67 202304368.33 9245135.33 8733543.33

30738697.67 152415787 7412506.33 202298360.33 9259840.33 8734653.67

30737017.33 152414871 7410739 202283132 9243546 8734959

30737310.33 152416003.67 7412312.33 202299384 9246207.33 8736056

30736140.33 152414879 7412311.33 202298668 9250412.33 8733128

30736849 152414938.67 7412876.33 202356758.67 9383209.33 8734784

30738210 152415142.67 7411820 202384950.67 9382321 8736164

30737832.67 152413518 7410562 202359044.67 9383344.33 8736593.33

30736849.67 152415152.33 7411207.67 202341412 9380778.67 8737106.33

30736867 152414442.33 7411747.33 202360347 9383260.33 8737439.33

30735390.67 152415177 7412941.33 202332471.33 9383046.67 8734252.33

30735205.67 152415241.33 7414297.67 202344289.67 9382808.33 8735753.33

30735458.67 152414632.33 7414476.33 202358715 9382042.33 8735079

30735884.33 152414366.67 7410934 202365107.33 9382221.33 8735976.33

30737531 152413150.67 7397238 202357076.67 9382126.67 8722075.67

30785464.67 102625496 8530529.67 217917500 9613684 9855276.33

30737401.33 102537679 7409926.67 217830783.33 9614295.33 8734640

30738299.67 102539002 7410749.33 217831082.67 9613010.33 8735747.33

30737681.33 102539736 7412599.67 217831557 9618853.33 8737482.33

30737304.67 102541539 7413699.67 217833350 9617196 8734395.33

30748335 102563956.67 7412395.67 217841495.67 9658039 8736960.67

30747890.67 102564900 7411420 217844054 9658493 8736140.33

30746284 102562653 7412092.33 217841554.33 9658272 8736244

30747095 102564692.33 7411778.67 217843161 9658080.67 8737160.33

30746104.67 102565435.67 7411755 217843192.33 9657488.33 8735869

30747898 102564208.67 7411256.67 217842665.33 9659775.33 8734979.33

30745717.33 102563616 7401571.67 217841187.67 9659187 8724650

46203369.33 102438922.33 7402143 217607449.33 303416317.67 8726746.33

46204534 102740435.33 7412735.33 218170500.67 9755192.33 8734637.67

46203539.67 102739670 7396665.33 218167528.33 9755976.33 8718781

46204276.33 102738215.67 7410153.67 218170426 9755576.67 8737433

46202912.33 102739886 7411905 218171117.67 9754593.33 8735768.33

46203197.67 102741130 7413461 218169153.33 9755283.67 8736696

46204622.33 102740468.67 7412684.33 218169362.33 9755607.33 27185120.67 8735133.33

46202224.33 102736634.33 7391244 218167417 9754038.67 27183936 8714319

46203064 102736893 7390000.67 218167665.67 9754578.33 27187132 8713812.33

46202968.33 102738622 7392095.67 218172038.67 9755499.33 27186797.33 8715304.67

46203131.67 102738467 7391105.33 218169620 9755122 27186058 8714019.67

46131719 102561290.67 7388867.67 218120110.33 9585451 27151721.33 8594751.67

46135952 102563644 7391706 218123385.67 9585846 27150890 8594382

46133339 102565763.33 7390264.33 218120351 9586852.33 27149371.67 8592257.33

46136779 102564011.33 7389431.33 218123118.67 9602416.67 27151929 8595726

46132456.67 102565249.67 7389388.33 218120227 9601777.33 27151735 8593602.33

46134529.67 102561983 7390199.67 218123299.67 9600894.67 27111003.33 8594273.67

46134006 102564295 7391789.67 218122762.67 9600943 27113933.33 8592891.33

46134091.33 102565145.33 7393545.67 218122403 9602139.67 27113103.33 8595191.67

46132847.67 102565167.33 7392149.33 218120193 9281732.67 27114941.33 8595167.33

46141070.33 102564121.33 7390324.33 218120489 9281061.67 27114616 8593332.67

46145110.67 102562070 7389283.33 218120629.33 9280004.67 27125518.33 8593504.33

46142614.67 102560770 7388450 218122151.33 9281521 27125623 8595595

46142757 102565731.33 7393690.67 218122544.67 9281576 27125811.67 8593226.33

46144366.33 102563909.33 7392348 218124023 9280792 27124483 8593390

46144188.67 102563463 7391007.33 218121842.67 9282114.33 27127217.67 8592988.33

46144372 102564144.67 7390131.33 218122600.33 9281299 27125374.33 8592274.67

46145073.33 102564688.67 7390289.33 218120213.33 9282430 27125115.67 8594037.33

46143675.33 102563699 7389254.67 218120894 9281593.67 27127730 8594238.33

46140763.33 102563630 7387717 218122648.67 9280613.33 27124204.67 8593031.33

46143445.33 102564978.33 7390159 218119904 9282092.67 27125394 8593937.67

46143643.33 102562241.33 7391647 218122046.33 9281100 27127250.33 8593884.67

46144531 102561867.33 7376658 218122140 9280314 27125344.33 8579121

46164190 102613824 7504609.67 218139824.33 9361548.33 27136946.33 8833986.33

46162300.67 102614077.67 7507749.67 218139858.33 9362086.33 27135094.67 8834558.33

46162434 102614286 7504737.33 218139810 9361171.33 27134070.67 8835956.67

46163533 102614743.67 7502474 218141216.67 9361137.67 27136016.67 8837150

46165591 102611147 7505381.33 218141237 9440247.33 27136091 8831756.33

46163193.67 102612786 7515722.67 218140587 9438202 27135200.67 8840986

Morphic 135 8 (6%) 2 1 (50%) 1

Table 1

b1 b2 b3

3878160 14998398

3878108 15004456

3878931 15005700

3471765 14600970

3470504 14588310

3471852 14594289.33

3471899 14595131

3461869 14578873.67

3461845 14419046

3477694 14445695.33

3460559 14430026.67

3459593 14417713

3466985 14425536

3466965 14426155.67

3458986 14416203

3459057 14416315

3459216 14440777

3459433.33 14441427.33

3459383.33 14443220

3460409 14455104

3459567 14442820

3459212 14436995.33

3458485.33 14429225

3459079 14437528.33

3459292.33 14438412.67

3463261.67 14459792.33

3454867.33 14440046.67

3458076 14425666

3458259 14426791.67

3437562 14359418.67

3438565.67 14371827.33

3438563.67 14413794.67

3439201.67 14389044.67

3440475 14414857.67

3438767 14385916

3441601 14405581.33

3438970.67 14392199.33

3444064 14439799.67

3444310.33 14468955.33

3442302.33 14440867

3442286.67 14441534.67

3427027 14405718.33

3429477.67 14439954

3426526.67 14396757.67

3426309.33 14396598.33

3426562 14396990.67

3426248.67 14397519

3426509 14397813.33

3427228.67 14410349.33

3427188.67 14410635.33

3426232.33 14398111

3430416.67 14639280.67

3428773.33 14632187.33

3545219.67 14647093

3456724 15698806.33

3459896 15755699

23026397 3548937 15469294

23157765.33 3551066 15490028

23096025.67 3550231 15476714.67

22785798.67 3439326 15402339.33

22787157.33 3439317 15402660

22783807.33 3439360 15403054.67

22839871 3447330 15415518

22787751 3446552 15404000

22952140 3448910 15440846.33

22914836.33 3447789 15422938

22853903.67 3408873 15399106.33

22982879 3410967 15430632.33

22905327.33 3409705 15411716

22827048 3408534 15393332

22933571.67 3410165 15418145

22823502 3408448 15395354

22984617.67 3410925 15441465

23030479.33 3517761.33 15455227.33

23121155.67 3518995 15476402.33

23027424.67 3517820.33 15455974.67

23010792 3517615 15456052.33

23003135 3517660 15456602.67

23128199.67 3519180.67 15480969

23010361 3517578 15457090

23172535 3520046 15495193

23075953.67 3518049 15439026.33

22983551.33 3516881.67 15418906.67

22984476.33 3518243 15421833.67

23022881.67 3518018.33 15427740.33

23019953 3518095 15428297.67

23014883.33 3518063 15428456.67

23018085.67 3518059 15428466.67

23016939.67 3518015 15427975.67

23024557 3517917.33 15428456.67

23021491.33 3518027 15429244.67

23018276.67 3518024 15429584.33

23010247.67 3518015 15430174.33

23017043.33 3518032 15430411.67

23012699.67 3518030 15430965.67

23020571.33 3518071 15430619.67

23027210 3518052 15431848

23019228 3518082 15431246.33

23023282 3518991.67 15430974

23033257.67 3518928.67 15433343

23019386 3518985.67 15432630.67

23022196 3519040 15433360.67

23027285 3518890 15433844

23017575.67 3514448.67 15428999

23015846.33 3514333 15429497

23003228.33 3514325.67 15429463.67

23015569 3514382 15429530.33

23128189 3539048.33 15458788.67

23009018.33 3493351.33 15352222.67

23008135.33 3497914 15357671

23005788.33 3497845 15355142

23005600 3497837 15355420

23071575 3499225 15360321

23087797.67 3499573 15360447

23090909.33 3499564 15361389

23021413.67 3537147 15362079

23025984.33 3536806 15362279

22993681 3536659 15356850

23075844.67 3498682 15359305

23093255 3498542 15360402

23079584.67 3498535 15360041.67

23081452.33 3498581 15360171

23053863.33 3498318 15354437.67

23137249.33 3499416 15372411

23054531.67 3498106 15354967

23114759.67 3499071 15366863

23046455.67 3498248 15354803

23136751.33 3499477 15373252.33

18333632.33 2917431 14540236

18207308.67 2917436 14539798

22940605 3498227 15355726

23010008 3499253 15374672

23020537.67 3499291 15374890

22945328.67 3498060 15357232

22968588.33 3498620 15363847

23018111 3499507 15375943

GraphET 68 20 (29%) 5 4 (80%) 1

Table 1

b1 b2 b3

17896594.67

17899007.67

17898499.33

17898092.33

17898124

18099215

17442995

17443372.33

17445031.67

17444898.67

17441983.67

17444498.33

17444586.67

14661508

14660936

14661777.33 16812399.33

14661027 17183493.33

14662401.33 17934617.67

14663804 17934272.67

14659928.67 17945738.67

14661654.33 17870487

14662514.33 17873209.33

14661709.33 17870392

14662431 17870933

14661428 17870476.67

14663298 18544282

14659431.33 18543904.33

14660628 18543074

14662583.33 18545098

17210313 18541050

17208500.33 18543715.33

17197559 17631636

17210052 17269449

17210389.33 17268557.67

17209637 17269072.67

17208610.33 17269188.67

16311160 14787997

16313741.67 14788023.33

16315163.33 14789245.67

16315756.33 14787645

16313148.67 14789847.33

16315119.33 14786878.33

16764881.67 15088885

16763526 15088818.33

16763176.33 15089770

17064458.33 15088246.67

19163070 16063639.33

35085375 19163191 16062166.67

39250472 19162575.33 16063176.67

39251036.67 19166646.33 16062655.67

39249903.33 19165780.67 16065430

39250707 19164007.67 15387197.67

39250252 19165118.67 16138694.33

39249568 19165013.33 16140334.67

39249899.67 19162495.33 16137795.33

39247935.67 19165148 16139539.33

39248764.67 19166369.33 16139337.67

40856321 19763922 17265763.67

40841513 19752600.33 17257197.67

40855250.33 19764458.33 17265738.33

40844149.33 19752711.67 17254212.67

47256042 22161264 21764073.67

47269005.67 22170743 21775471

47264481.67 22163632.33 21773345.67

47261383 22163350.33 21772404.67

47251446.67 22151672 21759241

47265716 22164418.67 21773837.67

47265571.67 22162952.67 21772975

47264021.67 22163597.33 21773938

47264534 22163535 21772050

47263330.67 22162736.33 21774208.33

Rubric 64 2 (3%) 0 0 (100%) 0

Table 1

6198015.67

6198020

6197131

6198290.67

6198330

6197628

6197183.33

6197869.67

6197172.33

6273781

6201077

6201085

6201511

6201082.33

6202361

6200339.67

6201519

6200838.67

6201125.33

6202347

6200372.33

6202347

6200354

6201502

6201556.33

6201126.67

6201104

6201133

6202374.67

6201899.33

6202384.33

6202363

6200934

6191319.67

6190163.67

6191322.67

6189296

6190079.33

6191414.33

6190045

6190086

6191418

6190087

6189667

6189404.33

6189396.33

6190071.67

6191395

6189399

6190052

6190066

6189358

6190053

6189447

6189389

6190514

6189408

6190060

6189657

6189405.67

6189447.33

6190051

6189424.67

6191418

6190080.67

XMLSupport 18 8 (44%) 4 4 (100%) 0

Table 1

10353916 12487365.33

12436729.33 14565641.67

12433606.67 14566785

12480803 17159349.33

12484029 17558345 17098423.67

12486427.33 17557157 17097485

12481413 17557133 17099893.67

12483389 17556341 17100837.33

12643401.33 17712552.67 17303579

12640145 17714207 17301147.33

12625011 17696842.67 17290477.33

12625737 17698035 17288037

15054038 20125561.67 19715676

17957866.67 23032239 22619452.67

17956840.67 23032359 22618380.33

17880491 22973467 22561238.67

17957884.67 23031296 22620745

17955862.67 23029970 22618898.67

17955675.67 23028539 22616687.67

Zinc 18 2 (11%) 0 0 (100%) 0

Table 1

492251581.33 327149239.67 11432188.33

492252742 327149339.67 11431330.33

492248041.67 327148030 11431419.33

492249279 327146999.33 11432701

492251760.67 327145589 11430013.33

492254579.33 327153600 11663869

492150250.67 327126873.67 11433890.33

492149685.33 327125350.67 11431690.67

492150771.67 327125850.67 11434843

492150998.33 327128390.33 11435249.67

492158393.67 327124041.67 11432586.33

492178711.33 327129178 11683402.33

492179182.33 327132786.67 11684062.67

492339683 327125153 11643753

492339715.33 327125151 11643751

26790345.67 47510921 9900006

26790351.67 47510921 9900006

26873589 47518703 9995003

26898578.33 47519203 10010003

26898594.67 47519201 10010001

GTInspector 16 1 (6%) 1 1 (100%) 0

Table 1

b1 b2

45757546 194367004

45756828 194367209

45757138.67 194366823.67

45756744 194366831

45758241 194366894

45757194 194366815

45765189 194372649

45756887 194367036

24082560 184338449

45757958 194366942

45756914 198864776

45758620 194366873.67

45758119 194367480

45757482 194366981.67

45757794 194367336.33

46187574 34151608

46187205 34151694

Shout 15 0 (0%) 1 0 (0%) 1

Table 1

41382383.67

39476597

39477436.33

39514944.67

42090509.67

37527033.33

37790407.67

39525973

39654089

39632193

23691840

23850583

22953647.67

22990368.67

23018929.67

23922661

Regex 12 1 (8%) 1 1 (100%) 0

Table 1

31448809

31447487.33

31449807

31450487

31451432.67

31451494.33

31449101

31449105.33

38050518

38094475

38092681.67

38098135

38098135

NeoCSV 9 3 (33%) 0 0 (100%) 0

Table 1

B1 2

74006743 91394194

32354876.67 42488596

32351877 42489016

32352624 42487168

32355160.33 42491606.33

32353464 42490366

32352768 42489622

32356881 42489394

32354106 42490804

32279320.67 42414772

NeoJSON 7 0 (0%) 0 0 (100%) 0

Table 1

21053621

20146044.67

20145456.67

20143456.67

20142857.33

20142857.33

20143776.67

20123909PetitParser 6 1 (17%) 1 1 (100%) 0

Table 1

3060905

3060905

3060905

3060905

3060905 20767001

8880940 19561231.33 31050001

8880940 19560778 31050001

Soup 4 0 (0%) 0 0 (100%) 0

Table 1

15576288

15577068.33

15575871.67

15572700.67

15577495.33

XPath 2 0 (0%) 0 0 (100%) 0

Table 1

8406396.33 56870318.33 2503490.33 9339384

8402087 57115337.33 2505132.33 9712868.33

6900930.67 57540127.33 2201218 9699705.67

Total 1125 188 (16.7%) 36 30 (83.3%) 6 (16.7%)

The execution time is measured in terms of sent messages
(u unit, as presented earlier). Since this metric has a great
stability [4], we executed each benchmark only 5 times and
took the average number of sent messages. It is known that
the number of sent messages is linear to the execution time
in Pharo [4].

We define the time difference between versions vi and vi−1

for a given benchmark b as:

D[vi, b] = µ[vi, b]− µ[vi−1, b] (1)

Consequently, the time variation is defined as:

∆D[vi, b] =
D[vi, b]

µ[vi−1, b]
(2)

For a given threshold, we say vi introduces a performance
regression if it exists a benchmark bj such that ∆D[vi, bj] ≥
threshold.

Step S2 - Applying the Cost Model. Let C[vi, b] be the
cost of all modifications made in version vi from vi−1; using
the run-time history of benchmark b.

∆C[vi, b] =
C[vi, b]

µ[vj , b]
(3)

We have j, the closest inferior version number that has
been sampled at an interval k. If C[vi, b] ≥ threshold in at
least one benchmark, then LITO considers that version vi
may introduce a performance regression.

Step S3 - Contrasting ∆C[vi, b] with ∆D[vi, b]. The cost
model previously described (Section 4.1) is designed to favor
the identification of performance regression. Such design

is reflected in the high cost given to new methods, loop
additions, and conditions. We therefore do not consider
performance optimizations in our evaluation.

Results. We initially analyze the software versions with
LITO and collect the run-time information each k = 20
versions, and a threshold of 5%. LITO is therefore looking
for all the versions that introduce a performance regression
of at least 5% in one of the benchmarks. These benchmarks
are executed every 20 software versions to produce execution
profiles that are used for all the software versions. LITO
uses the cost model described previously to assess whether a
software version introduces a regression or not.

Table 7 gives the results of each software project. During
this process LITO selected 189 costly versions that represent
16.7% of total of analyzed versions. These selected versions
contain 83.3% of the versions that effectively introduce a
performance regression greater than 5%. In other words,
based on the applications we have analyzed, practitioners
could detect 83.3% of the performance regressions by running
the benchmarks on just 16.8% of all versions, picked at a
regular interval from the total software source code history.

Table 8 shows that LITO has a high recall (83.3%) despite
having a low precision (15.95%). This high recall indicates
that LITO helps practitioners to identify a great portion of
the performance regressions by running the benchmarks over
a few software versions.

Threshold. To understand the impact of the threshold in
our cost model, we carry out the experiment described above
but using different thresholds (5, 10, 15, 20, 25, 30, 35, 40, 45,
and 50). Figure 4 shows the percentage of selected versions
and detected performance regressions by LITO. Figure 4
shows that LITO detects all regressions greater than 50%

Table 8: Precision and recall of LITO to detect per-
formance regressions greater than 5%(threshold) us-
ing a sample-rate of 20. (TP = true-positive, TN
= true-negative, FP = false-positive, FN = false-
negative, Prec. = Precision)

Project TP FP FN TN Prec. Recall
Spec 8 35 3 221 0.19 0.73
Nautilus 5 59 0 135 0.08 1
Mondrian 2 7 0 135 0.22 1
Roassal 3 23 0 115 0.12 1
Morphic 1 7 1 126 0.13 0.5
GraphET 4 16 1 47 0.2 0.8
Rubric 0 2 0 62 0 -
XMLSupport 4 4 0 10 0.5 1
Zinc 0 2 0 16 0 -
GTInspector 1 0 0 15 1 1
Shout 0 0 1 14 - 0
Regex 1 0 0 11 1 1
NeoCSV 0 3 0 6 0 -
NeoJSON 0 0 0 7 - -
PetitParser 1 0 0 5 1 1
Soup 0 0 0 4 - -
XPath 0 0 0 2 - -
Total 30 158 6 931 15.95% 83.33%

(totaling ten). Figure 4 also shows that the number of selected
versions decreases as the threshold increases, meaning that
LITO safely discards more versions because their cost is not
high enough to cause a regression with a greater threshold.

Table 1

% Selected
Versions

% Detected Perf.
Regressions

5 16.7 83.3

10 16.5 82.8

15 16.4 88.0

20 16.4 84.2

25 16.4 81.3

30 16.3 92.9

35 16.0 92.9

40 16.0 92.3

45 15.7 92.3

50 15.5 100.0

%
 D

et
ec

te
d

Pe
rf.

 R
eg

re
ss

io
ns

0.0

20.0

40.0

60.0

80.0

100.0

%
 S

el
ec

te
d

Ve
rs

io
ns

 b
y

LI
TO

15.0

15.5

16.0

16.5

17.0

Threshold
5 10 15 20 25 30 35 40 45 50

% Selected Versions % Detected Perf. Regressions

Figure 4: The effect of the threshold on the percent-
age of detected performance regressions and the per-
centage of selected versions by LITO (> threshold)

By profiling the execution of only 17% of the versions,
our model is able to identify 83% of the performance
regressions greater than 5% and 100% of the regressions
greater than 50%. Such versions are picked at a regular
interval from the software source code history.

Sample Rate. To understand the effect of the sample rate,
we repeated the experiment using different tree sample rates
1, 20 and 50. Figure 5 shows the percentage of performance
regressions by LITO with the different sample rates. As
it was expected, the accuracy of LITO increment when we
take a sample of the execution every version (sample rate

= 1). Consequently the accuracy get worse when we take
a sample each 50 versions. Figure 5 shows that sampling a
software source code history each 50 versions make LITO
able to detect a great portion of the performance regression,
for any threshold lower than 50%.

1 20 50 1 20 50 20 1

5 17.688888888888916.711111111111116.0888888888889 86.111111111111183.3333333333333 75 83.333333333333386.1111111111111

10 17.511111111111116.533333333333315.9111111111111 89.655172413793182.758620689655275.862068965517282.758620689655289.6551724137931

15 17.511111111111116.444444444444415.8222222222222 92 88 80 88 92

20 17.511111111111116.444444444444415.8222222222222 89.473684210526384.210526315789578.947368421052684.210526315789589.4736842105263

25 17.244444444444416.355555555555615.8222222222222 87.5 81.25 75 81.25 87.5

30 17.155555555555616.266666666666715.7333333333333 92.857142857142992.857142857142985.714285714285792.857142857142992.8571428571429

35 16.8888888888889 16 15.4666666666667 92.857142857142992.857142857142985.714285714285792.857142857142992.8571428571429

40 16.8888888888889 16 15.4666666666667 92.307692307692392.307692307692384.615384615384692.307692307692392.3076923076923

45 16.947648624667315.733333333333315.2888888888889 92.307692307692392.307692307692384.615384615384692.307692307692392.3076923076923

50 16.770186335403715.4666666666667 15.2 100 100 90 100 100

%
 D

et
ec

te
d

Pe
rfo

rm
an

ce
 R

eg
re

ss
io

ns

0

20

40

60

80

100

Threshold
5 10 15 20 25 30 35 40 45 50

 sample-rate = 1 sample-rate = 20 sample-rate = 50

Figure 5: Evaluating LITO with sample rates of 1,
20, and 50

Overhead. Statically analyzing a software version with LITO
takes 12 seconds (on average). It is considerably cheaper than
executing the benchmarks in a software version. However,
each time that LITO collects the run-time information is
seven times (on average) more expensive than executing the
benchmarks. LITO instruments all method projects, and
executed twice the benchmarks: the first one to collect the
average time of each method and the second one to collect the
number of executions of each source code section. Even with
this, the complete process of prioritizing the versions and
executing a performance testing over the prioritized versions
is far less expensive than executing the benchmarks over all
application versions.

For instance, in our experiment, the process to do an
exhaustive performance testing in all software versions takes
218 hours; on the other hand, the process of prioritize the
versions and executed the benchmarks only in the prioritized
versions takes 54 hours (25%).

5. THREATS TO VALIDITY
To structure the threats to validity, we follow the Wohlin

et al. [29] validity system.

Construct Validity. The method modifications we have
manually identified may not be exhaustive. We analyzed
method modifications that cause performance variations
greater than 5%, over the total execution time of the bench-
mark. Analyzing small performance variations, such as the
one close to 5%, is important since it may sum up over
multiple software revisions. Detecting and analyzing vari-
ations smaller variation is difficult, because many factors
may distort variance to the observable performance, such as
inaccuracy of the profiler [4].

External Validity. This paper is voluntarily focused on
the Pharo ecosystem. We believe this study provides rele-
vant findings about the performance variation in the studied
projects. We cannot be sure of how much the results gen-

eralize to other software projects beyond the specific scope
this study was conducted. As future work, we plan to repli-
cate our experiments for the Javascript and Java ecosystem.
In addition, we plan to analyze how LITO performs with
multi-thread applications.

Internal Validity. We cover diverse categories of software
projects and representative software systems. To minimize
the potential selection bias, we collect all possible release
versions of each software project, without favoring or ignoring
any particular version. We manually analyze twice each
method modification: the first time to understand the root-
cause of the performance variation and the second time to
confirm the analysis.

6. RELATED WORK
Performance Bug Empirical Studies. Empirical stud-
ies over performance bug reports [13, 24] provide a better
understanding of the common root causes and patterns of per-
formance bugs. These studies help practitioners save manual
effort in performance diagnosis and bug fixing. These per-
formance bug reports are mainly collected from the tracking
system or mailing list of the analyzed projects.

Zaman et al. [30] study the bug reports for performance
and non-performance bugs in Firefox and Chrome. They
studied how users perceive the bugs, how bugs are reported,
what developers discuss about the bug causes and the bug
patches. Their study is similar to that of Nistor et al. [23] but
they go further by analyzing additional information for the
bug reports. Nguyen et al. [21] interviewed the performance
engineers responsible for an industrial software system, to
understand these regression-causes.

Sandoval et al. [1] have studied performance evolution
against software modifications and have identified a number
of patterns from a semantic point of view. They describe a
number of scenarios that affect performance over time from
the intention of a software modification (vs the actual change
as studied in this paper).

We focus our research on performance variations. In this
sense we consider performance drops and improvements that
are not reported as a bug or a bug-fix. We contrast the per-
formance variations with the source code changes at method
granularity. In addition, we analyze what kind of source code
changes cause performance variations in a large variety of
applications.

Performance Bug Detection and Root-Cause Analy-
sis. Great advances have been made to automate the perfor-
mance bug detection and root-cause analysis [10, 19, 27]. Jin
et al. [13] propose a rule-based performance-bug detection
using rules implied by patches to found unknown perfor-
mance problems. Nguyen et al. [21] propose the mining of
a regression-causes repository (where the results of perfor-
mance tests and causes of past regressions are stored) to
assist the performance team in identifying the regression-
cause of a newly-identified regression. Bezemer et al. [6]
propose an approach to guide performance optimization pro-
cesses and to help developers find performance bottlenecks
via execution profile comparison. Heger et al. [11] propose
an approach based on bisection and call context tree analysis
to isolate the root cause of a performance regression caused
by multiple software versions.

We improve the performance regression overhead by pri-
oritizing the software versions. We believe that our work
complements these techniques in order to help developers
address performance related issues. We do not attempt to
detect performance regression bugs or provide root-cause
diagnosis.

Performance Regression Testing Prioritization. Dif-
ferent strategies have been proposed in order to reduce the
functional regression testing overhead, such as test case pri-
oritization [9, 25] and test suite reduction [7, 14, 16, 31].
However, few projects have been able to reduce the perfor-
mance regression testing overhead.

Huang et al. [12] propose a technique to measure the
risk given to a code commit in introducing performance
regressions. Their technique uses a full static approach
to measure the risk of a software version based on worst
case analysis. They automatically categorize the source
code change (i.e., extreme, high, and low) and assign a risk
score to each category; these scores may require an initial
tuning. However, a fully static analysis may not accurately
assess the risk of performance regression issues in dynamic
languages. For instance, statically determining the loop
boundaries may not be possible without special annotations
[28]. Dynamic features of programming languages such as
dynamic dispatching, recursion and reflexion make this task
more difficult.

In this paper we propose a hybrid (dynamic and static)
technique to automatically prioritize the performance testing;
it uses the run-time history to track the control flow and
the loop boundaries. Our technique reduces a number of
limitations of a fully static approach and does not need an
initial tuning. We believe that these techniques can comple-
ment each other to provide a good support for developers
and reduce the overhead of performance regression testing.

7. CONCLUSION
This paper studies the source code changes that affect soft-

ware performance of 17 software projects along 1,288 software
versions. We have identified 10 source code changes lead-
ing to a performance variation (improvement or regression).
Based on our study, we propose a new approach, horizontal
profiling, to reduce the performance testing overhead based
on the run-time history.

As future work, we plan to extend our model to prioritize
benchmarks and generalize horizontal profiling to identify
memory and energy performance regressions.

8. ACKNOWLEDGMENTS
Juan Pablo Sandoval Alcocer is supported by a Ph.D. schol-

arship from CONICYT, Chile. CONICYT-PCHA/Doctorado
Nacional para extranjeros/2013-63130199. We also thank
the European Smalltalk User Group (www.esug.org) for
the sponsoring. This work has been partially sponsored by
the FONDECYT 1160575 project and STICAmSud project
14STIC-02.

9. REFERENCES
[1] Juan Pablo Sandoval Alcocer and Alexandre Bergel.

Tracking down performance variation against source
code evolution. In Proceedings of the 11th Symposium
on Dynamic Languages, DLS 2015. ACM.

[2] Len Bass, Ingo Weber, and Liming Zhu. DevOps: A
Software Architect’s Perspective. Addison-Wesley
Professional, jun 2015.

[3] L. A. Belady and M. M. Lehman. A model of large
program development. IBM Syst. J., 15(3):225–252,
September 1976.

[4] Alexandre Bergel. Counting messages as a proxy for
average execution time in pharo. In Proceedings of
ECOOP’11.

[5] C. Bezemer, E. Milon, A. Zaidman, and J. Pouwelse.
Detecting and analyzing i/o performance regressions.
Journal of Software: Evolution and Process,
26(12):1193–1212, 2014.

[6] C. Bezemer, E. Milon, A. Zaidman, and J. Pouwelse.
Detecting and analyzing i/o performance regressions.
Journal of Software: Evolution and Process,
26(12):1193–1212, 2014.

[7] Jennifer Black, Emanuel Melachrinoudis, and David
Kaeli. Bi-criteria models for all-uses test suite
reduction. In Proceedings of ICSE ’04. IEEE.

[8] Paul Duvall, Steve Matyas, and Andrew Glover.
Continuous Integration: Improving Software Quality
and Reducing Risk. Addison-Wesley Professional, first
edition, 2007.

[9] Sebastian Elbaum, Alexey G. Malishevsky, and Gregg
Rothermel. Prioritizing test cases for regression testing.
SIGSOFT Softw. Eng. Notes, 25(5):102–112, August
2000.

[10] Shi Han, Yingnong Dang, Song Ge, Dongmei Zhang,
and Tao Xie. Performance debugging in the large via
mining millions of stack traces. In Proceedings of ICSE
2012.

[11] Christoph Heger, Jens Happe, and Roozbeh Farahbod.
Automated root cause isolation of performance
regressions during software development. In Proceedings
of ICPE ’13.

[12] Peng Huang, Xiao Ma, Dongcai Shen, and Yuanyuan
Zhou. Performance regression testing target
prioritization via performance risk analysis. In
Proceedings of ICSE ’14.

[13] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel
Scherpelz, and Shan Lu. Understanding and detecting
real-world performance bugs. SIGPLAN Not.,
47(6):77–88, June 2012.

[14] Jung-Min Kim and Adam Porter. A history-based test
prioritization technique for regression testing in
resource constrained environments. In Proceedings of
ICSE ’02.

[15] M M. Lehman, J F. Ramil, P D. Wernick, D E. Perry,
and W M. Turski. Metrics and laws of software
evolution - the nineties view. In Proceedings of the 4th
International Symposium on Software Metrics,
METRICS ’97, pages 20–32. IEEE Computer Society.

[16] Zheng Li, M. Harman, and R.M. Hierons. Search
algorithms for regression test case prioritization. IEEE
Transactions on Software Engineering, 33(4):225–237,
April 2007.

[17] Nazim H. Madhavji, Juan Fernandez-Ramil, and
Dewayne E. Perry. Software Evolution and Feedback:
Theory and Practice. Wiley, Chichester, UK, 2006.

[18] H. Malik, Zhen Ming Jiang, B. Adams, A.E. Hassan,
P. Flora, and G. Hamann. Automatic comparison of
load tests to support the performance analysis of large
enterprise systems. In 14th European Conference on
Software Maintenance and Reengineering (CSMR),
2010.

[19] D. Maplesden, E. Tempero, J. Hosking, and J.C.
Grundy. Performance analysis for object-oriented
software: A systematic mapping. IEEE Transactions
on Software Engineering, 41(7):691–710, July 2015.

[20] Ian Molyneaux. The Art of Application Performance
Testing: Help for Programmers and Quality Assurance.
O’Reilly Media, Inc., 1st edition, 2009.

[21] Thanh H. D. Nguyen, Meiyappan Nagappan, Ahmed E.
Hassan, Mohamed Nasser, and Parminder Flora. An
industrial case study of automatically identifying
performance regression-causes. In Proceedings of MSR
’14.

[22] Thanh H.D. Nguyen, Bram Adams, Zhen Ming Jiang,
Ahmed E. Hassan, Mohamed Nasser, and Parminder
Flora. Automated detection of performance regressions
using statistical process control techniques. In
Proceedings of ICPE ’12.

[23] Adrian Nistor, Tian Jiang, and Lin Tan. Discovering,
reporting, and fixing performance bugs. In Proceedings
of MSR ’13.

[24] Adrian Nistor, Linhai Song, Darko Marinov, and Shan
Lu. Toddler: Detecting performance problems via
similar memory-access patterns. In Proceedings of ICSE
’13.

[25] G. Rothermel, R.H. Untch, Chengyun Chu, and M.J.
Harrold. Test case prioritization: an empirical study. In
Proceedings of ICSM ’99.

[26] Wei Shang, Ahmed E. Hassan, Mohamed Nasser, and
Parminder Flora. Automated detection of performance
regressions using regression models on clustered
performance counters. In Proceedings of ICPE ’15.

[27] Du Shen, Qi Luo, Denys Poshyvanyk, and Mark
Grechanik. Automating performance bottleneck
detection using search-based application profiling. In
Proceedings of ISSTA ’15.

[28] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl,
Niklas Holsti, Stephan Thesing, David Whalley,
Guillem Bernat, Christian Ferdinand, Reinhold
Heckmann, Tulika Mitra, Frank Mueller, Isabelle
Puaut, Peter Puschner, Jan Staschulat, and Per
Stenström. The worst-case execution-time problem;
overview of methods and survey of tools. ACM Trans.
Embed. Comput. Syst., 7(3):36:1–36:53, May 2008.

[29] Claes Wohlin, Per Runeson, Martin Höst, Magnus C.
Ohlsson, Björn Regnell, and Anders Wesslén.
Experimentation in Software Engineering. Kluwer
Academic Publishers, 2000.

[30] Shahed Zaman, Bram Adams, and Ahmed E. Hassan.
A qualitative study on performance bugs. In
Proceedings of MSR ’12.

[31] Hao Zhong, Lu Zhang, and Hong Mei. An experimental
comparison of four test suite reduction techniques. In

Proceedings of ICSE ’06.

	Introduction
	Experimental Setup
	Project under Study
	Source Code Changes
	Benchmarks

	Understanding Performance Variations of Modified Methods
	Performance Variations of Modified Methods
	Understanding the Root of Performance Regressions
	Categorizing Source Code Changes That Affect Method Performance
	Triggering a Performance Variation

	Horizontal Profiling
	LITO: A Horizontal Profiler
	Evaluation

	Threats to Validity
	Related Work
	Conclusion
	Acknowledgments
	References

