
Toward a Platform for Visual Debugging

Rosario Molina, Alexandre Bergel
Pleiad Lab, DCC, University of Chile

1. Introduction
Debugging is essential in any software engineering activity.
Programming environments are often shipped with (at least)
one debugger to assist practicers identifying and addressing
execution anomalies [1].

Traditional debuggers communicate the interrupted ap-
plication state to a practicer by using three complementary
perspectives: the execution stack on which one may crawl
over the interrupted call flow, the source code of the selected
stack frame annotated with the current position under inter-
pretation, and the list of variables and their values for the
selected stack frame. It has been shown that the current set of
information provided by debugging tools is efficient to sup-
port non-trivial debugging tasks [2]. This paper sketches out
Visual Debugger, a debugging framework that augments the
traditional debugger with a visual and dynamic representation
of the program internal state.

This short paper illustrates the core of visual debugger
supported by the incremental construction of a debugger
to keep track of side effect. Visual debugger is built on
top of the Moldable Debugger, a framework for developing
domain-specific debuggers [3] and the Roassal visualization
engine [4].

2. Visual Debugger
Visual debugger is a simple instantiation of the Moldable
debugger framework, implemented in Pharo1. Our visual
debugger is composed of two classes:

• VSDDebugSession represents the model behind a visual
debugger. Debugging operations (e.g., step-into, step-over,
restart) are modeled as messages received by a debug
session. The responsibility of this class is to (i) create and

1 http://pharo.org

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
, .
Copyright © 2014 ACM . . . $15.00.
http://dx.doi.org/10.1145/Reprinted from , [Unknown Proceedings], , pp. 1–3.

properly initialize the Roassal view and (ii) to offer the
logic of the debugging operations.

• AbstractVisualStackDebugger contains the logical struc-
ture of the debugger graphical user interface.

The visual debugger framework is instantiated by sub-
classing these two classes. The code is distributed under the
MIT license and is available on http://smalltalkhub.com/#

!/~RosarioM/VisualStackDebugger.

3. Step-by-step example
3.1 Framework instantiation
We will illustrate the visual debugger to visually represent
side effects when performing a debugging operation. The
example will visually highlight side effect occurring on the
currently object for which code is stepped over. First, the two
classes have to be subclassed:
AbstractVisualStackDebugger subclass: #VSDSideEffectDebugger

VSDDebugSession subclass: #VSDSideEffectDebugSession
instanceVariableNames: 'backgroundElements objectsAndValues'

The class VSDSideEffectDebugSession contains two vari-
ables:

• backgroundElements will contains the roassal elements that
are currently visible. Keeping this list is useful to perform
a layout at each debugging operation.

• objectsAndValues is a hash table that contains a snapshot
of each object the application control flow is going through
within the debugger. The snapshot is simply the set of
instance variable values. A key is an object and the value
is the values of each instance variables. This hash table is
relevant to monitor side effects.

The variable initialization is simply carried out in the
initialize method:
VSDSideEffectDebugSession >> initialize

super initialize.
objectsAndValues := Dictionary new.
backgroundElements := OrderedCollection new.

Subsequently, the two classes have to be hooked to-
gether and registered to be globally accessible. We then
define the following three methods on the class side of
VSDSideEffectDebugger:

1

http://pharo.org

VSDSideEffectDebugger class >> defaultTitle
”Title of the debugger”
ˆ 'Side Effect Visual Debugger (example)'

VSDSideEffectDebugger class >> initialize
”Make sure the debugger is accessible”
self register

VSDSideEffectDebugger class >> sessionClass
”Link the debugger to the session”
ˆ VSDSideEffectDebugSession

Figure 1: Accessing the side effect debugger

At that stage, our debugger is accessible within the default
debugger as illustrated in Figure 1. Our debugger is accessible
from a standard debugger.

3.2 Rendering the debugging session
A debug session class defines a number of methods represent-
ing debugging operations. Operations that are frequently used
are stepInto:, stepOver:, and stepThrough:. These operations
may be specialized to deal with visual elements by overriding
them. In our situation, we will simply capture the step-over
actions by overriding stepOver:. Each time the user will press
the corresponding button in the debugger UI, the method will
be invoked:

VSDSideEffectDebugSession >> stepOver: aContext
”Executed whenever the user press the step over button”
| currentObject variables valueAssocs shape variableElements

backgroundElement |
super stepOver: aContext.

currentObject := aContext receiver.
variables := currentObject class instVarNames.
valueAssocs := variables collect: [:varName |

varName −> (currentObject instVarNamed: varName)].
objectsAndValues

at: currentObject ifAbsentPut: [valueAssocs asDictionary].
...

The argument of stepOver: is a an instance of the Context

class, classes part of the Pharo runtime. The variable

currentObject is the object receiver of the last message sent.
We will therefore keep track of the modification of the cur-
rent object. Variable names of the current object are kept
in variables, and their values are in valueAssocs. For exam-
ple, if the current object is the point 2 @ 3, then the variable
valueAssocs contains the value {'x' -> 2 . 'y' -> 3}.

The instance variable objectsAndValues contains a dictio-
nary to keep a snapshot for all objects on which a step-over
is executed on.

The remaining of the stepOver: method creates the visual
representation of an instance variable:

...
shape := RTBox new

size: 5;
color: [:assoc | (((objectsAndValues at: currentObject) at:
assoc key) ˜˜

(valueAssocs asDictionary at: assoc key))
ifTrue: [Color red] ifFalse: [Color gray]].

...

RTBox is a Roassal class that describes a colored box large
of 5 pixels. Each box indicates a variable. The red color means
that the variable has been modified ofter having performed the
step over. A gray box indicates that the represented variable
is unmodified.

The following code creates visual elements for the vari-
ables and the encapsulating element for the current object.

...
variableElements := shape elementsOn: valueAssocs.
backgroundElement := RTBox elementOn: currentObject.

RTGridLayout on: variableElements.

view add: backgroundElement.
view addAll: variableElements.

variableElements @ RTPopup.
backgroundElement @ RTPopup.

RTNest new
on: backgroundElement nest: variableElements.

backgroundElement @ RTDraggable.
backgroundElements add: backgroundElement.

RTGridLayout on: backgroundElements.

objectsAndValues at: currentObject put: valueAssocs
asDictionary.

view signalUpdate

3.3 Illustration
Figure 2 gives the example of a debugging session using
the visual debugger. The figure has been obtained by tracing
the expression Compiler evaluate: '10 + 20'. Ten step-over
operations have been performed, as indicated by the number
of visual elements in the debugger. The class Compiler defines
9 instance variables, represented by the inner boxes. The
method for which the visualization has been obtained is:

2

Figure 2: Debugging session

1 Compiler >> evaluate: textOrStream in: aContext to: aReceiver
notifying: aRequestor ifFail: failBlock logged: logFlag

2 | methodNode method value toLog itsSelection
itsSelectionString |

3 class := aContext == nil ifTrue: [aReceiver class] ifFalse: [
aContext method methodClass].

4 self from: textOrStream class: class context: aContext notifying:
aRequestor.

5 ...

Line 3 contains an assignment on the variable class, as
indicated by the red box, contained in the third large box
(Figure 2). A tooltip, obtained by putting the mouse above the
variable, indicates the new value of class. Line 4, containing
the call of from:class:context:notifying:, is represented by
the fourth box.

Evaluating the expression 10 + 20 performs three side
effects on the object instance of Compiler. Without out side
effect debugger, such information would not be easy to obtain.

4. Future Work
Code execution debuggers have seen little improvement in
the way they communicate and interact with the user. This
extended abstract informally illustrates Visual Debugger,
a framework being developed to enable a new range of
code execution profilers augmented with interactive visual
rendering. Our future work includes a debugger that illustrate
interaction of objects.

References
[1] A. Zeller, Why Programs Fail: A Guide to Systematic Debug-

ging, Morgan Kaufmann, 2005.

[2] J. Sillito, G. C. Murphy, K. De Volder, Questions pro-
grammers ask during software evolution tasks, in: Pro-
ceedings of the 14th ACM SIGSOFT international sympo-
sium on Foundations of software engineering, SIGSOFT
’06/FSE-14, ACM, New York, NY, USA, 2006, pp. 23–34.
doi:10.1145/1181775.1181779.
URL http://people.cs.ubc.ca/~murphy/papers/

other/asking-answering-fse06.pdf

[3] A. Chiş, T. Gı̂rba, O. Nierstrasz, The Moldable Debugger:
A framework for developing domain-specific debuggers, in:
B. Combemale, D. Pearce, O. Barais, J. J. Vinju (Eds.), Software
Language Engineering, Vol. 8706 of Lecture Notes in Computer
Science, Springer International Publishing, 2014, pp. 102–121.
doi:10.1007/978-3-319-11245-9_6.
URL http://scg.unibe.ch/archive/papers/

Chis14b-MoldableDebugger.pdf

[4] A. Bergel, D. Cassou, S. Ducasse, J. Laval, Deep Into Pharo,
Square Bracket Associates, 2013.
URL http://rmod.lille.inria.fr/pbe2/

3

http://people.cs.ubc.ca/~murphy/papers/other/asking-answering-fse06.pdf
http://people.cs.ubc.ca/~murphy/papers/other/asking-answering-fse06.pdf
http://dx.doi.org/10.1145/1181775.1181779
http://people.cs.ubc.ca/~murphy/papers/other/asking-answering-fse06.pdf
http://people.cs.ubc.ca/~murphy/papers/other/asking-answering-fse06.pdf
http://scg.unibe.ch/archive/papers/Chis14b-MoldableDebugger.pdf
http://scg.unibe.ch/archive/papers/Chis14b-MoldableDebugger.pdf
http://dx.doi.org/10.1007/978-3-319-11245-9_6
http://scg.unibe.ch/archive/papers/Chis14b-MoldableDebugger.pdf
http://scg.unibe.ch/archive/papers/Chis14b-MoldableDebugger.pdf
http://rmod.lille.inria.fr/pbe2/
http://rmod.lille.inria.fr/pbe2/

	Introduction
	Visual Debugger
	Step-by-step example
	Framework instantiation
	Rendering the debugging session
	Illustration

	Future Work

