
Building a Bot for Automatic Expert Retrieval on Discord
Ignacio Nuñez Norambuena

ISCLab, Department of Computer Science (DCC),
University of Chile

inunezn@fen.uchile.cl

Alexandre Bergel
ISCLab, Department of Computer Science (DCC),

University of Chile
abergel@dcc.uchile.cl

ABSTRACT
It is common for software practitioners to look for experts on on-
line chat platforms, such as Discord. However, finding them is a
complex activity that requires a deep knowledge of the open source
community. As a consequence, newcomers and casual participants
may not be able to adequately find experts willing to discuss a
particular topic.

Our paper describes a bot that provides a ranked list of Discord
users that are experts in a particular set of topics. Our bot uses
simple heuristics to model expertise, such as a word occurrence
table and word embeddings. Our bot shows that at least half of the
retrieved users are indeed experts.

CCS CONCEPTS
• Information systems→Expert search; •Computingmethod-
ologies→ Information extraction; • Software and its engineer-
ing → Open source model.

KEYWORDS
Bot, Discord, Software, Word Embeddings, Expert Retrieval Sys-
tems.

ACM Reference Format:
Ignacio Nuñez Norambuena and Alexandre Bergel. 2021. Building a Bot for
Automatic Expert Retrieval on Discord. In Proceedings of the 5th International
Workshop on Machine Learning Techniques for Software Quality Evolution
(MaLTESQuE ’21), August 23, 2021, Athens, Greece. ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/3472674.3473982

1 INTRODUCTION
Identifying expertise within the members of an organization is im-
portant and can be crucial when building an agile team in software
development [11]. This is especially true in presence of multiple
online and continuous communication channels.

One popular way to get in contact with experts is to use an
online chat platform. Discord is a digital platform structured in
terms of communities, typically called “servers”, created by users.
Members of these communities can interact through text, voice,
and video channels. Discord is now highly popular and it has more
than 150 million monthly active users [5].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MaLTESQuE ’21, August 23, 2021, Athens, Greece
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8625-8/21/08. . . $15.00
https://doi.org/10.1145/3472674.3473982

Discord does not naturally propose or enforce a structure in
the way interaction happens among users. Discord users can write
and share documents in an unconstrained fashion. To use some
particular actions, such as information finding, bots are becoming
very popular [7].
Expert retrieval. Finding experts in online open-source communi-
ties is beneficial to guide new members and indicate them who is
the right person to ask questions or discuss a particular topic [3].
This effort is particularly relevant in the presence of a large volume
of communications.

One of the main characteristics of expert retrieval systems is to
analyze a large dataset and retrieve a rank of people sorted by their
level of expertise, itself based on arbitrary criteria. Our effort can
be classified as expert finding in social networks [1] since our data is
made of messages collected from an online platform.

Expert retrieval is a broad area in which two types of retrieval
systems may be distinguished: expert finding systems and expert
profiling systems. The first one is about searching for a person with
some level of expertise for a given topic, while the second one is
about retrieving a list of topics in which a person is considered an
expert [1]. Our work focuses on expert finding, but because of the
close relation between these two kinds of systems, we expect our
result to be also useful for expert profiling.
Word embedding. It is often difficult to relate questions raised by
users to the profiles of other people. To tackle this problemword em-
beddings are a valuable resource to associate terms according to its
meaning since words are modeled as a vector in a high-dimensional
space and it is possible to calculate how close or far away they are
on it.

The advantage of word embedding is that it is self-supervised,
as such, there is no need to have tagged data to train models and
it learns the word meanings from their distributions in textual
documents [6].
ExpertFinder. We have designed a bot called ExpertFinder for Dis-
cord servers that helps users to identify experts for a particular
topic. The notion of expertise is based on the frequency of some
words in affirmative sentence. For example, if a user is using the
word seaside (a popular web framework library) in several sen-
tences that are not questions (i.e., it does not contain a question
mark), then the user is assumed to be an expert in seaside.

Any users can query ExpertFinder with a given list of words
– supposedly relevant topics of interest. ExpertFinder privately
replies to the user with the list of experts according to the number
of occurrences each expert mentioned.

We have conducted a preliminary evaluation of ExpertFinder, in
particular to evaluate the simple heuristics we have employed.
Paper outline. This paper is structured as follows. Section 2 gives a
brief overview of the work related to this paper. Section 3 explains

https://doi.org/10.1145/3472674.3473982
https://doi.org/10.1145/3472674.3473982

MaLTESQuE ’21, August 23, 2021, Athens, Greece Ignacio Nuñez Norambuena and Alexandre Bergel

how the bot was implemented. Section 4 talks about the methodol-
ogy followed to assess the results of the bot. The models defined for
expertise retrieval are shown in Section 5. Results are analyzed in
Section 6. The limitations of the approaches used in this work are
discussed in Section 7. Finally, Section 8 presents our conclusions
and future work.

2 RELATEDWORK
Several efforts have been made to develop expert retrieval systems
related to software mainly based on Communities of Question An-
swering (CQA) websites. For instance, Gharebagh et al. [4] uses
data from the popular website StackOverflow and makes an exper-
tise classification for each topic according to the accepted answers
users give to questions related to it.

On a different approach, Liu et al. [8] uses data from Sun fo-
rums (now Oracle forums) and Apple Discussions to create expertise
profiles based on a complex three-stage framework.

An important aspect highlighted in Niemann [9] is the duality of
expertise: the candidate has to be an expert and be considered one
by her/his community. To address this duality he proposes a model
that classifies the posts from CQA forums into dialogue acts to
determine the expertise of people based on the kind of interaction
that users have and term usage.

Canfora et al. [2] proposed a technique to find mentors from
analyzing a mailing list of a software project. Their work highlights
the importance of mentors having “good instruct attitude” which
sometimes is not held by the people who know the most about a
topic. ExpertFinder Bot also captures this characteristic because
counting term frequency is also a measure of the number of inter-
actions a person has had, which in most cases consists of resolving
questions to other members of the community. However, on one
hand, the bot is an effort to take advantage of new platforms like
Discord that have became frequently used for software develop-
ment and, in the other hand, the bot is an attempt to create a tool
as simple as it can be by not depending on any other source and
applying a simple algorithm to retrieve experts.

A similar work by Cerezo et al. [3] builds a discord bot for expert
retrieval based on sentence classification using a term frequency-
inverse document frequency technique. It also highlights the im-
portance of considering the “uncanny valley” effect when thinking
about the interaction between the bot and the user.

The last decade has resulted in tremendous progresses in Natural
Language Processing (NLP) and in many applications. Rampisela
et al. [10] make an attempt to classify expertise in an academia
context by using word embeddings in a very similar way to what
is done in this work. According to the authors, this method has a
performance comparable to standard expert retrieval models.

Despite the fact expert finding systems is a well studied problem,
new platforms like Discord have very different characteristics. This
work proposes an easy-to-implement alternative to take advantage
of the information present in online communities that can be useful
to identify expertise.

3 BOT FOR EXPERT RETRIEVAL
We have built ExpertFinder, a bot for Discord to help a user finding
some experts for a given set of topics. ExpertFinder is implemented

in Python, using the discord.py API. This section highlights some
of the decisions we have taken when designing ExpertFinder.
Data acquisition.When deployed, ExpertFinder scans the Discord
server it is installed on and fetches all historical messages, and so,
for all the channels of the server. Fetching historical messages can
also be carried out in an incremental fashion, up to the last message
recorded by the previous fetch.

Each fetched message has information about (i) the content (ii)
the Discord ID of the author (iii) the channel ID where the message
was sent through and (iv) the date and time the message was sent.
From this information it is also possible to determine the Discord
username and nickname of the author.
Preprocessing. After the data of the server is collected, our bot
cleans the data by removing stop words and URLs since these
components of messages do not directly contribute to the task of
expert finding.

The goal of our bot is to identify potential experts for a number
of keywords. Our preprocessing cleaning phase removes questions
since it is unlikely that a user asking a question can be considered
an expert. Users who answer this question are more likely to have a
greater level of expertise than the asking person. As such, we clean
out questions since focusing on affirmative statements are more
likely to contribute to increasing a level of expertise in our model.

Our bot removes content of a message that precedes a question
mark. After a question mark, the remaining message content is used
to retrieve expertise retrieval. For instance if someone message was
"I don’t get what this method does. Can anyone help me? I couldn’t
find it in the documentation of that library", our bot just considers the
part after the question mark (“I couldn’t find it in the documentation
of that library”).
Retrieval. Once the chat content is cleaned, our model considers
each word as a potential topic of expertise. A pair (word, occurence)
is associated to its author in our expertise model. Our model is a
large map that associates authors to a list of words associated to
their frequencies. Roughly, our model knows what the words are
and their occurrences mentioned by each discord users. We filter
out words that are very seldom-used, i.e., our model ignores words
that arbitrarily appear less then three times in the whole history.

Moreover, they are ranked according to the number of times each
person used the concept on the history of messages in an affirmative
sentence. Some variations of this approach are developed and are
explained in Section 5.
Interaction design. There are essentially two ways for Discord
users to interact with ExpertFinder: either by sending a private
message to it (the very same way as sending a private message
to any other user), or by sending a public message in a channel.
In both cases, the instructions must be preceded with a particular
prefix to let the bot identify messages for it.

A query is simply formulated by a Discord user as »expert
[topics], where [topics] is a place holder for one or more topics,
i.e., words.

Once a valid query is made by a user the bot processes it and
retrieves the top-five users having the most mentions of the topic.
The number of results shown by the bot is limited to a maximum
of 5, even when the complete list of people could be larger. It was

Building a Bot for Automatic Expert Retrieval on Discord MaLTESQuE ’21, August 23, 2021, Athens, Greece

set to that number because it allows one to have several options
to contact to and it is not too large to be visually and practically
inappropriate for a text conversation.

The rank retrieved by the bot includes the Discord nickname,
username, number of mentions of the concept and the status of the
user at the moment the query was made (offline, idle or online).
There is an example of this in Figure 1.

Figure 1: Example query and reply from ExpertFinder bot

ExpertFinder privately replies to the user who made a query in a
public channel. The goal is to avoid publicly sending automatically-
generated messages, which could be negatively perceived by the
community.

4 METHODOLOGY TO EVALUATE OUR
EXPERTFINDER BOT

As far as we are aware of, it is not common for Discord or Slack
communities to have bots that help identify experts. As such, no
methodologies have been proposed, as far as we know, to evaluate
the performance of a such a bot.

4.1 Pharo Discord server
We selected the Pharo Discord server to deploy ExpertFinder, mostly
because of the familiarity of the authors with this community. The
Pharo Discord server has 2,790 members and on average more than
100 messages have been sent since September 8, 2016. The Pharo
Discord server consists of 55 text channels that are grouped in
categories like New Users (mostly for beginners), Pharo (general
information and features about the Pharo programming language),
Libraries (for libraries-specific information), International (for non-
English conversations) and Intermittent (for event such as sprint,
job advertisement, and discussion about Google summer of code).

The Pharo community does not use bots on its Discord server. As
such, the community is probably unfamiliar with bot interacting.

4.2 Workflow
Step 1 - First release. An initial release of the bot is deployed in
the Pharo Discord server accompanied with a brief advertisement
made by the authors of this paper. After two weeks, 14 people had
in total 84 interactions with the bot. From them, 61 (73%) were valid
expert-finding queries and 39 were related to Pharo programming
language. Just 8 of them were queries with more than one word.

Help on how to interact with the bot is offered to Discord users
who initiate a conversation with ExpertFinder.

Step 2 - Benchmark elaboration.
In order to have a manageable number of queries for making the

evaluation, it was decided to choose just 10 of the 1-word queries
from the ones correctly formulated. There were preferred concepts
about different libraries across Pharo and frequently used along the
message history of this Discord community.

Meanwhile, all the 8 multiple-words queries were taking into
account. In Table 1 all the queries considered are displayed.

Table 1: Selected queries by category.

Category Selected Queries

1 - word Bloc, Calypso, Iceberg, Roassal, Seaside, Spec,
Spec2, VM, VR, Woden.

multiple
- words

Artificial Intelligence, Beta Arm64 VM,
Dynabook Smalltalk, Dynamic Library Windows,

Glamorous Toolkit, State Machine,
Dolphin Smalltalk, Headless VM.

Step 3 - Bot evaluation - Survey to experts. To assess the perfor-
mance of the heuristics we employed in ExpertFinder to identify
experts, we directly surveyed the 5 most ranked users about their
level of expertise for each of the 18 queries (Section 4.3).
Step 4 -Word embeddings. In order to improve the precision of the
results, a word embedding model was trained from scratch using
the complete message history of Pharo Server. It contains more
than 180,000 messages. The purpose of using a model based on
word embeddings is to exploit the cosine similarity of vectors to
identify topics that are considered as close.

4.3 Who is an expert?
One of the main difficulties we faced when building our expert
retrieval system was in determining whether the people listed by
the bot were indeed experts in the asked topic or not. This chal-
lenge arises from the lack of structured and multiple source of
informations about positions and expertise areas of the member of
an open-source community.

As a consequence, to evaluate the performance of our expert
finding system to designate a user as an expert, we rely on a self-
reported expertise of the user through two short and simple ques-
tions:

(1) Do you consider that you have some level of expertise in [topic]?
(2) Do you think you are capable of contributing to solve some

problems related to [topic]?
These questions were asked through a private message by show-

ing one button for “yes” (a check mark icon) and one for “no” (an
“X” icon). The aim of doing this was to induce asked people to give
a binary answer.

In the remainder of this paper, users who answered affirmatively
both questions will be considered experts.

4.4 Measures
Following Balog et al. [1], the quality of the rankings given by the
expert finding system depends on the capability for our model to
list relevant experts for a given arbitrary topic. For that reason the

MaLTESQuE ’21, August 23, 2021, Athens, Greece Ignacio Nuñez Norambuena and Alexandre Bergel

recommendedmetrics to use in these cases are precisionmetrics like
Mean Average Precision, Precision@N, and Mean Reciprocal Rank.
Nevertheless, the first of those metrics would require knowing who
are all the experts on each query topic which is hard to achieve in
this context. Therefore it does not make sense to use it for truncated
lists of results.

Due to the format of the answer of the bot – this is, a short
list where the maximum number of results is 5 at most – it is
more suitable to have a precision measurement just over the results
the user received (i.e., the top 5 most ranked users). Therefore we
introduce the Query Precision (QP):

QP =
Number of correct results on the list

Length of the answers list
(1)

This definition is very close to the Precision@N measure, which
refers to the number of correct answers over the first N results,
where N is arbitrary. To some extent, QP is similar to Precision@N
with a value of N equal to the length of the list. In this case N is a
variable because it could be less than five in cases where the bot is
not capable of finding that number of users considered experts.

Another measure that is convenient for evaluating the bot is the
mean reciprocal rank, which corresponds to the inverse of the first
correct answer on the list:

RR =
1

Position of the first correct answer
(2)

For instance, consider that for a particular query ExpertFinder
identifies two users as supposedly being experts, in which the first-
ranked user is not an expert and the second-ranked is an expert.
The reciprocal rank would then be 1/2 = 0.5. This also implies that
in the cases where the top ranked result is correctly identified as
an expert, the value of RR is 1.

Note we do not consider metrics to measure recall since there is
no clear way on how to compute it in our scenario.

4.5 Surveying users
Our third step of the methodology is about surveying Discord users
reported as our expertise models for the 18 queries. Some of the
users did not answer the survey we sent them, and as such, we
associate a range for each of the two metrics (Query Precision and
Reciprocal Rank). We determine:

• the lower bound, which represents the worst scenario where
it is assumed that users who did not answer the survey are
not experts,

• the upper bound, which represents the most favorable cases
where non-respondents are experts.

For instance if for some query two persons did not declare their
expertise, two of them said they are experts and one answer nega-
tively, the QP range will be 0.4−0.8, because in the worst case there
were just two experts out of five and in the best scenario there were
four experts out of five in the list retrieved by the bot.

The Mean Query Precision (MQP) and Mean Reciprocal Rank
(MRR) range correspond to the average of the lower bound and the
average of the upper bound for each measure across all the queries.
These are the two metrics we consider to assess the performance
of ExpertFinder for each of the results of the benchmark.

Finally, we refer as the ground truth to the answers of the sur-
veyed users. Wewill use it to compare the different expertise models
we present in Section 5 by calculating the metrics introduced above.

4.6 Word Embeddings
We employ word embeddings to exploit the similarity between
words / topics. The model we trained has 200 dimensions and was
built using Python and the Gensim library. A direct application of
the Gensim library produces a model that associates words that
are close to each other using the cosine similarity measure. An
example of this is shown in Table 2, which lists all the words related
to the word “database” from a model trained using the history of
the Pharo Discord server.

For the purpose of this work, using word embeddings enables
us to consider related concepts when deciding whether a user is
expert or not. It appears to be very adequate technique to tackle
this problem since (i) the query input is just one concept but it
could have left out variations of it – e.g. shortening terms like “db”
and plural variations like “databases” or “dbs” – and (ii) it makes
sense that experts know and talk about close concepts and terms.
For instance, experts in databases probably dominate systems like
NoSQL and Postgres server.

Table 2: Most similar concepts to “database”

Concept Cosine
Similarity

’databases’ 0.74
’db’ 0.73
’relational’ 0.71
’nosql’ 0.71
’postgres’ 0.71
’migrations’ 0.7
’dbs’ 0.69

Another important feature is the aggregation of vectors into one.
It is especially relevant for queries containing more than one word
as input. Basic operations like the average generally work fine to
make a good representation of a multiple-word composed term.

In terms of efficiency, despite the fact using word embeddings
is equivalent in time to make several simple queries the bot still
replies to the user almost immediately.

5 EXPERTISE MODELS
A number of expertise models can be defined, considering the gran-
ularity of the occurrences and multiple topics. Queries with more
than one word as input are more complex compared to single-word
inputs. To address this difference the models used to determine the
expertise of the users can be divided into two categories.

5.1 1-word models
• Mentions: This model simply counts the number of times
users mention the word along their message history.

• Messages: It counts the number of messages the user has
sent that includes the word at least one time.

Building a Bot for Automatic Expert Retrieval on Discord MaLTESQuE ’21, August 23, 2021, Athens, Greece

• Messages using word embeddings: It does the same as
the previous model, but also counts the number of messages
users sent that include similar words according to the em-
beddings. Similar words are the first 10 words with a cosine
similarity greater than 0.6.

5.2 Multiple-words models
• History: It calculates the minimum between the mentions
of each word in the message history of the user.

• Same Message: It counts the number of messages sent by
the user that contain every word in the query.

• Consecutive: It counts the number of messages sent by the
user where the words are consecutive and in the order they
were typed in the query.

• SameMessageWE: Firstly, one vector is calculated to repre-
sent the whole query concept by simply averaging the vector
representation of each individual word. Secondly, it counts
the number of messages for each of the first ten words with
a cosine similarity greater than 0.6 and the word given in
the query. Finally, the ranking list is the sum – by user – of
the counters previously calculated.

6 RESULTS AND ANALYSIS
We run the expertise models given above and compare them against
the ground truth made of the answers from the surveyed Discord
users. Table 3 gives the results of the twometrics listed in Section 4.5.
We add the Av.N metric as the average number of experts returned
by the expertise model.

Table 3: Average value of measures across queries for differ-
ent models

Model MQP MRR Av.N

1-word
Mention 0.5 - 0.7 0.85 - 0.9 5
Message 0.5 - 0.7 0.85 - 0.9 5
Message WE 0.58 - 0.78 0.85 - 0.9 5

multiple
-words

History 0.46 - 0.66 0.73 - 0.79 3.8
Same Message 0.55 - 0.75 0.88 - 1 2.5
Consecutive 0.52 - 0.74 0.58 - 0.92 1.9
Same Msg WE 0.30 - 0.66 0.47 - 0.84 4.8

Firstly, it is worth noting that most of the models have a MQP
greater than 0.5 in the worst-case scenario. This means that on
average at least half of the users returned by ExpertFinder are
actually experts.

Secondly, in most of the models tried the top-ranked users are
indeed experts, which is observable with the high values of the
MRR column of the table. This indicates that a user that talks the
most about a certain topic is usually an expert for that topic. Based
on this, it is possible to deduce that a way to achieve a greater
precision is to take just the first-ranked users returned by the bot.

The best 1-word models are the message counter with word
embeddings to take into account related words. The higher level of
the lower bound – compared to the other models – represents some
false positives that appear in the rest of one-word specifications
are not considered when using word embeddings.

A different scenario may be observed when considering multiple-
words queries because the word embeddings approach seems to be
less accurate than the other models for this type of queries. This
could be explained by the greater number of results on average
it retrieves compared to the rest of the multiple-words models.
Because word embeddings consider a group of words, the list of
experts is naturally larger and can also lead to false positives that
are larger. Presumably, this problem is not present in 1-word models
due to the answers of the bot being large enough even when word
embeddings are not used.

Looking up the queries one by one it is possible to see that it
retrieves experts not considered by the other models, but paying
the price of more false positive cases.

7 DISCUSSION AND LIMITATIONS
Experts binary classification. The ranking created by the Ex-
pertFinder bot works better when it is applied to topics where the
number of times the concept appears is high. But the results are
not very accurate when that number is low enough. This seems
that has to do with the lack of a threshold that defines whether
someone is an expert or not. For instance, take the case where the
list is just made up by one name and the counter number is low. Is
this an expert or not? The ranking has proven to be a good relative
measure, but its weakness is in terms of absolute results.

Therefore the list is more like a relative-knowledge ranking and
when the list is large enough the probability of the top-5 users
are indeed experts increase. That could explain the good results in
the MRR measure, where most times, those on top of the list are
experts. This could also lead to a high self-perception of expertise
just because someone is the person who relatively knowmore about
the topic in the community.

Nevertheless the aim of this work is to give a reference to mem-
bers who can help and give guidance about a topic, and sometimes
it is not necessary to talk to a senior expert to have that. There
are also some mechanisms to avoid this, for example, showing a
confidence-level measure about the result has been delivered.
Message quantity bias. The algorithms used by the bot tend to
be sensitive to community members who send relatively more
messages. Moreover, word embedding methods seem to increase
the bias, since they consider a wide range of terms and therefore
even more messages.

On one hand, it is an advantage that the results include people
who interact more, because it is more likely they reply to a question
if they have some level of expertise in the topic. On the other hand
it may lead to wrong results.
Self-reported expertise. Expert status could have a different in-
terpretation among the candidates asked. A different and more
objective measure could be achieved. An example of this is the
number of years the user has been working on the topic or whether
it is used or developed in his main activity. The disadvantage of
this approach is that more complex questions can lead to less par-
ticipation on the survey.

MaLTESQuE ’21, August 23, 2021, Athens, Greece Ignacio Nuñez Norambuena and Alexandre Bergel

8 CONCLUSION AND FUTUREWORK
In this preliminary work, we have found two results. First, our
technique to automatically identify experts has a high precision
specially in the top-ranked positions. Second, word embeddings
seem to have a positive impact to find experts but it also leads to a
higher number of false positives.

The future work concerning to the evaluation has three main
dimensions:

i. Extensive dimension, which is referred to encourage more
people to use the bot and have more queries to evaluate their
precision – as the bot does not need anything more than
access to Discord messages, it is quite simple to use it in
other software development communities.

ii. Intensive dimension, which has to do with being able to
identify the level of expertise of the people retrieved by the
bot – e.g., using an Likert-type scale – that can give us more
information than the binary classification used in this work.

iii. The user experience dimension, by focusing on the ease of
use and how useful are the results retrieved by the bot from
the users point of view.

Regarding to the methods used, a possible path is to consider
classifying messages according to the act of speech or try to identify
some interaction patterns between people in order to distinguish
expert-to-expert conversations from expert-to-non expert or non
experts dialogues.

Finally, the word embedding approach showed improvement in
the performance of the expert finding system for some queries, but
gives more false positives in others. We believe the application of
this technique to this kind of problems could be enhanced in order
to keep just the positive side of it.

ACKNOWLEDGMENTS
We thank Lam Research and the ANID FONDECYT Regular 1200067
for partially sponsoring the work presented in this paper.

REFERENCES
[1] Krisztian Balog, Yi Fang, Maarten de Rijke, Pavel Serdyukov, and Luo Si. 2012.

Expertise Retrieval. Found. Trends Inf. Retr. 6, 2-3 (Feb. 2012), 127–256. https:
//doi.org/10.1561/1500000024

[2] Gerardo Canfora, Massimiliano Di Penta, Stefano Giannantonio, Rocco Oliveto,
and Sebastiano Panichella. 2013. YODA: Young and newcOmer Developer As-
sistant. In 2013 35th International Conference on Software Engineering (ICSE).
1331–1334. https://doi.org/10.1109/ICSE.2013.6606710

[3] Jhonny Cerezo, Juraj Kubelka, Romain Robbes, and Alexandre Bergel. 2019.
Building an Expert Recommender Chatbot. In 2019 IEEE/ACM 1st International
Workshop on Bots in Software Engineering (BotSE). 59–63. https://doi.org/10.1109/
BotSE.2019.00022

[4] Sajad Sotudeh Gharebagh, Peyman Rostami, and Mahmood Neshati. 2018. T-
Shaped Mining: A Novel Approach to Talent Finding for Agile Software Teams.
In Advances in Information Retrieval, Gabriella Pasi, Benjamin Piwowarski, Leif
Azzopardi, and Allan Hanbury (Eds.). Springer International Publishing, Cham,
411–423.

[5] Discord Inc. 2021. About us. https://www.discord.com/company
[6] Daniel Jurafsky and James H. Martin. 2020. Speech and Language Processing (3nd

Edition Draft). https://web.stanford.edu/~jurafsky/slp3/
[7] Carlene Lebeuf, Margaret-Anne Storey, and Alexey Zagalsky. 2018. Software

Bots. IEEE Software 35, 1 (2018), 18–23. https://doi.org/10.1109/MS.2017.4541027
[8] Xiaomo Liu, G. Wang, Aditya Johri, Mi Zhou, and Weiguo Fan. 2012. Harnessing

global expertise: A comparative study of expertise profiling methods for online
communities. Information Systems Frontiers 16 (09 2012).

[9] Michael Niemann. 2014. Finding expertise using online community dialogue and
the Duality of Expertise. In Proceedings of the Australasian Language Technology
Association Workshop 2014. Melbourne, Australia, 69–78. https://www.aclweb.
org/anthology/U14-1009

[10] Theresia V. Rampisela and Evi Yulianti. 2020. Academic Expert Finding in In-
donesia using Word Embedding and Document Embedding: A Case Study of
Fasilkom UI. In 2020 8th International Conference on Information and Communica-
tion Technology (ICoICT). 1–6. https://doi.org/10.1109/ICoICT49345.2020.9166249

[11] Peyman Rostami and Mahmood Neshati. 2019. T-shaped grouping: Expert finding
models to agile software teams retrieval. Expert Systems with Applications 118
(2019), 231–245. https://doi.org/10.1016/j.eswa.2018.10.015

https://doi.org/10.1561/1500000024
https://doi.org/10.1561/1500000024
https://doi.org/10.1109/ICSE.2013.6606710
https://doi.org/10.1109/BotSE.2019.00022
https://doi.org/10.1109/BotSE.2019.00022
https://www.discord.com/company
https://web.stanford.edu/~jurafsky/slp3/
https://doi.org/10.1109/MS.2017.4541027
https://www.aclweb.org/anthology/U14-1009
https://www.aclweb.org/anthology/U14-1009
https://doi.org/10.1109/ICoICT49345.2020.9166249
https://doi.org/10.1016/j.eswa.2018.10.015

	Abstract
	1 Introduction
	2 Related Work
	3 Bot for Expert Retrieval
	4 Methodology to Evaluate our ExpertFinder Bot
	4.1 Pharo Discord server
	4.2 Workflow
	4.3 Who is an expert?
	4.4 Measures
	4.5 Surveying users
	4.6 Word Embeddings

	5 Expertise Models
	5.1 1-word models
	5.2 Multiple-words models

	6 Results and Analysis
	7 Discussion and Limitations
	8 Conclusion and Future Work
	References

