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Abstract
Creating bridges or wrappers for libraries developed in differ-
ent languages is a challenging task. We successfully created a
bridge between Pharo and Python to use the neural network
library Keras. The fact that Keras is implemented in Python
is completely transparent to a Pharo programmer.
We present and discuss the architectural decisions in-

volved in the development of the bridge. Our decisions in-
clude the use of command messages for communication be-
tween languages and the use of first-class Pharo objects to
generate and operate Python objects while providing live-
programming capabilities.
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1 Introduction
Nowadays programming languages comewith a large amount
of frameworks and libraries to solve specific problems in an
easy and efficient way. Having access to a vast and power-
ful set of libraries is fundamental for developing software
efficiently in a modern programming language.

Some modern libraries written for C++, Java, Python, and
others have undergo an evolution through the years involv-
ing thousands of engineering hours. Even though these li-
braries have a huge impact for solving the problems for
which they were designed, it is impractical to port them to
many languages because of the cost it would require. This is
specially true for new languages or languages with rather
small communities or supporting groups.
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Currently, Python is the most popular language for de-
veloping machine learning software. This is explained by
the large amount of well written and documented libraries
such as Tensorflow [1], Theano [14], Pytorch [11] and others.
Trying to port any of these libraries to Smalltalk is expen-
sive and producing bindings for them is a demanding and
challenging task.
To address this problem we present our experience for

producing a bridge between Pharo and Python to use Keras,
a deep learning library for building neural networks [5]. Our
bridge allows any Pharo developer to use Keras as if Keras
would be written in Pharo.

This paper describes our bridge for Keras and presents
our experience with building it. To structure this experience
report we took as a running example a neural network built
with Keras and we illustrate the necessary steps with their
difficulties and design decisions.

To bridge the Keras Python library with Pharo we had to
solve the following problems:

• Be able to execute arbitrary pieces of generated Python
code within the same Python instance.

• Be able to efficiently communicate with Python with-
out blocking the Pharo image.

• Be able to provide live-programming capabilities to
the library from Pharo.

• Be able to send and receive objects between Pharo and
Python.

• Be able to wrap library calls in promises that support
callbacks.

• Be able to give meaningful feedback to users about
errors occurring in Pharo or Python.

Result of our effort is accessible on https://github.com/
ObjectProfile/KerasWrapper.

This paper is outlined as follows. Section 2 illustrates the
creation of a neural network in Keras using the Python lan-
guage. Section 3 presents our strategy to make Python ob-
jects first-class entities in Pharo. Section 4 describes the com-
munications between Python and Pharo. Section 5 presents
our architecture to build promises and callbacks across both
languages. Section 6 presents some of the limitations of our
approach and outlines our future work. Section 7 concludes
the paper.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://github.com/ObjectProfile/KerasWrapper
https://github.com/ObjectProfile/KerasWrapper
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2 A Simple Keras Neural Network
Keras is a Python neural network API that works on top of
Tensorflow [1], Theano [14] or CNTK [13]. The objective of
Keras is to deliver an easy way of fast prototyping neural
networks that support state of the art architectures that can
also run seamlessly on CPU and GPU [5].
We present a very simple neural network in Python to

solve the classification problem of the iris dataset using Keras.
The iris dataset [7] consists of a list of flower properties and
the flower category. To keep the description of our example,
we skip the preprocessing of the data, such as performing
the one-hot-encoding of the categories and the splitting of
the dataset into a training and a testing set.

Firstly we must import the required module and classes:
from keras.models import Sequential
from keras.layers import Dense, InputLayer, Activation

We then create the sequential model and add the input
layer, whose size matches the dimension of our dataset vari-
ables:
model = Sequential()
model.add(InputLayer(input_shape=(4,)) #Number of flower properties

We then add a layer with 16 neurons using a sigmoid
activation function:
model.add(Dense(16))
model.add(Activation('sigmoid'))

After that we add the last layer using a softmax activation
function. The number of neurons of this layer must match
with the number of categories (i.e., there are 3 kind of iris
flowers), therefore we use 3 neurons:
model.add(Dense(3))
model.add(Activation('softmax'))

The next step is compiling the neural network, where we
must specify the loss function to be used, the optimizing
technique and the metrics to gather. In our case we use Cate-
gorical cross-entropy, the Adam optimizer and the Accuracy
metric:
model.compile(loss='categorical_crossentropy', optimizer='adam',

metrics=['accuracy'])

Now the model is ready for being trained. To train the
model we must provide a training set of properties (train_X),
the category for each datapoint (train_Y) and the number
of epochs we want to train the model. The output of the
training routine is a dictionary holding the history of the
loss value and accuracy at each epoch.
training_history = model.fit(train_X, train_Y, verbose=0, batch_size=1,

epochs=100).history

The last step is the evaluation of the model, which is per-
formed by passing a testing dataset with the expected cate-
gory for each datapoint.

The output of the evaluation routine is a list of metric
values:
loss, accuracy = model.evaluate(test_X, test_Y)

With these few lines of code in Python we can create a
simple, but functional, neural network. In the next sections
we will show how each part of this network is built with
Pharo and how it is then run in Python.

3 Python Entities as First-Class Objects in
Pharo

One of the key aspects of Pharo is the live-programming
environment and the inspecting capabilities it gives to devel-
opers. We represent each Python entity as a particular Pharo
class.

These classes have three main objectives. The first objec-
tive is defining the Pharo API for using the Python library.
Secondly, being able to keep track of the entities living in
Python and interact with them. The third objective is being
able to provide live-programming features to the entities
running in Python.

In Keras, the very first action to create a neural network is
creating the Sequential model which we define as an object
that holds a list of layers and activation functions. Then we
implemented the add: method to the sequential model for
adding new layers.
"Pharo code"
model := SequentialModel new.
model add: (InputLayer inputDim: 4). "Add input layer"
model add: (DenseLayer neurons: 16). "Add dense layer"
model add: (SigmoidActivation new). "Add sigmoid activation function"

The code above generates the following Python code:
"Python generated code"
knRandomVar = Sequential()
knRandomVar.add(InputLayer(input_shape=(4,))
knRandomVar.add(Dense(16))
knRandomVar.add(Activation('sigmoid'))

Each class is responsible for holding the Python variable
name associated with the represented entity. In this exam-
ple, the SequentialModel instance stores the variable name
knRandomVar which is used in Python to hold the Sequen-
tial object. For simplifying the code snippet we are using
knRandomVar as an example, the variable name in working
examples is randomly generated and consists on a 25 random
character string. This behavior is repeated on all variables
in Python generated code to avoid name conflicts.

Another important responsibility of the class model is pro-
ducing the necessary Python code for using the library and
deciding when to create the objects in Python. Each object
knows how to produce the corresponding Python code to use
the library. In our bridge we opted to use Python3Generator
to generate syntactically correct Python code.
The following method is responsible of generating the

code of a new Dense layer:
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Figure 1.Visualization of training history during 100-epochs
evolution.

DenseLayer>>pyCreate
^ 'keras' asP3GIdentifier => #layers => #Dense callWith: { self neurons }

In contrast to SequentialModel, the DenseLayer Python
code is not executed when the Pharo object is created. In-
stead, the message SequentialModel>>add: is the responsi-
ble of creating the layer in the Python side by sending the
result of DenseLayer>>pyCreate and appending the layer to
the SequentialModel Python object.
The decision of when to dispatch the execution to the

Python environment is entirely delegated to the developer
because we want the bridge to be as flexible as possible to
the requirements of the developers. In the context of the
SequentialModel, we decided that a DenseLayer does not
make sense outside of the model itself, and therefore, the
creation of the layer is delayed until appended to a model.

We can then continue adding elements to the network and
compile the model when it is ready.
"Pharo code"
model add: (DenseLayer neurons: 3). "Add dense layer"
model add: (SoftmaxActivation new). "Add softmax activation function"
model
compileLoss: KNCategoricalCrossentropyLoss new
optimizer: KNAdamOptimizer new.

The code above generates the following Python code:
"Python generated code"
knRandomVar.add(Dense(3))
knRandomVar.add(Activation('softmax'))
knRandomVar.compile( optimizer=Adam(),

loss='categorical_crossentropy',
metrics=['accuracy'])

Inspecting library entities. Because we have first class ob-
jects we can add views to the inspector to improve the live-
programming experience when using external libraries. For

gathering the data we can communicate with the Python
entity, if it defines appropriate getters, or hold a partial state
of the object in Pharo. We prefer the second option because
it simplifies the debugging when developing the library.
For Keras we implemented a new view in the GTInspec-

tor [3] for the TraniningHistory, which holds the evolution
of the training metrics during the training of the model. Fig-
ure 1 presents the new view that contains a line graph of the
metrics using Roassal [2].
Modeling the domain.We have not developed a translating
mechanism that generates Pharo bindings from Python code.
Instead, we manually designed how Keras should be exposed
in the Pharo environment. Up to now, the design is driven
by user stories, as the presented in Section 2 and is highly
influenced by Keras Python object model. An example of
this is that all first-class objects presented in this section do
also have a first-class object representation in the original
Keras library written in Python.
For this reason, our Keras implementation for Pharo is

not complete, but it features a working subset of Keras that
allow us to create functional neural networks.

4 Communication with the Python Library
Until now we have stated that our wrapper objects can com-
municate with the Python entities, but we have not explained
how they do it. The main architectural decision we have
made is that the basic communication element from Pharo
to Python is a command. Each of them includes a piece of
Python code and a set of bindings to build the Python envi-
ronment where the code will run.

When a command is sent, it is serialized as a message and
asynchronously sent to Python, which appends it to a list
of commands to be executed. The Python main thread is
continuously consuming and executing the commands to
finally return the resulting expression of each of them back
to Pharo.

4.1 Python code generation
To generate Python code we use Python3Generator [6], a
library that implements a domain-specific language for gen-
erating syntactically correct Python code. One of the greatest
strengths of this library is that you can easily compose ele-
ments to build complex code snippets. An example of this is
the implementation of compileLoss:optimizer:metrics:
method in SequentialModel:
compileLoss: loss optimizer: optimizer metrics: metricsArray
...
Keras send: (
pyVar => #compile "Send message compile to pyVar"

callWith:#() "Sequential arguments"
with: { "Named arguments"
#optimizer −> optimizer pyCreate.
#loss −> loss pyCreate.
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#metrics −> (metricsArray collect: #pyCreate)
} asDictionary)

The last instruction executed by this method is sending
the message Keras send:, which receives as argument a
P3GGenerable and sends a command to Python with the
code generated with it.
A P3GGenerable is a representation of a Python expres-

sion built using Python3Generator. In this case, the expres-
sion generated is sending the message compile to the object
stored in the variable pyVar with no sequential arguments
and three named arguments: the optimizer, the loss function
and the metrics.

Each of the named arguments is represented as an associa-
tion which has the argument name as key and the argument
expression as value. Since optimizer, loss and the metrics are
modeled as first class objects, we send the message pyCreate
to generate the P3GGenerable for each of these objects.

The following code snippet shows the implementation of
AdamOptimizer>>pyCreate method:
AdamOptimizer>>pyCreate
^ #Adam asP3GI callWith: #()

The method above returns the Python expression Adam()

which is used to build the model compile expression.
Finally, the resulting expression from SequentialModel>>

compileLoss:optimizer:metrics: method of the example
is:
knRandomVar.compile(
optimizer=Adam(),
loss=categorical_crossentropy,
metrics= [ 'acc' ] )

Even though the idea to treat optimizers, loss functions
andmetrics as first class objectsmay be seen as over-engineering,
the models required to represent these components are not
trivial and accept many parameters that enable their cus-
tomization. An example of this is that SGD optimizer have 4
different parameters being SGD(lr=0.01, momentum=0.0,

decay=0.0, nesterov=False) a reasonable construction.

4.2 Command pattern for the communication
The command is the most important unit of communication
between Pharo and Python. It enables execution of arbitrary
code in Python, defining the environment variables for the
call and communicating the result of the last Python ex-
pression in the command back to Pharo. The Command has
three essential parts: A command id, the Python code and
the bindings.
Command Id. Each command has a unique id used to iden-
tify a command at any moment in the execution. This id is
used to verify if the command has been already executed in
Python or to know in which position is it in the command
list queue. This id is also used to feedback Pharo about errors

occurred when executing a command or to deliver back a
value after the execution of one.
Python code. Each command holds a Python script that
will be executed in Python. The code snippet is stored as a
P3GGenerable and it is only converted to source code as part
of the serialization of the command.
Python bindings. Each command has a list of associations
where the key corresponds to a Python variable name and
the value is an object that is serialized and then bounded to
the declared variable name.

Knowing how bindings work we can describe how to train
the Keras model of our example. The following message is
sent to train the model:
SequentialModel>>fit: trainX labels: trainY epochs: numberOfEpochs
^ Keras

send:
(pyVar => #fit
callWith: { #trainXVar asP3GI. #trainYVar asP3GI }
with: {
#verbose −> 0.
#batch_size −> 1.
#epochs −> numberOfEpochs.
} asDictionary)

bindings: {
#trainXVar −> trainX.
#trainYVar −> trainY }.

The arguments trainX and trainY are bounded to the
Python variables trainXVar and trainYVar, which are
then used by the generated code as arguments of the fit
function. The code generated by this method is the following:
knRandomVar.fit(trainXVar, trainYVar,

verbose=0, batch_size=1, epochs=100)

Notice that we can also replace trainXVar and trainYVar

variable names with randomly generated variable names to
reduce conflicts with other variables.

4.3 Serialization of objects
An important step for delivering the commands between
Pharo and Python is the serialization of the bindings. The
serialization component is designed for receiving any kind
of Pharo object. Before the command is sent to Python a se-
rialization visitor is responsible of building a representation
for each object that will be deserialized in Python for its use.

Currently we only have used a simple JSON serialization
for the most common objects, such as Dictionaries, Arrays,
Strings, Numbers, Booleans and Nil. At this stage we use
JSON because most languages already have out of the box
JSON serialization tools, but we are aware that we could
greatly improve memory consumption by using a compact
binary serialization. Despite that, we will soon extend our
serialization component to support sparse matrices to cope
with one-hot-encoded matrices, which are very large tables
where most values are 0.
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4.4 Python command queue and execution
The length of a command execution can vary a lot depending
on the task asked to Python. For this reason we opted for
using asynchronous messaging for commands. To support
this, Python has a queue of commands waiting to be exe-
cuted. Each new command sent by Pharo is queued in and
an answer is immediately sent back to Pharo, preventing
blocking Pharo for a long time.
The first step to execute a command is to include the

bindings of the command into a Python environment scope.
This scope is initially empty, but is shared between all the
commands executed so the command Python code can find
and use objects created by other commands.
Python then executes the generated code by using the

exec function [8]. This allow us to manipulate at will the
environment scope and to generate and execute arbitrary
code from Pharo and executing it in Python without the need
of restarting it.

4.5 Message delivery between Pharo and Python
Because we are sending asynchronous messages between
the two runtimes, both of them need to be capable of send-
ing and receiving messages. Pharo needs to be able to send
commands to Python, and Python needs to be able to send
notifications to Pharo once a command execution has fin-
ished. Architecturally speaking, both will behave as servers
and clients at the same time.

For simplicity we are using HTTP for delivering messages.
We are aware that we can improve the performance replacing
the HTTP protocol with a dedicated messaging protocol over
a socket. We decided to postpone that change in order to
push and validate other design decisions presented in this
paper.
Messages sent by Pharo. The messages sent by Pharo are
the commands to be executed by Python we have detailed
before.
Messages sent by Python. Python sends two kind of mes-
sages. The first message is notify, which is used to let Pharo
know that a command execution has finished and deliver the
return value of the command to Pharo. The second message
is notifyError, which is used to let Pharo know that an error
has occurred in the execution of a specific command. The er-
ror message contains the command id and an error message,
which allow us to improve the debugging experience.
Communication schema. Figure 2 presents a schema de-
tailing how different components in Pharo and Python inter-
act when SequentialModel>>fit:labels:epochs: is called.
The main thread in Pharo creates a new command, a

promise for the return value and sends the command to
Python for its execution. In this example we have introduced
a waiting promise, which halts the execution until the com-
mand has been executed in Python. Promises are discussed
in more detail in Section 5.

When receiving the command, the Python HTTP server
immediately pushes the new command to the Command
Queue. A second Python process is executing the commands
in the queue, and eventually, will execute the command
described in this example. When the command execution is
finished, a notify HTTP message is sent back to Pharo.
A background Pharo process running an HTTP server is

responsible of processing the notify message. The first step
is retrieving the promise associated to the command using
the command id. The return value included in the notify is
then deserialized and introduced into the promise. Lastly, the
promised is signaled allowing the main thread to continue
its execution.

4.6 Error inspection and debugging
When executing arbitrary code in Python there is always
the possibility of an error raising on the execution. We use
a try-catch handler responsible of delivering a notifyError
message back to Pharo when an error occur in Python. This
routine halts the execution until a decision about how to
deal with the error is sent back from Pharo.
When Pharo receives notifyError it crafts a Pharo excep-

tion called P3PythonError. This object holds the Python
command that signaled the error and the message generated
by Python about the error. After that, the P3PythonError

instance is signaled and the developer can decide how to
recover from the error.
We currently support 3 different actions for recovering

control of the execution:
• Ignore command: Discard the command that raised
the error and continue the execution with the next
command in the command queue.

• Replace command: Discard the command that raised
the error and execute instead another command to
recover the state of the execution. Then continue exe-
cuting the next command in the command queue.

• Drop queue: Discard all the following commands in
the command queue. Then Python waits until new
commands are pushed from Pharo and execute them
normally.

5 Promises and Callbacks
When a command is sent, Pharo does not wait to receive
the result of the execution from Python because it could
take a long time. Instead, it creates a promise, a value holder
object that is aware of the Python command execution and
is responsible of update the held value when the execution
successfully finish.
The API also allows developers to define callbacks for

promises. Callbacks fulfill two particular objectives: letting
the user define a block to use the value when received and
being able to transform the received object in a business-
domain object defined in Pharo.
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Pharo Process 1
Main Thread

Pharo Process 2
HTTP Server

Python Process 1
HTTP Server

Python Process 2
Command Queue

Create Promise
Promise id1 Send Command id1

Dequeue Command id1
Enqueue Command id1

Execute Command id1
knRandomVar.fit( … )Send Notify for Command id1

Promise WAIT

Create Command id1
knRandomVar.fit( … )

Promise AWAKE

Set return value for 
Promise id1Signal Promise

Promise id1

Figure 2. Communication schema for SequentialModel»fit:labels:epochs:

We use this capability to receive a TrainingHistory object
as result of the SequentialModel>>fit: method, instead of
a simple dictionary:
SequentialModel>>fit: trainX labels: trainY epochs: numberOfEpochs
^ Keras

send: ...
bindings: ...
transformBlock: [ :dictionary |

TrainingHistory model: self history: dictionary ]

The TrainingHistory object allow us to define new meth-
ods to query for the history of specific metrics, generate
visualizations easier and generate new inspector views for
the data.

Sometimes the business logic can not continue without re-
ceiving the result from Python. The API offers the capability
of waiting for the value using simply the waitForValue
message. We use this message in our example to store the
training history and the result of evaluating the network in
a variable:
trainingHistory := (model fit: trainX labels: trainY epochs: 100)

waitForValue.
trainingHistory metrics. "−> #('loss' 'accuracy')"
metricValues := (model evaluate: testX labels: testY) waitForValue.
metricValues. "−> #(0.124 0.987) −− loss and accuracy"
...

6 Limitations and Future Work
We have identified three important improvements to be im-
plemented:
Messaging protocol instead of HTTP. HTTP is one of the
most used application level protocol, but it was not designed

to excel at message delivering. To simulate a messaging pro-
tocol we defined URL end-points. There are specialized pro-
tocols for message delivering such as ZeroMQ or gRPC that
would lower the latency of the communication.
Compact binary serialization instead of JSON. JSON is
an open-standard format that transmit data objects as human-
readable text. It is well known that JSON format file size is
not optimal and a significant amount of memory can be
saved by using binary encoding [10].
Memory management tools. Currently we do not offer any
memory management support to the developers. If they cre-
ate variables or bindings, they are responsible for detaching
those references to prevent memory leaks. To solve this
problem we will define tools for declaring and enforcing the
life-expectancy of each reference using different policies:

• Eternal: The binding will not be removed.
• Command: The binding will be removed after the com-
mand execution is finished.

• Pharo garbage collection: The binding is associated to
a Pharo object and it will be removed once the Pharo
object is garbage collected.

Comparison with other bridges.As future work we expect
to exhaustively compare our bridging architecture with other
solutions. Two bridges that are relevant to compare with are:

• Atlas: As stated in their webpage, it consists on a
Python bridge that uses inter process communication
stream sockets to allow communication between Pharo
and Python. [4]

• IPython: It consists on a library to provide a Python
kernel for interactive computing. [12] The most no-
table usage of IPython is the Jupyter Notebook, a web
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application to create and share documents with live
code. [9]

7 Conclusion
We presented our experience in designing a bridge between
a Python library and Pharo and the implementation of it
for bridging Keras. Our bridge defines first-class objects in
Pharo to wrap Python entities and generate Python code.
We also describe how we implement remote executed code
in a Python environment from Pharo while preserving a
live-programming experience.
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