
On Understanding How Developers Use the Spotter
Search Tool

Juraj Kubelka∗, Alexandre Bergel∗, Andrei Chiş †, Tudor Gı̂rba†, Stefan Reichhart†, Romain Robbes∗, and
Aliaksei Syrel†

∗PLEIAD Laboratory, Department of Computer Science (DCC), University of Chile, Santiago, Chile
Email: {jkubelka, abergel, rrobbes}@dcc.uchile.cl

†Software Composition Group, University of Bern, Switzerland
Email: andrei@iam.unibe.ch, tudor@tudorgirba.com, stefan.reichhart@gmail.com, aliaksei.syrel@students.unibe.ch

Abstract—Analyzing how software engineers use the Integrated
Development Environment (IDE) is essential to better under-
standing how engineers carry out their daily tasks. SPOTTER is
a code search engine for the Pharo programming language. Since
its inception, SPOTTER has been rapidly and broadly adopted
within the Pharo community. However, little is known about how
practitioners employ SPOTTER to search and navigate within the
Pharo code base.

This paper evaluates how software engineers use SPOTTER in
practice. To achieve this, we remotely gather user actions called
events. These events are then visually rendered using an adequate
navigation tool chain. Sequences of events are represented using
a visual alphabet.

We found a number of usage patterns and identified underused
SPOTTER features. Such findings are essential for improving
SPOTTER.

I. INTRODUCTION

Integrated Development Environments (IDEs) are standard
environments to develop software applications, e.g., Eclipse,
Xcode, PHARO IDE. IDEs come with a collection of features
that facilitate change tasks. Understanding which features are
used and how they are being used is an important research
question; for example refactoring tools automate source code
manipulation, but studies reveal that they are seldom used [1].

SPOTTER is a search tool for the PHARO IDE that supports
flexible ways to search for information in a source code base.
Nonetheless, creating an efficient tool requires knowing how
users employ the tool and whether or not they use it at its
fullest potential. For the purpose of this analysis, we form
a visual alphabet and an interactive and tailored software
visualization—as part of a tool called SPOTTER ANALYZER—
that aim to answer the following research questions:

• RQ1. Are there any missing SPOTTER features?
• RQ2. Are there any underused SPOTTER features?

Outline. Section II introduces the SPOTTER search tool.
Section III gives the terminology for the collected data and
presents the SPOTTER ANALYZER tool. Section IV discusses
the observed user behavior, and reveals missing and seldom
used SPOTTER features. Section V explores related work.
Section VI summarizes our work.

Query Dive-in item 
(class)4AbstractFileReference

Category

Dive-in Category
Dive-in Item

Act-on
Browse ItemR

e
s
u

lt
s

In
p

u
t

Dives-in
Preview

Fig. 1. SPOTTER UI is composed of an input field for queries, results, preview,
and dives-in bar that indicates where a user searches for. The results are
structured into categories. The user can dive-in a category or a selected item,
or can act-on the selected item (by pressing the enter key) that usually opens
the selected item in a specific tool.

II. SPOTTER

SPOTTER1 is a moldable development search tool imple-
mented in the PHARO IDE and introduced to the community
in December 2014. SPOTTER searches through a wide range
of software entities—e.g., code, objects, documentation—and
navigates through various dependencies, e.g., method calls,
class references. Figure 1 illustrates a search session.
Category. SPOTTER crawls over more than one hundred
sources of information, e.g., classes, methods, menu items,
recently modified packages, recently written scripts, or help
topics—such information sources are called categories. Users
can customize what information to search for and how to
present it in the SPOTTER view.
Category filter. When a user enters a query, SPOTTER searches
through and displays multiple types of results. For example,
if a user enters read, SPOTTER searches through instance
variables, methods, classes, etc. The output can be filtered out
by a category name that begins with the # character; we call
it category filter. If a user wants to search only for instance

1http://scg.unibe.ch/research/moldablespotter

http://scg.unibe.ch/research/moldablespotter


methods that contain the word read, the query has to be
formulated as read #i or read #instance.
Dive-in item. After selecting an item, the user can dive-
in item and search for information related to that item.
Figure 1 outlines a scenario where a user selected the
AbstractFileReference class, dived-in the class, and is
searching for read inside the class—the figure shows instance
methods belonging to the class that matches the query. A user
can also look for possible information in the class such as
variables, references, superclasses, subclasses, packages, etc.
Dive-in category. To avoid presenting a long list of candi-
date results, only the first five results for each category are
displayed. Figure 1 displays five out of ten existing instance
methods that contain the word read. A user can display
all results using the dive-in category action attached to the
“Instance methods” category.
Use case. Both dive-in item and dive-in category features
make source code exploration and navigation more accurate.
For example, if a user wants to read a file, first the user can
search for a class that contains the word file and then dive-
in a particular class and search for methods of that class that
contain the word read. In addition, the user can dive-in an
interesting method and observe information relevant to the
method.
Open questions with SPOTTER. While SPOTTER developers
perceive the tool usage as convenient, the initial discussion
on mailing lists2 indicates that some use cases and features
are not apparent—this was the motivation for conducting this
analysis.

III. SPOTTER ANALYZER

Data is first collected from practitioners that use SPOTTER
in their daily tasks (Section III-A). To analyze the data, SPOT-
TER ANALYZER employs two complementary visualizations
(Section III-B).

A. Data collection

We send usage data to a server every twenty minutes in
a bundle that is identified with a computer UUID. We also
keep computer UUIDs of the SPOTTER developers; it lets us
observe behavior differences between developers and users.
By developers we refer to people who develop the SPOTTER
tool; users are those who only use SPOTTER. Some developers
and users contribute to PHARO IDE.

For the analysis we use the following terminology: comput-
ers is the collection of all computers from which we collect
data; computer is the collection of all sessions belonging to
one computer; session is a single-use of SPOTTER that contains
events; event is one specific action that represents SPOTTER
activity or user behavior. Each event has a timestamp and other
particular information, e.g., query, results, or selected item.

We analyze 2,023 sessions from 38 computers that we re-
ceived between April 21, 2015 and May 26, 2015; 6 computers
belong to SPOTTER developers.

2For example http://forum.world.st/spotter-scenario-td4811595.html, or
http://forum.world.st/Spotter-td4817609.html

B. Visualizations

Timeline graph. Figure 2 shows when and how often users
used SPOTTER. Each horizontal line represents one computer.
At the top of the graph are SPOTTER developers followed
by users. The most frequent users are placed at the top. This
order assists us in distinguishing between regular and sporadic
users.

Each rectangle denotes one or more SPOTTER sessions.
We group together sessions that occurred within close time
proximity to each other because while the duration of each
session does not exceed a few minutes, the graph covers
a timeframe of about one month—less than one pixel per
minute. The width of each rectangle stands for duration and
the color for feature intensity usage.

The color metric identifies who uses the features, how often
they are used, and whether the user behavior changes during
a time period. Figure 2 illustrates the intensity usage of the
dive-in feature and it indicates less utilization by users. We
discuss the results in more detail in Section IV.

When a user clicks on a rectangle, a detailed timeline is
revealed. Figure 2 pictures one detailed timeline that consists
of 36 sessions—some of them happened at the same time and
are grouped together. Any detailed timeline can be presented
as an activity diagram.

Activity diagram. Figure 2 also portrays an activity diagram
with three sessions. Each line is composed of events that illus-
trate SPOTTER usage. We render action graphs in a compact
way—one event next to each other with a constant distance—
or in a real time way that indicates how much time users spent
observing a particular result.

Table I gives an overview of the used symbols; next we
explain some in more details. The Query symbol (h) is
composed of rectangles—each rectangle represents one word
and its width reflects word size; if a word represents a category
filter, the height is smaller. In the case of Figure 1, the word
is read and is represented as a 4-pixel wide box.

We use 13 symbols for an item selection: the default one (j)
denotes an auto-selection that happens when SPOTTER shows
the first results while searching for others—in the current
implementation we use the same symbol when a user jumps
between categories because we cannot properly detect this user
action. Symbols on lines (k), (l), (m) relate that a user selects
an item by pressing up-arrow key, down-arrow key, or by using
a mouse. The first symbol on those lines denotes that an item
is selected for the first time in a particular session. The second
symbol explains that an item was already selected before in the
same session. The last two symbols—apart from the selection
repetition—indicate that a user moves to a different category.

Dive-in and Dive-out symbols have the shape of a stair
and the deeper a user dives-in, the lower we draw the other
symbols; see Figure 3f,g,h. This layout facilitates behavior
observation and we can easily follow user actions and identify
some common patterns.

http://forum.world.st/spotter-scenario-td4811595.html
http://forum.world.st/Spotter-td4817609.html


Main Timeline

Detailed 
Timeline

Activity 
Diagram

Sp
ot

te
r

us
er

s
Sp

ot
te

r
de

ve
lo

pe
rs

Sp
ot

te
r u

se
rs

Time

Fig. 2. Timeline graph showing SPOTTER usage for about a month. At the top are the concentrated SPOTTER developers and the most frequent SPOTTER
users. Each rectangle illustrates one or more sessions that happened in a particular time period. The rectangle width relates to the time duration. The rectangle
color is used for various metrics; here the blacker a rectangle is, the more often the dive-in feature is used. Any detailed timeline can be displayed as the
activity diagram, each line stands for one session and color personifies the same selected item or query.

IV. RESULTS

A. Session classification

Based on the two visualizations, we identify five session
types: empty, direct, first level dive-in, complex, and delayed
exit. Table II characterizes the overall distribution of the
classification in terms of mean, minimal, and maximum spent
time.
Empty session. Figure 3a,b presents two typical empty ses-
sions: in the first case a user opens and immediately closes
SPOTTER; in the second case a user pastes or writes a query
but also instantly closes the tool. We observe 5% (106 out of
2,023) of empty sessions with an average time of 3 seconds.
In these cases we assume that users at first considered using
SPOTTER, but immediately changed their minds.
Direct session. The direct session does not contain a dive-in
action; we notice 80% (1,609 out of 2,023) of direct sessions
with an average time of 9 seconds. Figure 3c,d,e presents three
direct sessions: first, a user pastes a query and browses the
result. In this particular example the user pastes the URL of
a published script that is afterwards displayed. In the second
example, as a user progressively writes a query, SPOTTER
places the initial result in the first position, and the user presses
enter to browse it. In both cases we suppose that users know
exactly what they need and SPOTTER is used to reach that
data.

The third example illustrates a user searching for a method.
During the first part called “unsupported feature” the user
writes a query consisting of two words and expects that
SPOTTER finds items that contain both words. However this is
currently not a supported feature and the tool does not present
any result. We discuss it in detail in Section IV-B. The user
deletes the original query, writes a new one, and observes

results with 1 class and with 5 out of 28 methods. We suspect
two reasons why the user does not browse any method: the
user is not satisfied with the results or only needs to know
a method name and does not need to browse it in another
tool.
One level dive-in session. The One level dive-in session is
a session where a user dives-in only one level deep; we collect
10% (196 out of 2,023) of this sessions with average time
52 seconds. The dive-in action can be triggered several times
during one session. Figure 3f,g presents two consequences of
the aforementioned missing feature that we examine in detail
in the multiple-word query paragraph.
Complex session. The complex session is a session where
a user dives-in more then one level. Figure 3h outlines an
example. As it only represents 3% (66 out of 2,023) of the
collected sessions, we do not review them in this paper.
Delayed session. The delayed session is a session where the
time gap between the last and the next-to-last event lasts more
than 3 minutes; we detect 2% (46 out of 2,023) of delayed
sessions. There are 21 out of 46 sessions with the gap between
10 minutes to 13 hours. It is not apparent why it happens and it
is subject of the future investigation if it is a real user behavior
or a bug.

B. Answering RQ1 and RQ2

RQ1. Missing features. We detect multiple-word queries as
the important missing feature.
Multiple-word query. We observe that 25% (8 out of 32)
of users—and even one SPOTTER developer—used multiple-
word queries. Figure 3e demonstrates such a session; a user
writes a query of two words, but there is no outcome. In total
we detect 33 occurrences in 17 sessions. We did not expect



c) pastes whole query

d) writes query

e) observes results

unsupported
feature

}

observes 
implementors

observes class

Direct sessions:

One level dive-in sessions:

Complex sessions:

back in category 
implementors 

f) composed query g) composed query correction

h) method usage of a particular global object

Delayed sessions:

writes one word

}

pastes one word}

Empty sessions:
a) opens and closes b) opens, writes a query, and closes

dive in
category

refines 
the query

original
query correction

same queries

original
query

back in
the category

observes categories consideres classes, 
global variables,
and annotations

(pragmas)

observes
its references
and classes

chooses
a global
object

observes methods and method users

from 3 minutes to 13 hours delay 

i) suspicious delay

multi-word
query}

Fig. 3. Session examples. We identify five session types and set out examples for each one. Every color is associated with a particular selected item or query.

TABLE I
RELATION BETWEEN COLLECTED EVENTS AND SYMBOLS USED IN THE ACTIVITY DIAGRAM.

Event Symbol Description

(a) Act-On, (b) Exit Trigger default action (browse) on a selected item or close SPOTTER.
(c) Show or (d) Hide Preview Display or hide the SPOTTER preview.
(e) Dive-In Selection or (f) Category, (g) Dive-Out Traverse items.
(h) Query One word query; two words query; one word query with a category filter.
(i) Search Finished SPOTTER search finished and all results are available.
(j) Selection Auto-selection of an item, or a selection without detailed information.
(k) Keyboard Selection by Up-Arrow Key The first time or repeatedly selected item in the same session;. . .
(l) Keyboard Selection by Down-Arrow Key . . . the first time or repeatedly selected item in different category then before.

(m) Mouse Selection The same information when a user interacts with a mouse.

TABLE II
SESSION CLASSIFICATION.

Classification Name Quantity Mean Min Max
Count [%] [hours:minutes:seconds]

Empty 106 5 0:00:03 0:00:00 0:00:19
Direct 1,609 80 0:00:09 0:00:01 0:22:52
One Level Dive-In 196 10 0:00:52 0:00:04 0:58:53
Complex 66 3 0:01:07 0:00:07 0:06:24
Delayed Exit 46 2 1:28:31 0:01:19 13:35:22
Total 2,023 100

a lot of such incidents because users learn that they cannot
write the multiple-word queries and they adapt to the tool.

Figure 3f displays a workaround. Let us say that a user
searches for a method that contains the words read and
stream. The user first writes the word read, then dives-
in the methods category, and refines the result by writing
stream. The workaround has two consequences: a) the user
has to decide in advance which category is worth exploring

because it is not possible to search for all items in any category
that contains words read and stream; b) if the user needs to
change the word read with the word write, it is necessary
to dive-out, rewrite the first query, dive-in category, and write
again the word stream—Figure 3g relates it.
RQ1 summary. We conclude that multiple-word queries is an
important missing feature that should be taken into account
for the next SPOTTER version.
RQ2. Unused features. The following paragraphs present four
features that are seldom used: category filter, dive-in, searched
information, and custom extensions.
Category filter. 19% (6 out of 32) of users used the category
filter. Those 6 users used it in 3% (16 out of 522) of the
sessions and in 3% (63 out of 2,002) of the queries. On the
contrary, 67% (4 out of 6) of developers used it in 11% (63
out of 587) of the sessions and in 13% (300 out of 2,316) of
the queries.

We observe that the category filter feature is largely ignored;



81% of users do not use it. We suppose the main reason is
that the feature is not exposed in the UI and users are not
informed about it.
Dive-in. We notice that 56% (18 out of 32) of users used the
dive-in feature at least once and we can assume that they are
aware of this feature; all SPOTTER developers used dive-in.
Intensity usage metric reveals that only 5 users employ the
dive-in regularly. Developers used dive-in in 18% of sessions
and users used it in 11% of sessions. It indicates that users
are aware of this feature, but they are likely not familiar with
its usage.
Searched information. Users most often choose items in
the following categories: classes (46%), implementors (28%,
methods), history (10%, previously selected items), menu (5%,
main menu in PHARO IDE), packages (3%), senders (2%), and
in 51 other categories (6%)—in summary 84% of the total
information is searched in three categories.

Before introducing SPOTTER, the common PHARO IDE
search tools covered classes, implementors, senders, or prag-
mas (method annotations); SPOTTER exposes information that
is not apparent and we should inform users about it, e.g.,
examples, code critics, clipboard history, cached and named
scripts, or help topics.
Custom extension. With the current limitation, we note that
only one user extends SPOTTER by searching for items in
a category named “Mongo databases.” We expect that users
need to find out use cases and learn about the extension
mechanism; recently a user wrote that he prefers a different
search flow when looking for methods3. It indicates that users
are not familiar with the extensibility feature.
RQ2 summary. We should emphasize the use of features that
are typically ignored. One option is to propose tutorials for
customizing SPOTTER as well as tips based on the activity
of the user, e.g., informing a user who does not use dive-
in that the feature exists. Another option is to rethink the
contemporary UI by exposing the category filter or introducing
multiple-word queries.

V. RELATED WORK

Murphy et al. introduce Mylyn Monitor [2] for Eclipse
with the intention of understanding what features and plug-
ins developers use. Based on 41 Java software developers,
they report about the utilization of Eclipse views, plug-ins,
commands, and refactoring tools.

Vakilian et al. argue that current existing data sources are
inadequate for answering questions such as why automated
refactoring are seldom used, and propose CODINGSPECTATOR
[3], a tool for collecting the usage data of Eclipse refactoring
tools. The collected data indicates that developers prefer
small changes using refactoring tools and rarely check the
refactoring preview window [4].

Yoon et al. developed an Eclipse plug-in called AZURITE
[5] that aims to answer common questions about the code
change history. They present two visualizations: a timeline

3http://bit.ly/1HPVhIq

visualization and a code history diff view, that both actively
interact with the Eclipse code editor.

DFLOW presents a visual analysis of development sessions
from the UI perspective [6]; the authors collect UI-level events
and analyze developer behavior—e.g., navigating, editing, or
understanding code—and identify developer strategies when
dealing with a change task.

Our work is different from the related work in two perspec-
tives: first, the related work collects general user interaction
data—e.g., mouse clicks, keyboard usage—while we collect
specific commands triggered on SPOTTER; second, the related
work characterizes rather broader behavior—e.g., navigating
or editing code—we developed a visualization that shows user
activities and we identify missing and unused features.

VI. CONCLUSION

The paper presents SPOTTER ANALYZER, a visual tool that
analyzes how users use SPOTTER as well as what features
are missing or rarely used. We identify that the multiple-word
query is a substantial absent feature which may also be the
general cause for misunderstanding the usage of SPOTTER.

The data emphasizes that the strong features of SPOT-
TER—like custom extensions or a large amount of scanned
information—are not exploited and we should focus on it in
two possible directions: first, encourage users to find out new
use cases that better fit their needs; second, reconsider the
current UI and the way features are exposed.

The strong benefit of the SPOTTER ANALYZER is that once
we change SPOTTER or promote it, we can observe an impact
comparing the historic data using SPOTTER ANALYZER—for
the future work, we will schedule the SPOTTER improvements,
tips and tutorials promotions and analyze the consequences.
Acknowledgment. Juraj Kubelka is supported by
a Ph.D. scholarship from CONICYT, Chile. CONICYT-
PCHA/Doctorado Nacional/2013-63130188. Andrei Chiş is
supported by the Swiss National Science Foundation through
the project “Agile Software Assessment” (SNSF project Nr.
200020-144126/1, Jan 1, 2013 - Dec. 30, 2015). Romain
Robbes is partially funded by FONDECYT project 1151195.
We also thank Renato Cerro for his feedback.

REFERENCES

[1] E. R. Murphy-Hill, C. Parnin, and A. P. Black, “How We Refactor, and
How We Know It,” IEEE Trans. Software Eng., vol. 38, no. 1, pp. 5–18,
2012.

[2] G. Murphy, M. Kersten, and L. Findlater, “How are Java software
developers using the Elipse IDE?” Software, IEEE, vol. 23, no. 4, pp.
76–83, 2006.

[3] M. Vakilian, N. Chen, S. Negara, B. A. Rajkumar, R. Z. Moghaddam,
and R. E. Johnson, “The need for richer refactoring usage data,” in
Proceedings of the 3rd ACM SIGPLAN workshop PLATEAU 2011, Eds.
ACM, 2011, pp. 31–38.

[4] M. Vakilian, N. Chen, S. Negara, B. A. Rajkumar, B. P. Bailey, and
R. E. Johnson, “Use, disuse, and misuse of automated refactorings,” in
ICSE 2012, pp. 233–243.

[5] Y. Yoon, B. A. Myers, and S. Koo, “Visualization of fine-grained code
change history,” in 2013 IEEE Symposium on Visual Languages and
Human Centric Computing, 2013 IEEE, 2013, pp. 119–126.

[6] R. Minelli, A. Mocci, M. Lanza, and L. Baracchi, “Visualizing
Developer Interactions,” in Second IEEE Working Conference on
Software Visualization, VISSOFT 2014, 2014, pp. 147–156.

http://bit.ly/1HPVhIq

	Introduction
	Spotter
	Spotter Analyzer
	Data collection
	Visualizations

	Results
	Session classification
	Answering RQ1 and RQ2

	Related Work
	Conclusion
	References

