
Pitekün: An Experimental Visual Tool to Assist
Code Navigation and Code Understanding

Juraj Kubelka, Alexandre Bergel, Romain Robbes
Department of Computer Science (DCC), University of Chile

jkubelka, abergel, rrobbes@dcc.uchile.cl

Abstract—Studies show that software developers spend signif-
icantly more time navigating and understanding a codebase than
actually writing code. Oddly, code navigation and comprehension
are poorly supported by current programming environments.

We present the main lines of the Pitekün programming
environment to mitigate the gap between developer information
needs and the current tool support. Pitekün uses three techniques
to address the gap: (i) a spatial representation of the codebase,
(ii) visual cues, and (iii) polymetric views. We conjecture that
Pitekün improves navigation in the codebase and in answering
the questions developers ask when learning the codebase.

I. INTRODUCTION

There are numerous studies on the interactions software
engineers have with programming environments. These studies
identify developer information needs when evolving a software
and level of support that current tools offer [1]. Studies
show that software developers spend significantly more time
navigating and understanding codebase [2] than writing the
actual codebase.

Research question. In our work, we take the identified issues
of the current developer tools and we offer new insights
regarding to graphic design. We propose to use spatial graph-
ical representation of a codebase, combined with adequate
source code metric to provide an accurate understanding of the
codebase. In this experiment, we want to know if this approach
facilitates the navigation and understanding of the codebase.
The research question we address in this paper is:

Can Pitekün facilitate navigation and understanding
of a codebase?

Results. The Pitekün implementation is not ready for broader
testing. Nevertheless, we identify interest in this solution and
recognize that the techniques aid developers in navigating
within a codebase and also in understanding it.

Outline. Section II describes developer information needs and
weaknesses of current tools. Section III introduces the Pitekün.
Section IV presents related work. We conclude with a summary
in Section V.

II. PROBLEM DEFINITION

Developer questions. Numerous research focuses on developer
information needs when evolving a software. Sillito et al.
(herein designated as Sillito) present a number of observations
about programmer interactions [1]. They define four question
categories: (i) Finding focus point contains questions when
a little is known about the codebase, (ii) Expanding focus

point consists of questions when developers already have
a relevant entity and explore the entity and other cooperating
entities, (iii) Understanding a subgraph includes questions
programmers ask when recognizing the behavior of the entities,
and (iv) Questions over groups of subgraphs covers questions
developers ask when contrasting the observed entities with the
rest of the system or when developers identify change impact
to the system.

Current tool support. Sillito defines two levels of tool sup-
port: full when development tool directly answer a particular
question; partial otherwise. The following table summarizes
the findings:

Questions Category Full Partial
Finding a focus point
(5 questions)

3 2

Expanding a focus point
(15 questions)

12 3

Understanding a subgraph
(13 questions)

0 13

Questions over groups of
subgraphs (11 questions)

0 11

Total 15 (34%) 29 (66%)

They conclude that there are 29 questions which do not
have direct tool support. They highlight the lack of support in
three areas where current tools should be improved: (i) more
refined and precise questions, (ii) context maintenance, and
(iii) piecing information together.

More refined and precise questions. Developers are often
limited in how precise or refined their questions can be
resulting in them asking generic questions. For example instead
of asking “Which classes have this class as fields?” they
ask “Where is this class referenced?” While the questions
seem similar, the answers may be different. The class could
be used as a field only in one class, but can be used in
many other places as a local variable or a method argument.
The developers then have to conduct additional explorations
determining which entities are relevant to the original question.

Context maintenance. If development tools can not directly
answer questions (“Which classes have this class as fields?”),
developers are forced to ask another supported questions
(“Where is this class referenced?”). However, these “query”
tools work in isolation and the context must be maintained by
the developers. The developers have to remember the original
question, the specific questions, and map them to the individual
tool outputs. For example, the question “How can data be
passed to this point in the code?” may involve exploration
of several entities which could involve asking other questions,



e.g., “What data can we access from this object?”, “Where
is this type referenced?”, or “Where is this method called?”
The developers are forced to remember mapping between each
tool output and the corresponding question, and the original
question.

Piecing information together. The imperfect tool support
requires mentally piecing together information from multiple
(often noisy) results. As the current tools usually work in
isolation, this process is not supported. For example, to answer
the original question “How can data be passed to this point in
the code?” mentioned above, the answers to specific questions
have to be pieced together mentally by developers.

Summary. In this section, we describe four question categories
which consist of questions that developers have during soft-
ware development. Subsequently, three reasons for insufficient
tools support are presented. Those three weaknesses are our
research.

III. PITEKÜN: AN EXPERIMENTAL TOOL

In this section we describe our tool Pitekün, an experimen-
tal research tool, which challenges the insufficient tool support
presented before. Our approach combines three techniques: (i)
spatial presentation, (ii) visual cues, and (iii) polymetric views.

Spatial presentation. Pitekün displays a source code in
lightweight fragments that can be arranged freely anywhere on
Pitekün’s canvas. The canvas is infinite spatial interface. Our
decision to use this technique is supported by two reasons.
First, the lightweight fragments of a codebase offer greater
freedom of arrangement of the codebase. A developer can
arrange the parts of the codebase corresponding to a common
context, e.g., answers to a question, and the spatial cognition
is utilized to the maximum. Second, the spatial presentation
supports to observe larger part of the codebase at the same
time. The developer can easily observe and compare the
codebase. It improves the experience when a mental model
of the codebase is created and the developer’s understanding
may be a more accurate.

Figure 1 illustrates an example of the spatial presentation.
There are two groups of the code fragments for which a de-
veloper is interested in. The left group contains three methods
where the left one calls the two methods on the right. The right
group contains three other methods which are indented because
the first method calls the next two methods. The freedom
of the codebase arrangement according to a common context
improves the code understanding and facilitates contrasting of
different parts of the codebase.

Visual cues. Pitekün supports the orientation in the codebase
by additional visual cues. Currently we display relevant in-
formation when the developer hovers the mouse cursor over
an entity, e.g., method, variable, or class name. It can improve
orientation in the codebase and it may anticipate what could be
useful information. This decision is supported by studies which
identify that use of landmarks, e.g., borders, paths, boundaries,
and directional cues, can improve navigation performance [3].

Figure 2 illustrates an example of the visual cues. There are
three methods in which a developer is interested. In order to
understand how the variable “lbl” is manipulated, the developer

Fig. 1. Spatial presentation in Pitekün. It illustrates two groups of the code
fragments in which a developer is interested. The left group (grey boxes)
contains three methods, where the left one calls the two methods on the
right. The right group (grey boxes) contains another three methods which
are indented because the first method calls the next two methods. The blue
boxes on the top represent a polymetric views which support overall program
comprehension. In the particular case, the classes (blue boxes) are independent
and do not share any superclass. It depicts that the majority of a behavior is
concentrated in a one class (the biggest blue box).

Fig. 2. Visual cues in the Pitekün. When a user hovers over the each part of
source code, relevant information is highlighted among the displayed codebase.
This figure illustrates highlighted variable “lbl”. If a developer wants to know
how a given object is manipulated, this visualization helps him/her concentrate
on a particular peaces of the code.

hovers above the variable and all the other occurrences are
highlighted. This visual cue facilitates navigation in the code.

Polymetric views. Polymetric views [4] are a lightweight visual
approach broadly used in the reverse engineering. It enables
depicting of a codebase using various software metrics. It helps
a reverse engineer form a mental picture of a system in which
he/she works. While the polymetric views are primarily used
in the reverse engineering, we experiment when the polymetric
views can improve orientation in a codebase and look for
which metric can be useful during a development process.

Figure 3 illustrates the current use of the polymetric views
in the Pitekün. The larger grey boxes represent particular
classes. The class layout is determined by class hierarchy
relationship. In this particular case, the size of each class
is determined as follows: width corresponds to the number



Fig. 3. Polymetric views in Pitekün. The larger grey boxes represent
a particular classes in their class hierarchy. In this particular case, the size
of each class is determined as follows: width corresponds to the number of
members (instance variables), height corresponds to the number of imple-
mented methods. If a developer clicks on a class, it is expanded and methods
and methods’ call relations are displayed. The size of each method illustrates
size of the code.

of members (instance variables), height corresponds to the
number of implemented methods. If a developer clicks on
a class, it is expanded (the blue box) and methods and
methods’ call relations are displayed. The size of the each
method illustrates amount of the code.

Improving the Tool Gap. In Section II we discuss three weak
areas of current tools: (i) more refined and precise questions,
(ii) context maintenance, and (iii) piecing information together.
Here we look closer at how Pitekün impacts each area.

Pitekün poorly targets the first issue — more refined and
precise questions. It affects two other issues — context main-
tenance and piecing information together. Pitekün addresses
those issues by leveraging spatial human memory. A developer
arranges a relevant information close to each other and every
relevant evidence is further highlighted by the visual cues that
stress the reasons why those parts are related. For example
when the developer hovers a mouse above a method definition
Pitekün highlights all the method calls in other displayed
methods or classes.

Summary. In this section, we present the Pitekün and three
techniques that we apply during the development process: the
spatial presentation that allows for displaying more informa-
tion and it facilitates contrasting of the greater amount of
a codebase; the visual cues that improve orientation in the
codebase; polymetric views that offers comprehensive view of
the codebase. To our knowledge there is no other tool that
integrates all three features of Pitekün.

IV. RELATED WORK

The projects CodeBubble [5] and Code Canvas [6] have
a similar approach. They use spatial presentation and display
pieces of a codebase in small fragments. Relo [7] and Gaucho
[8] also use spatial presentation similar to UML diagrams.
a typical clue between each fragment of code are oriented
lines which indicate method calls and class hierarchies. Code
Thumbnails [3] uses thumbnail images of a file which make
any part of the file one click away. JASPER [9] provides views
of a code fragments that can be spatially arranged and which
are hyperlinked to their original codebase files. Both attempt
to reduce the overhead when navigating through a codebase.
Pitekün offers more information about a codebase and it aims
to improve a comprehension of the codebase.

The polymetric views are used by various tools. For
example, Hapao [10] support reasoning about test coverage of
a codebase, Rizel [11] facilitates discovering of an application
slowdown. To our knowledge, there is no an application which
uses polymetric views for daily development.

V. CONCLUSION

In this work, we discuss developer information needs and
weaknesses of the current tools. The tool gaps are as follows:
(i) the tools do not allow asking precise questions, (ii) they do
not maintain context among information visible on a screen,
(iii) they do not support piecing information together.

We then propose a new experimental tool, called Pitekün,
which combines three techniques in order to mitigate the
identified gaps: (i) spatial graphical presentation of a codebase,
(ii) visual cues which facilitate identification of a relevant code,
and (iii) polymetric views which offer additional information
about the code and may offer “high-level” comprehensive view
about the codebase.

The Pitekün may improve the developer experience as
follows:

• Context maintenance: The developer can maintain
context in Pitekün by arranging relevant information
close to each other and thus exploiting spatial memory.

• Piecing information together: Pitekün may partially
assist when the developer pieces information together
by the spatial presentation of the codebase and by the
additional visual cues which facilitate orientation in
the codebase.

Future work. Pitekün is an experimental work in an alpha
development stage. Nevertheless, we identify aspects which
may improve a developer’s experience. We continue to ex-
periment with other visual clues and polymetric views which
can improve orientation in a codebase. Consequently, we study
how to use visual techniques for answering more refined and
precise questions identified by Sillito.

ACKNOWLEDGMENT Juraj Kubelka is supported by a Ph.D.
scholarship from CONICYT, Chile. CONICYT-PCHA/Doctorado
Nacional/2013-63130188.

REFERENCES

[1] J. Sillito, G. Murphy, and K. De Volder, “Asking and answering
questions during a programming change task,” Software Engineering,
IEEE Transactions on, vol. 34, no. 4, pp. 434–451, July 2008.

[2] A. Ko, B. Myers, M. Coblenz, and H. Aung, “An exploratory study
of how developers seek, relate, and collect relevant information during
software maintenance tasks,” Software Engineering, IEEE Transactions
on, vol. 32, no. 12, pp. 971–987, Dec 2006.

[3] R. DeLine, M. Czerwinski, B. Meyers, G. Venolia, S. Drucker, and
G. Robertson, “Code Thumbnails: Using Spatial Memory to Navigate
Source Code,” Visual Languages and Human-Centric Computing, 2006.
VL/HCC 2006. IEEE Symposium on, pp. 11–18, 2006.

[4] M. Lanza and S. Ducasse, “Polymetric views - a lightweight visual
approach to reverse engineering,” Software Engineering, IEEE Trans-
actions on, vol. 29, no. 9, pp. 782–795, Sept 2003.



[5] A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri, W. Cheung,
J. Kaplan, C. Coleman, F. Adeputra, and J. J. LaViola, Jr., “Code
bubbles: A working set-based interface for code understanding
and maintenance,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, ser. CHI ’10. New
York, NY, USA: ACM, 2010, pp. 2503–2512. [Online]. Available:
http://doi.acm.org/10.1145/1753326.1753706

[6] R. DeLine and K. Rowan, “Code canvas: Zooming towards better
development environments,” in Proceedings of the 32Nd ACM/IEEE
International Conference on Software Engineering - Volume 2, ser.
ICSE ’10. New York, NY, USA: ACM, 2010, pp. 207–210. [Online].
Available: http://doi.acm.org/10.1145/1810295.1810331

[7] V. Sinha, D. Karger, and R. Miller, “Relo: Helping users manage
context during interactive exploratory visualization of large codebases,”
in Visual Languages and Human-Centric Computing, 2006. VL/HCC
2006. IEEE Symposium on, Sept 2006, pp. 187–194.

[8] F. Olivero, M. Lanza, M. D’Ambros, and R. Robbes, “Enabling program
comprehension through a visual object-focused development environ-
ment,” in VL/HCC, G. Costagliola, A. J. Ko, A. Cypher, J. Nichols,
C. Scaffidi, C. Kelleher, and B. A. Myers, Eds. IEEE, 2011, pp. 127–
134.

[9] M. J. Coblenz, A. J. Ko, and B. A. Myers, “Jasper: An eclipse plug-in
to facilitate software maintenance tasks,” in Proceedings of the 2006
OOPSLA Workshop on Eclipse Technology eXchange, ser. eclipse ’06.
New York, NY, USA: ACM, 2006, pp. 65–69. [Online]. Available:
http://doi.acm.org/10.1145/1188835.1188849

[10] A. Bergel and V. Peña, “Increasing test coverage with hapao,”
Science of Computer Programming, vol. 79, no. 0, pp. 86
– 100, 2014, experimental Software and Toolkits (EST 4): A
special issue of the Workshop on Academic Software Development
Tools and Techniques (WASDeTT-3 2010). [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167642312000706

[11] J. P. S. Alcocer and A. Bergel, “Tracking performance failures
with rizel,” in Proceedings of the 2013 International Workshop
on Principles of Software Evolution, ser. IWPSE 2013. New
York, NY, USA: ACM, 2013, pp. 38–42. [Online]. Available:
http://doi.acm.org/10.1145/2501543.2501549


