
1

Inti: Tracking Performance Issue using a Compact
and Effective Visualization
Milton Mamani1, Alejandro Infante2, Alexandre Bergel2

1Object Profile, Chile
2Pleiad Lab, Department of Computer Science (DCC), University of Chile

This paper makes use of colored figures. Though colors are
not mandatory for full understanding, we recommend the use
of a colored printout.

Abstract—Current tools to measure software performance
commonly use a tree widget to indicate the CPU time distribution
over the execution control flow. The tree representation is known
to poorly scale in presence of large dataset and inadequately
convey the time distribution across software components.

We propose Inti, a sunburst-like visualization, to represent
program executions. Inti uses color maps to indicate time
distribution and comparison across set of software components.
Visualizations produced by Inti are both compact and interactive.
This paper describes the early development stage of Inti.

I. CODE PROFILER

Code profilers are used to identify software execution
bottlenecks and understand the cause of a slowdown. Most
programming environments come with powerful code execution
profilers. Execution sampling is a monitoring technique com-
monly employed by code profilers because of its low impact
on execution. Execution sampling essentially estimates (i) the
time spent in each function / method and (ii) the control flow
of the application.
Profiles as trees. A great effort has been made by the software
performance community to make profilers more accurate (i.e.,
reducing the gap between the actual application execution and
the profiler report). Advanced techniques have been proposed
such as variable sampling time [1] and proxies for time
execution [2], [3]. However, much less attention has been
paid to the visual output of a profile. Consider JProfiler1 and
YourKit2, two popular code profilers for the Java programming
language. Both of them output the profile of an execution using
a tree widget. To illustrate that point, consider the following
Java code:
class A {

public void init() { ... }
public void run() { this.utility(); ... }
public void utility() { ... }

}
class C {

public void run() {
A a = new A();
a.init();
a.run();

}
public static void main(String[] argv) {

new C().run(); } }

1http://www.ej-technologies.com/products/jprofiler/overview.html
2http://www.yourkit.com

Profiling the execution of the main method will result in the
following tree:
C.main (100%)

C.run (100%)
A.init (60%)
A.run (40%)

A.utility(40%)

The tree represents the call graph triggered by the execution
of the main. Indentation indicates the relation between the
called and calling methods. The CPU share allocated to init,
run, and utility depends on their definitions (the value 60%
and 40% are for illustrative purpose).

Most code profilers output their profile in a similar fashion.
Some profilers use a textual output, other use an expandable
tree widget. All in all, a tree is the favorite visual representation
for code profilers.
Limitation of tree representations. Representing call-graph
and CPU share distribution faces many limitations. First, in
presence of a large callgraph, the user has to scroll over
the profile and use textual searching facilities to navigate
in the tree. Extracting relevant data from large sequential
textual listing is not trivial. Secondly, by representing the CPU
consumption share over the call graph, high-level information
are not apparent and remain difficult to extract. For example,
understanding which component is the culprit of excessive
CPU consumption requires the software engineer to search
in the tree all the methods belonging to the component, and
manually summing up their consumption. Inti uses visual cues
to identify hot regions.
Need for alternative representation. Many effort have been
made to provide an alternative profile representation [4], [5],
[6]. In particular, it has been shown that context ring charts are
effective at representing hot methods [7]. Our work is inspired
by context ring chart.

II. INTI VISUALIZATION

The preliminary work described in this section combine
visual attributes and cues to identify how CPU time consump-
tion is distributed over a call graph. Inti is a sunburst-like
visualization dedicated to visualize CPU time distribution.

A. Inti visualization

Inti is a visual representation of hierarchical data. The
contrived example given above is visualized with Inti as shown
in Figure 1.

http://www.ej-technologies.com/products/jprofiler/overview.html
http://www.yourkit.com


2

A

B
C

D
E

Baseline

Fig. 1: Example of Inti

Each method of the Java code given above is represented by
an arc in Figure 1. Method C.main by the disk A, C.run by arc
B, A.init by C, A.run by D and A.utility by E. The baseline
represents the starting time of the profile. The angle of each
arc represents the time distribution taken by the method. In
this example, C.main and C.run have an angle of 360 degrees,
meaning these two methods consume 100% of the CPU time.
Methods A.init consumes 60% and A.run 40%.

Each method frame is presented as an arc. Distance between
an arc and the center of the visualization (where the A label is
located) indicates the depth of the frame in the method call
stack. A nested method call is represented as a stacked arc.

Benefices of Inti are numerous. Inti is very compact. A
typical execution, like the one presented in Figure 2, have
1916 nodes. To represent this tree, the classical tools would
use 1916 lines, one for each node. This number of lines at a
reasonable font size would need to be split into several pages
and is largely outperformed by Inti. Inti shows larger part of
the control flow and CPU time distribution in less space.

Details about each stack frame is accessible via tooltip.
Hovering the mouse over an arc triggers a popup window that
indicates the CPU time consumption and the method source
code.

B. Navigation and coloring map

A “visual cue” is a visual signal that is self-explanatory
and pre-attentive. A visual cue typically brings to the mind a
common knowledge or experience. Inti exploit visual cues in
many different ways. The default Inti visualization use the red
color to indicate relatively high CPU consumption.

Figure 2 is an example of a complex application. Each arc
has a color ranging from gray to red. The center of the Inti
visualization is red, indicating a 100% CPU consumption. This
is no surprise since the center corresponds to the main method,
the starting point of the program execution.

The very irregular border of the visualization indicates depth
of the method call stack, which greatly varies.

Because of the limited space, we decided to require the
user to interact with the visualization to obtain some relevant
information, like the method name. For example, to get the
name of a method represented by an arc, the user must locate
the mouse over that arc. There are other valuable interactions
such as method highlighting or browse the source code of a
method by clicking on the arcs.

Fig. 2: Inti default visualization

Also a number of navigation options use colors to indicates
the CPU time consumption across methods, classes, and
packages. For a given arc, other arc may be painted according
to if they belong to the same class, same package or correspond
to different implementations.

Fig. 3: Distribution of consumption across different methods

Inti provides an easy-to-use interaction for painting the
elements of the visualization. It is possible to use this technique
to paint all the methods related to a component, and therefore,
providing a visual help to identify the performance problems of
related pieces of code. An example of this feature is Figure 3.

It is frequent to measure software performance after hav-
ing some modification. Supporting comparison of profile is
therefore important and deserve to be carefully handled [8].
Inti addresses this by supporting a visualization to quickly



3

Fig. 4: Differences of profiles

identify application performance variations, while preserving
a representation of the overall results. This has been done to
avoid the user to invest time on minor performance changes
that are insignificant compared to the application as a whole,
as shown in Figure 4.

III. CONCLUSION AND FUTURE WORK

Properly addressing performance is known to be complex and
poorly supported by traditional programming environments. Inti,
as described in this paper, is an initial effort to representation
of execution data that allow the users to extract the relevant
information faster and more accurately. In order to do this,
Inti makes use of a sophisticated visual representation of a
program execution.

Our hypothesis is that the visual representation conveyed
by Inti scales better than the classical tree representation of
classical code profilers. We also expect the color maps offered
by Inti to significantly play a role in efficiently identifying
execution bottlenecks. We will verify this hypothesis as future
work.
Acknowledgments. We deeply grateful to Lam Research for
their encouragements and financial support. This work is
partially funded by FONDECYT Project 1120094.

REFERENCES

[1] T. Mytkowicz, A. Diwan, M. Hauswirth, P. F. Sweeney, Evaluating the
accuracy of java profilers, in: Proceedings of the 31st conference on
Programming language design and implementation, PLDI ’10, ACM,
New York, NY, USA, 2010, pp. 187–197. doi:10.1145/1806596.
1806618.
URL http://doi.acm.org/10.1145/1806596.1806618

[2] A. Camesi, J. Hulaas, W. Binder, Continuous bytecode instruction counting
for cpu consumption estimation, in: Proceedings of the 3rd international
conference on the Quantitative Evaluation of Systems, IEEE Computer
Society, Washington, DC, USA, 2006, pp. 19–30. doi:10.1109/QEST.
2006.12.
URL http://portal.acm.org/citation.cfm?id=1173695.1173954

[3] A. Bergel, Counting messages as a proxy for average execution time
in pharo, in: Proceedings of the 25th European Conference on Object-
Oriented Programming (ECOOP’11), LNCS, Springer-Verlag, 2011, pp.
533–557.
URL http://bergel.eu/download/papers/Berg11c-compteur.pdf

[4] D. Holten, B. Cornelissen, J. J. van Wijk, Trace visualization using
hierarchical edge bundles and massive sequence views, in: Proceedings of
Visualizing Software for Understanding and Analysis, 2007 (VISSOFT’07),
IEEE Computer Society, 2007, pp. 47 – 54. doi:10.1109/VISSOF.
2007.4290699.

[5] D. J. Jerding, J. T. Stasko, T. Ball, Visualizing interactions in program
executions, in: Proceedings of International Conference on Software
Engineering (ICSE’97), 1997, pp. 360–370.

[6] B. Cornelissen, A. Zaidman, D. Holten, L. Moonen, A. van Deursen, J. J.
van Wijk, Execution trace analysis through massive sequence and circular
bundle views, J. Syst. Softw. 81 (2008) 2252–2268. doi:10.1016/j.
jss.2008.02.068.
URL http://dl.acm.org/citation.cfm?id=1454787.1454981

[7] P. Moret, W. Binder, A. Villazón, D. Ansaloni, A. Heydarnoori, Visualizing
and exploring profiles with calling context ring charts, Softw. Pract. Exper.
40 (9) (2010) 825–847. doi:10.1002/spe.v40:9.
URL http://dx.doi.org/10.1002/spe.v40:9

[8] J. P. S. Alcocer, A. Bergel, S. Ducasse, M. Denker, Performance evolution
blueprint: Understanding the impact of software evolution on performance,
in: A. Telea, A. Kerren, A. Marcus (Eds.), VISSOFT, IEEE, 2013, pp.
1–9.

http://doi.acm.org/10.1145/1806596.1806618
http://doi.acm.org/10.1145/1806596.1806618
http://dx.doi.org/10.1145/1806596.1806618
http://dx.doi.org/10.1145/1806596.1806618
http://doi.acm.org/10.1145/1806596.1806618
http://portal.acm.org/citation.cfm?id=1173695.1173954
http://portal.acm.org/citation.cfm?id=1173695.1173954
http://dx.doi.org/10.1109/QEST.2006.12
http://dx.doi.org/10.1109/QEST.2006.12
http://portal.acm.org/citation.cfm?id=1173695.1173954
http://bergel.eu/download/papers/Berg11c-compteur.pdf
http://bergel.eu/download/papers/Berg11c-compteur.pdf
http://bergel.eu/download/papers/Berg11c-compteur.pdf
http://dx.doi.org/10.1109/VISSOF.2007.4290699
http://dx.doi.org/10.1109/VISSOF.2007.4290699
http://dl.acm.org/citation.cfm?id=1454787.1454981
http://dl.acm.org/citation.cfm?id=1454787.1454981
http://dx.doi.org/10.1016/j.jss.2008.02.068
http://dx.doi.org/10.1016/j.jss.2008.02.068
http://dl.acm.org/citation.cfm?id=1454787.1454981
http://dx.doi.org/10.1002/spe.v40:9
http://dx.doi.org/10.1002/spe.v40:9
http://dx.doi.org/10.1002/spe.v40:9
http://dx.doi.org/10.1002/spe.v40:9

	Code Profiler
	Inti Visualization
	Inti visualization
	Navigation and coloring map

	Conclusion and Future work
	References

