
Deviation Testing: A Test Case Generation
Technique for GraphQL APIs

Daniela Meneses Vargas
Universidad Mayor de San Simón,

Bolivia

Alison Fernandez Blanco
DCC, Universidad de Chile

Andreina Cota Vidaurre
Semantics S.R.L., Cochabamba

Bolivia

Juan Pablo Sandoval Alcocer
Universidad Católica Boliviana

“San Pablo”, Regional Cochabamba,
Bolivia

Milton Mamani Torres
Object Profile SpA, Chile

Alexandre Bergel
DCC, Universidad de Chile

Stéphane Ducasse
RMOD, Inria-Lille Nord Europe, France

Abstract
GraphQL is a flexible and expressive query language. With
the objective to replace the flawed and inefficient REST
architectural style, GraphQL has been adopted by numerous
online APIs and services. Despite its popularity, testing the
implementation of a GraphQL schema is a crucial and still
an open problem.

We found that classical techniques of test generation may
be efficiently applied to GraphQL server. We propose a
simple but expressive technique called deviation testing that
automatically searches for anomalies in the way a schema is
served. We demonstrate the feasibility of our approach using
an implementation of GraphQL for Pharo and VisualWorks.
Running our technique on the popular Yelp and Apollo
GraphQL server uncovered several anomalies in the way
the schema is served.

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction
GraphQL is a query language for APIs and a runtime to
resolve queries formulated in this language1. GraphQL pro-
vides a complete description of the data in an API in terms of
types and fields. This description allows a GraphQL client to
request the exact information that it needs in a single request.
GraphQL uses these types to ensure that clients only ask for
what is possible, providing clear and helpful errors.

Since the GraphQL public release, numerous software
systems and programming languages have implemented
GraphQL clients and server-side runtimes for resolving
queries. These implementations, like any software program,
may be subject to functional and performance issues. As
far as we know, little effort has been done to improve the
reliability of GraphQL servers.

In this paper, we propose Deviation Testing, a technique
that measures the difference between a test case and its au-
tomatic generated variations, which we call deviations. Our
technique takes an existing test case as input and automati-
cally generates variations of this test case by using a set of
deviation rules. As a result, deviation testing reports if the
variations of the original test case meets or exceeds an accep-
tance criteria. The goal of Deviation Testing is to increase test
coverage and help developers to find potential bugs in their
GraphQL implementations and APIs.

1 https://graphql.org

1 2018/8/19

Our technique is inspired from mutation testing [13, 2]
and amplification testing [1]. While mutation testing applies
mutation operators to the system under test as a means to
measure the strength of a test suite, deviation testing applies
deviations (an equivalent of mutation operators) to generate
new tests from existing ones as a means to measure the
robustness of the API. We present a case study to show
evidence of the applicability of our approach in different
GraphQL APIs services.

The rest of this paper is structured as follows. Section 2
describes our implementation GraphQL for Pharo and Visu-
alWorks. Section 3 details our approach, deviation testing.
Section 4 lists the different deviation operators we employed
to generate deviated tests. Section 5 gives an overview of our
implementation. Section 6 illustrates our technique with two
case studies. Section 7 briefly presents the work related to
our effort. Section 9 concludes and outlines our future work.

2. SGraphQL in a Nutshell
This section gives a high-level description of SGraphQL, our
implementation of GraphQL for Pharo2 and VisualWorks, for
illustration purpose.

2.1 Schemas and Types
The query language provides its own schema definition
language. This schema allows developers to specify the fields
and data types that are involved in queries. For instance,
consider the following schema definition:

type Query{
allProjects:[Project]
project(name: String!): Project

}
type Project{

versions: [Version]
name: String!

}
type Version{

number: Double
author: String
message: String

}

The schema defines three types Query, Project, and
Version. Where the type Version has three fields: number,
author and message, with types Double, String and String

respectively. Double and String are scalar types already
defined in SGraphQL.

The type Project has the fields versions and name. The
versions field has the type [Version]. In this case, brackets
([]) are used to represent a list, therefore [Version] refers
to a list of versions. The field name has a type String!, the
symbol ! means that this field cannot be null. The type Query

contains all the fields that are used as entry-points. We further
describe the usefulness of this type in the next section.

2 http://pharo.org/

2.2 Basic Queries

Fields. Fields defined in a type (e.g., Query), represent
the classical REST endpoints. The endpoint may be called
directly from the client side. For instance, consider the
following query:

{
 allProjects{
 name
 versions{
 number
 author
 message
 }
 }
}

{
 “data”:[
 {
 “name”: “Roassal”,
 “versions”: [
 {
 number: 1.0,
 author: “Alexandre”
 message: “Sparklines”
 },
 {
 number: 1.1,
 author: “Milton”
 message: “Fixing bug #345”
 }
]
 },
 “name”: “Spy2”,

Query Result

The query requests all the information of allProjects

from the server. Note that, according to the schema defined
in the previous section, it returns a list of project objects and
the information of the respective fields.
Field Selection. A query specifies which objects fields are
required. For instance, consider the following query:

{
 allProjects{
 name
 }
}

{
 “data”:[
 {
 “name”: “Roassal”
 },
 {
 “name”: “Spy2”
 },
 {
 “name”: “GraphQL”
 }
]
}

Query Result

Similar to previous example, it also requests allProjects.
However in this case, the query specifies the fields that should
be returned of each project object. In this particular example,
it request only the name field.
Arguments. A query may also accept arguments. For exam-
ple, consider the following query:

{
 project(name:”Spy2”){
 versions{
 number
 }
 }
}

{
 “data”:{
 “versions”: [
 {
 number=3.0
 },
 {
 number=3.1
 }
]
 }
}Query Result

The query uses the endpoint project(name:String) and
sends the value "Spy2" as argument. As a result, the server
returns only the information of the project Spy2. In addition,
the query specifies that only the field number of the versions
objects has to be returned. Note that the field name of the
project "Spy2" is not in the result, since it was not specified.

2 2018/8/19

2.3 Resolvers
In addition to the schema definition and queries, it is nec-
essary to specify how the server will interpret and resolve
a request. In our example, we need to specify how the
server will handle the endpoints allProjects and project(

name:String). In this subsection, we describe how to imple-
ment the resolvers in Pharo smalltalk [3].
Schema Types. In SGraphQL, all the types must exist as a
class in the image, which is a precondition to safely handle
client requests. Therefore, in our example, we should have
three classes: Query, Project and Version. For each field
in the schema definition a method has to be defined in its
corresponding class.
The Query Class. All the fields in the type Query are the
entry points. Therefore, the class Query should have methods
that correspond to that fields. In our example, we use the
following method implementation for allProjects field:

Query>>allProjects
”Return a list of the instances of the class Project”
ˆ ...

Field names are directly mapped to the method names. In
the case of arguments, argument names are mapped to the
selector parts of the method name. The following method
implementation is for the field project:(name:String):

Query>>projectName: aString
ˆ self allProjects detect: [:project | project name = aString]

3. Deviation Testing
Definition. We define deviation testing as a technique that
measures the difference between a test case and its automatic
generated variations (deviations). The goal of deviation test-
ing is to increase the test coverage and help developers to find
potential bugs in their GraphQL implementations.

The deviation test result reports if the variations of the
original test case meets or exceeds an acceptance criteria.
Deviation Testing workflow. Figure 1 illustrates the deviation
testing workflow. The deviation testing process is summarized
in four steps.

• Step 1: Input – Deviation testing takes a test case as input.
The test case is used as a seed for the automatic generation
and used as the base for the acceptance criteria.

• Step 2: Test Case Variations – Generate small and con-
trolled variations based on the input test case, we refer
to these small variations as deviations. These variations
are obtained by applying deviation rules on the original
query. Deviation rules must consider two aspects: first,
how the original test case will change, and second, how
this change will affect the original test result.

• Step 3: Test Case Execution – Execute the initial test case
and its variations.

a Test Case

Test
Result

Test Case
Execution

Deviation
Rules

Test Case
Executions

Test
Results

1: Input

2: Test Case
 Variations

Test Case
Variations

3: Test Case
 Execution

4: Deviation
 Testing comparison

Original Test Case Test Case Variations

Figure 1: Deviation Testing Workflow

• Step 4: Deviation Testing – Measure and compare the
difference of the results between the initial test case and
its variations. The comparison should determine if the
variations of the original test case met or exceeds an
acceptance criteria, based on the deviation rules.

4. GraphQL & Deviation Testing
In this section, we propose the application of Deviation
Testing to improve the test suite of GraphQL APIs.

4.1 Fields Deviation

Query Deviation. The Field deviation rule generates new
queries by adding and deleting fields from the original query.
By using the GraphQL schema, we are able to generate
all the possible field deviations from the original query.
Therefore, this deviation rule may generate a large number of
query deviations. For instance, consider the following query
deviation, where the field name is deleted from the original
query.

{
project(name:"Spy2"){

name
versions{

number
}

}
}

{
project(name:"Spy2"){

versions{
number

}
}

}

Original Query

Deviation 1

{
project(name:"Spy2"){

versions{
number

 author
}

}
} Deviation 2

{
project(name:"Spy2"){

versions{
number

 author
 message

}
}

} Deviation n

…

3 2018/8/19

Expected Result. This deviation expects that the result of
the deviated query is a subset of the result of the original
query. In the previous example, the result of the deviated
query should be the same than the original except that the
project should not have the name in the result. In the case of a
field addition, we have to check if the objects resulting from
the query include the added fields.
Assumption. This rule assumes that the result of the original
query is not an error and that the field project(name:"Spy2

") returns an object. If the original query does not meet this
assumption then this rule cannot be applied.

4.2 Not Null Deviation

Query Deviation. The Not Null Deviation rule replaces a
declared not null argument with null. The GraphQL schema,
has the information of which arguments cannot be null.
Therefore, this deviation may generate an error by sending a
null argument. For instance, consider the following deviation:

{
project(name:"Spy2"){

name
versions{

number
}

}
}

{
project(name:null){

 name
versions{

number
}

}
}

Original Query Deviation

Expected Result. It is expected that the result of the deviated
query is an error. GraphQL defines a standard way to report
this type of error, therefore we expect an error that meets the
standard as answer.
Assumption. This rule assumes that the original query does
not throw any error, particularly not an error related with null
arguments. Otherwise, we could not have a strong conclusion
about the deviation.

4.3 Type Deviation

Query Deviation. The Type Deviation rule replaces an argu-
ment with another one that does not match with the expected
argument type. It is possible because the GraphQL schema
contains the type of all the field arguments. For instance, con-
sider the following deviation where a String argument has
been replaced by an Int argument.

{
project(name:"Spy2"){

name
versions{

number
}

}
}

{
project(name:1){

 name
versions{

number
}

}
}

Original Query Deviation

Expected Result. The deviated query should return a type
error. Similarly, to the previous rule, we expect an error like
answer.
Assumption. The original query does not return an type error.

4.4 Empty Fields Deviation

Query Deviation. The Empty Fields Deviation rule deletes
all the fields and subfields from the query. We need to
consider that a field may be an object that also contains
fields (subfields). This rule generates a number deviations,
depending of the number of objects in the query. For instance,
consider the following query has two possible deviations.

{
project(name:"Spy2"){

name
versions{

number
}

}
}

{
project(name:”Spy2”){
}

}

Original Query

Deviation 1

{
project(name:”Spy2”){

 name
 versions{
 }
 }
} Deviation 2

Expected Result. In GraphQL an object without fields may
no be requested. Therefore, anyone of the deviations should
result in a syntax error.
Assumption. This rule assumes that the original query does
not throw a syntax error. Otherwise, we could not have any
conclusion about the result of the deviated query.

5. Implementation
We created a prototype of deviation testing using the previous
four rules described above. Our prototype presents different
parts as shown in Figure 2. This section describes these parts.
Server Url. We provide a little text area marked as 1 in
Figure 2. This text area must contain the url of the selected
server to be evaluated.
Initial Query. We give a text area marked as 2 in Figure 2.
This text area must contain the initial query with the condi-
tions described on the previous section.
Query Result. Marked as 3 in Figure 2 we have a text area
with the response of the selected server to the initial query
and the time of response on milliseconds.
Buttons. Below the Query Result we have a set of buttons
marked as 4 in Figure 2. Each button has a particular associ-
ated action:

• Re Run Test Cases. This button is only useful when are
test cases previously generated to run them again.

• Start Testing. This button generates tests using the de-
viation testing, given the selected server and the initial
query.

• Test Connection. This button simply verifies that the server
is still active and able to receive incoming requests.

4 2018/8/19

1

2

3

5

4

Figure 2: Prototype of deviation testing

Results. This section shows all the tests generated with devi-
ation testing. At the beginning we have general information:
the total number of test generated, the number of test success-
ful, the number of test failed and the total response time of
the server in milliseconds.

Also just below the general information we present a
simple filter to select passed tests and failed tests. After the
test generation, the list gives the test cases that are generated.
By default each test is compressed and shown as a simple
header. By clicking on the header, a generated test case is
expanded with the following information:

• Header. The header presents some information of the
test: the deviation rule used to generate the test case, the
number of tests, the state of the test and response time in
milliseconds of the server.
Also the header is colored depending on the result of the
test, green if is successful, otherwise red.

• Query. The new query sent to the server is shown on a text
area.

• Result. The response of the selected server to the new
query is shown on a text area.

Test Generation. First, our tool retrieves the schema defined
for the GraphAPI specified in the GraphQL Type System.
Then the test are generated using the initial query and the de-
viations rules. In the generation process, our tool attempts to
apply the deviation rules from the initial query. For instances,

the not null deviation rule will be applied in all the arguments
that are defined as not null in the schema. Therefore, the
number of tests generated by using this rules is related to the
number of not null arguments in the schema. The process is
similar of the remaining deviation rules.

To compress an expanded test case, just click on the header
of the test.

6. Case Studies
This section presents three cases studies, each one describes
the results of applying our deviation rules on a GraphQL
APIs.

6.1 Case 1: Smalltalk GraphQL Demo API
The Smalltalk GraphQL Demo API was designed to essen-
tially perform online demonstration, executes load and perfor-
mance tests during the development phase. We have designed
Demo API as part of SGraphQL.
Schema. The Smalltalk GraphQL Demo API has a relatively
small schema, given by the Smalltalk GraphQL developers
shown on the left side of Figure 3.

5 2018/8/19

{
allClasses{

name
methods{

selector
 }
 }

allRectangles{
origin{x y}
corner{x y}

}
allFilms{

name
rating
director{

name
age

 }
}
film(name:"terminator"){

 name
rating
director{

name
age

 }
}

}

type Query {
allClasses : [Class]
allRectangles : [Rectangle]
allFilms: [Film]
film(name:String!):Film

},
type Film {

name : String
rating : Int
director : Person

},
type Person {

name : String
age : Int

},
type Class {

name : String
methods : [CompiledMethod]

},
type CompiledMethod {

selector : String
},
type Rectangle {

origin : Point
corner : Point

},
type Point {

x : Float
y : Float

} Schema Initial Query

Figure 3: Schema and initial query for Smalltalk GraphQL

Initial Query. We use an initial seed query given on the right
hand of Figure 3. This seed query exercises our schema. This
initial query produces a JSON object and does not throw any
error during its execution.
Results. Applying the deviations rules results in the genera-
tion of 48 test cases. Which 38 test cases successfully pass
while 10 fail. A closer review reveals that the failing tests re-
lated to the deviation rules: Type Deviation and Empty Fields
Deviation. Running deviation testing on the Demo API re-
veals part of our server that is still under construction. This
punctual and small experiment illustrates the application of
test-driven development in our development process.

6.2 Case 2: Yelp API
Yelp3 is a well-known application to help user get recom-
mendations about different business. Typical usages of Yelp
includes requests about restaurants, medical assistance, or
cafes.
Schema. Yelp has a public GraphQL, therefore we got the
schema from the Yelp documentation shown in Figure 4.

3 https://www.yelp.com/developers/graphql/guides/

intro

type Category {
 title: String
 alias: String
 parent_categories: [Category]
 country_whitelist: [Country]
 country_blacklist: [Country]
}
type Country {
 code: String
 locales: [Locale]
}
type Locale {
 code: String
 language: Language
 country: Country
}
type Language {
 code: String
 locales: [Locale]
}
type Location {
 address1: String
 address2: String
 address3: String
 city: String
 state: String
 zip_code: String
 country: String
 formatted_address: String
}
type Coordinates {
 latitude: Float
 longitude: Float
}
type Hours {
 hours_type: String
 open: [OpenHours]
 is_open_now: Boolean
}
type OpenHours {
 is_overnight: Boolean
 end: String
 start: String
 day: Int
}
type Review {
 id: String
 rating: Int
 user: User

type Query {
 business(id: String): Business
 business_match_best(name:
String!, address1: String, address2:
String, address3: String, city:
String!, state: String!, country:
String!, latitude: Float, longitude:
Float, phone: String, postal_code:
String): Business
 search(term: String, location:
String, country: String, offset:
Int, limit: Int, sort_by: String,
locale: String, longitude: Float,
latitude: Float, categories: String,
open_now: Boolean, open_at: Int,
price: String, attributes: [String],
radius: Float): Businesses
 event(id: String): Event
 event_search(locale: String,
offset: Int, limit: Int, sort_by:
String, sort_on: String, start_date:
Int, end_date: Int, categories:
[String], is_free: Boolean,
location: String, latitude: Float,
longitude: Float, radius: Float):
Events
}
type Business {
 name: String
 id: String
 alias: String
 is_claimed: Boolean
 is_closed: Boolean
 url: String
 phone: String
 display_phone: String
 review_count: Int
 categories: [Category]
 rating: Float
 price: String
 location: Location
 coordinates: Coordinates
 photos: [String]
 hours: [Hours]
 reviews(limit: Intoffset: Int):
[Review]
 distance: Float
 attributes: GenericScalar
}

Schema Schema

 text: String
}
type Review {
 id: String
 rating: Int
 user: User
 text: String
 time_created: String
 url: String
}
type User {
 image_url: String
 name: String
}
type GenericScalar {}
type Businesses {
 business: [Business]
 total: Int
}
type Event {
 name: String
 id: String
 business: Business
 business_id: String
 attending_count: String
 category: String
 cost: Int
 cost_max: Int
 country: String
 description: String
 event_site_url: String
 image_url: String
 interested_count: String
 is_canceled: Boolean
 is_free: Boolean
 is_official: Boolean
 latitude: Float
 longitude: Float
 location: Location
 tickets_url: String
 time_end: String
 time_start: String
 zip_code: String
}
type Events {
 events: [Event]
 total: Int
}

Schema

Figure 4: Schema of Yelp

 coordinates {
 latitude
 }
 hours {
 open {
 end
 start
 }
 }
 reviews(limit: 10, offset: 0) {
 id
 rating
 user {
 name
 }
 url
 }
 attributes
 }
 search(term: "shake shack", location:
"new york", country: "US", offset: 0,
limit: 10, radius: 40000, sort_by:
"best_match", categories: "tradamerican",
locale: "", latitude: 40.7030151,
longitude: -73.9939538) {
 total
 business {
 name
 alias
 categories {
 title
 country_whitelist {
 code
 }
 country_blacklist {
 code
 }
 }
 location {
 address3
 }
 coordinates {
 latitude
 }
 photos
 hours {
 open {
 day
 }
 }
 reviews(limit: 10, offset: 0) {
 id
 rating
 user {
 image_url
 }
 text
 }

{
 business(id: "Rv4NgRl-wkMNPNdqXNSGBg"){
 id
 name
 categories {
 title
 country_whitelist {
 code
 }
 country_blacklist {
 code
 }
 }
 price
 location {
 address1
 }
 coordinates {
 latitude
 longitude
 }
 photos
 hours {
 open {
 end
 start
 }
 }
 reviews(limit: 10, offset: 0) {
 id
 rating
 user {
 name
 }
 }
 }
 business_match_best(name: "Shake
Shack", address1: "1 Old Fulton St",
address2: "", address3: "", city:
"Brooklyn", state: "NY", country: "US",
latitude: 40.7030151, longitude:
-73.9939538, phone: "+13474352676",
postal_code: "11201") {
 id
 name
 categories {
 title
 country_whitelist {
 code
 }
 country_blacklist {
 code
 }
 }
 location {
 country
 }

Initial Query Initial Query

 distance
 }
 }
 event_search(location: "ny", offset: 0,
limit: 10, sort_by: "desc", sort_on:
"time_start", start_date: 151986240,
end_date: 1519862400, categories: "3",
is_free: true, latitude: 40.7030151,
longitude: -73.9939538, radius: 40000) {
 total
 events {
 id
 name
 business {
 id
 name
 location {
 address1
 city
 }
 }
 business_id
 category
 location {
 address1
 address2
 }
 zip_code
 }
 }
 event(id:"new-york-from-inmail-to-
interview-how-to-land-a-job-in-the-digital-
age") {
 id
 name
 business {
 id
 name
 phone
 location {
 address2
 }
 }
 business_id
 attending_count
 cost
 cost_max
 country
 location {
 address1
 }
 tickets_url
 time_end
 time_start
 }
}

Initial Query

Figure 5: Initial query for Yelp

Initial Query. We build a initial query based in Yelp website
documentation and the schema. We make sure that the initial
query does not throw any error and returns a set of JSON
objects. The query is shown in Figure 5.
Results. As a result we generated 94 test cases, for which 5
of them fail and the remaining test cases pass successfully.
After a closer look at the deviated queries and the obtained
results, we conclude that Yelp API has an issue by handling
the Empty Fields Deviation. The deviation results produces
an HTML 500 error instead of a producing a JSON describing
the syntax error, as the GraphQL standard requires.

6 2018/8/19

6.3 Case 3: Apollo Demo API
Apollo4 a set of technologies to help migrate from REST to
GraphQL. Apollo includes tools, an engine, and an infrastruc-
ture to translate REST API’s to GraphQL Schema. Apollo
provide a demonstration website to test GraphQL APIs.
Schema. By using the introspection capability of the Apollo
GraphQL server, we obtained the schema, as given on the
left-hand side of Figure 6.

{
 posts
 {
 id
 title
 author {
 id
 firstName
 lastName
 }
 votes
 }
 author(id: 2) {
 id
 firstName
 lastName
 posts {
 id
 title
 votes
 }
 }
}

 type Author {
 id: Int!
 firstName: String
 lastName: String
 posts: [Post] # the list of
Posts by this author
 }

 type Post {
 id: Int!
 title: String
 author: Author
 votes: Int
 }

 # the schema allows the
following query:
 type Query {
 posts: [Post]
 author(id: Int!): Author
 }

 # this schema allows the
following mutation:
 type Mutation {
 upvotePost (
 postId: Int!
): Post
 }

Schema Initial Query

Figure 6: Schema and initial query for Apollo Demo

Initial Query Based on this schema, we built the GraphQL
query shown on the right side of Figure 6. This query does
not throw any error and returns a set of JSON objects.
Results. Based on the initial query, our prototype generate
134 test cases, which all of them pass successfully. We
therefore conclude that Apollo does not have any flaws
regarding the generated tests cases.

7. Related work
This section summarizes testing tools for GraphQL, also tools
and techniques focused on generate new tests to improve
software development [4, 6].

7.1 GraphQL testing tools
There are different tools to test a GraphQL server. For
example there are some frameworks used to test servers on
Node.js which are applicable to a GraphQL server. Mocha5

is one of the popular javascript test framework used to test
GraphQL servers in Node.js. Mocha allows one to generate
asynchronous testing, run tests serially, generate reports and

4 https://www.apollographql.com
5 https://mochajs.org/#getting-started

map the exceptions to the test cases. Other frameworks are
available, including SuperTest, Sails.js6 and Chai7.

To complement the activity to test a query, the schema
itself can also be tested. Mocking8, from Apollo, allows one
to write tests with real queries focusing on the type definition
of the schema. These tests are useful to avoid potential type
conflicts using mocks.

One important task is to simulate queries and observe
the response. It is one feature of using Test Client from
Graphene9. It allows one to test that a query request is
rendered by a Django template with certain values.

All the tools mentioned facilitate the creation of tests for
GraphQL servers. However none generate automatically new
test cases given an initial one.

7.2 Test amplification
There are many works focused on generate new test cases to
improve the coverage or find faults on the implementation of
software. At following we describe them:
Mutation testing. There are many existing works based on
mutation testing to improve the coverage of the testing [5].
Mutation testing consists in executing two or more program
mutations against the same test suite to evaluate the ability of
the test suite to detect this alterations [13].

Baudry [2] presents the mutation testing focused to im-
prove the quality of test cases. This paper shows case studies
for automatic testing, using a bacteriological algorithm based
on genetic algorithms. Their results show that the adaptations
were good heuristics to their goals.

Later Tillman [12] presents parameterized unit testing to
improve the coverage of the existing tests, turning the unit
tests into parameterized unit tests. This work find inputs for
parameterized unit tests using a way to analyze the behavior
of a program for all the possible inputs called symbolic
execution. Also Smith [11, 10] offers a set of mutation
operators to produce new tests and increase the branch
coverage. They also highlight the importance of selecting
how to mutate the tests.

These related works study the program effects of mutate
the tests to improve the coverage and presents an considerable
effort to generate a mutated test with a known assertion.
Contrary to our work we only focus on the schema defined
on the server, an initial test case and generate new test cases
based on the controlled deviations described.
New techniques or criteria. Harder et al. [8] use a tech-
nique that generates operational abstractions from test suites,
adding cases until the operational abstraction stops chang-
ing. Once generated new test cases, they use the operational

6 https://sailsjs.com
7 http://www.chaijs.com/api
8 https://graphql.org
9 http://docs.graphene-python.org/en/latest/testing/

7 2018/8/19

difference technique to select the test cases to improve fault
detection.

Later Xu [14] on his work, analize the factors affecting
test suite augmentation discovering that one of them is the
technique used. Xu realize experiments using concolic as a
technique to generate test cases and presents his algorithm
for directed test suite augmentation. The results show that
his algorithm was more effective and efficient than concolic
technique on the code coverage.

Fraser [7] presents test generation and mutation to gener-
alize pre and post-conditions, separating the test code from
test input. This gives the chance to abstract a large piece
of code input with symbolic parameters. Also they identify
the relevant behavior using variation, while more errors a
post-condition caches, more relevant is.

Later on, Pezze et al. [9] generate new integration test
cases from existing unit test cases. To construct more complex
test cases they use the information of unit test cases like: how
to instantiate classes, how to construct arguments for method
calls and the result expected. These test cases are focused on
class interactions instead of single methods calls. This work
present positive results finding faults on software.

The previous works present different techniques or new
criteria to generate test cases improving the coverage or
finding faults. Our work is focused on generate test cases
for a typed query language. We can predict the expected
results thanks to the rules of GraphQL.

8. Discussion & Future Work
We generate new test cases according the deviation rules
described on section Section 4. The test generation ends
when all the possible combinations are made. However, since
we have a limited number of deviation rules, it is not possible
cover all possible possible GraphQL queries that may reveal a
flaw in a GraphQL server. As future work, we plan to expand
the number of deviations rules to cover more cases and help
developers to analyze how deviated are their GraphQL APIs.

The test generation also depends of the initial query.
Therefore, a different initial query may generate different set
of test cases. As future work, we plan to evaluate our approach
using different real world initial queries and analyze the effect
of the use of multiple initial queries in the test generation and
test coverage.

Our prototype apply all the deviations rules over the
original initial query, therefore the application order of the
rules do not have an impact in generated test cases.

9. Conclusions
This paper presents a practical approach to test the imple-
mentation of a GraphQL server. In particular, we focus on
determining how close an implementation is from the original
GraphQL standard. Our technique, which we call deviation
testing, is able to identify anomalies in the implementation

by generating queries deviated from an original query. We
use a set of deviation rules to generate deviated queries.

We have applied our technique on three case stud-
ies, namely SGraphQL, our home-made Smalltalk-based
GraphQL server, Yelp, and Apollo. In two of them we found
significant deviations from the GraphQL specification.

Acknowledgment
We gratefully thank LAM Research for its financial support.
We also thanks to Truextend for the continuous support in
Bolivia.

References
[1] B. Baudry, S. Allier, M. Rodriguez-Cancio, and M. Monperrus.

DSpot: Test Amplification for Automatic Assessment of Com-
putational Diversity. Technical Report hal-01162219, HAL,
2015.

[2] B. Baudry, F. Fleurey, J.-M. Jézéquel, and Y. Le Traon. From
genetic to bacteriological algorithms for mutation-based test-
ing. Software Testing, Verification and Reliability, 15(2):73–
96, 2005.

[3] A. P. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou,
and M. Denker. Pharo by Example. Square Bracket Associates,
Kehrsatz, Switzerland, 2009.

[4] B. Danglot, O. Vera-Perez, Z. Yu, M. Monperrus, and
B. Baudry. The emerging field of test amplification: A survey.
arXiv preprint arXiv:1705.10692, 2017.

[5] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test
data selection: Help for the practicing programmer. Computer,
11(4):34–41, Apr. 1978.

[6] J. Edvardsson. A survey on automatic test data generation. In
Proceedings of the 2nd Conference on Computer Science and
Engineering, pages 21–28, 1999.

[7] G. Fraser and A. Zeller. Generating parameterized unit tests. In
Proceedings of the 2011 International Symposium on Software
Testing and Analysis, pages 364–374. ACM, 2011.

[8] M. Harder, J. Mellen, and M. D. Ernst. Improving test suites
via operational abstraction. In Software Engineering, 2003.
Proceedings. 25th International Conference on, pages 60–71.
IEEE, 2003.

[9] M. Pezze, K. Rubinov, and J. Wuttke. Generating effective
integration test cases from unit ones. In Software Testing, Veri-
fication and Validation (ICST), 2013 IEEE Sixth International
Conference on, pages 11–20. IEEE, 2013.

[10] B. H. Smith and L. Williams. On guiding the augmentation
of an automated test suite via mutation analysis. Empirical
Software Engineering, 14(3):341–369, 2009.

[11] B. H. Smith and L. Williams. Should software testers use
mutation analysis to augment a test set? Journal of Systems
and Software, 82(11):1819–1832, 2009.

[12] N. Tillmann and W. Schulte. Unit tests reloaded: Parame-
terized unit testing with symbolic execution. IEEE software,
23(4):38–47, 2006.

8 2018/8/19

[13] M. Trakhtenbrot. New mutations for evaluation of specifi-
cation and implementation levels of adequacy in testing of
statecharts models. In Testing: Academic and Industrial Con-
ference Practice and Research Techniques-MUTATION, 2007.
TAICPART-MUTATION 2007, pages 151–160. IEEE, 2007.

[14] Z. Xu and G. Rothermel. Directed test suite augmentation.
In Software Engineering Conference, 2009. APSEC’09. Asia-
Pacific, pages 406–413. IEEE, 2009.

9 2018/8/19

