
Object Equivalence: Revisiting Object Equality
Profiling (An Experience Report)

Alejandro Infante
Pleiad Lab, DCC, Universidad de Chile, Chile

ainfante@dcc.uchile.cl

Alexandre Bergel
Pleiad Lab, DCC, Universidad de Chile, Chile

abergel@dcc.uchile.cl

Abstract
Modern object-oriented programming languages greatly alle-
viate the memorymanagement for programmers. Despite the
efficiency of garbage collection and Just-In-Time program
analyzes, memory still remains prone to be wasted.

A bloated memory may have severe consequences, includ-
ing frequent execution lags due to a high pressure on the
garbage collector and suboptimal object dependencies.

We found that dynamically monitoring object production
sites and the equivalence of the produced objects is key
to identify wasted memory consumption caused by redun-
dant objects. We implemented optimizations for reducing
the memory consumption of six applications, achieving a
reduction over 40% in half of the applications without having
any prior knowledge of these applications.

Our results partially replicate the results obtained by Mari-
nov and O’Callahan and explore new ways to identify redun-
dant objects.

CCS Concepts • Software and its engineering → Soft-
ware performance; Object oriented development;

Keywords object equivalence, cache, memory bloat, profil-
ing
ACM Reference Format:
Alejandro Infante and Alexandre Bergel. 2017. Object Equivalence:
Revisiting Object Equality Profiling (An Experience Report). In
Proceedings of 13th ACM SIGPLAN International Symposium on Dy-
namic Languages (DLS’17). ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3133841.3133844

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
DLS’17, October 24, 2017, Vancouver, Canada
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5526-1/17/10. . . $15.00
https://doi.org/10.1145/3133841.3133844

1 Introduction
Memory consumption is a major concern for most non trivial
software [12]. Memory is used to store the resources used
in software executions, which are constantly allocated and
released.
Management of memory resources constitutes a funda-

mental task in software development. In object-oriented lan-
guages, memory is usually consumed by objects, which are
created and destroyed continuously during the execution of
a program. Manually handling the memory is a complex and
prone-to-error activity.
The garbage collector is a sophisticated and optimized

component for removing objects from memory that are no
longer necessary. The use of an automatic memory manage-
ment greatly alleviates the programming activity. On the
other hand, the ease of creating objects without concern for
their destruction contributes to conveying the feeling that
creating objects leaves a small memory footprint. Studies
show that it is not the case and objects are frequently and
unnecessary created [2, 5].
In 2003, Marinov and O’Callahan [7] proposed a profil-

ing technique called object equality profiling. This technique
identifies redundant objects by inferring groups of objects
qualified as mergeable. These groups of objects have the
property of being shareable between them, i.e., a single ob-
ject of the group may be used to replace any other object of
the group. Identifying groups are then important, because
reducing the size of mergeable objects significantly reduce
applications memory consumption.
Marinov et al. applied their technique to the SpecJVM98

benchmark, which identified a significant amount of merge-
able objects. Although appealing, the proposed technique
has not been used in an industrial environment. We believe
there are two reasons for its low acceptance:
• Unknown mergeability site - Marinov and O’Callahan’s
model ignores object mergeability sites, i.e., the ex-
act location in the source code where two or more
objects become mergeable. Therefore identifying opti-
mization sites is left to the programmer. Our experi-
ence shows that addressing excessive object creation
without knowing their object creation contexts is chal-
lenging.
• Not reproducible results - Marinov and O’Callahan de-
scribe with great care many aspects of object equality

27

https://doi.org/10.1145/3133841.3133844
https://doi.org/10.1145/3133841.3133844

DLS’17, October 24, 2017, Vancouver, Canada Alejandro Infante and Alexandre Bergel

profiling and their experiment. However, some of an-
alyzes exercised on the graphs of objects are not suf-
ficiently detailed, which prevent us from replicating
their experiment.

This paper revisits Marinov’s original contribution. We
present and carefully analyze object equivalence, a technique
to identify redundant objects and efficiently avoid memory
waste in object oriented languages with classes. Our tech-
nique features the followings:
• We propose the object equivalence definition, which
requires a relaxed notion of immutability we define as
unchanged. In contrast, the approach of Marinov does
not require immutability, but introduces the notion of
mergeability at time t. Time t represents a checkpoint
in the execution when a pair of objects become merge-
able, then these objects may only mutate prior to t . Our
approach has the advantage of simplifying memory
analysis without losing optimization opportunities.
• Each object creation is associated to its exact location
in the source code and a portion of the runtime stack.
This is a relevant when removing an unnecessary ob-
ject creation.
• Our model supports specific notion of equivalence,
tailored to identify redundancy in numerical values,
string, points, and collections. Though tailoring the
definition for specific classes increase the complexity
of the analysis, a reduced set of tailored classes has a
significant impact on identifying memory consump-
tion.

To evaluate our technique we designed an experiment that
(i) measures the memory bloat our profiler is able to detect
and (ii) measures the impact of the memory optimizations
we are able to implement using the feedback of our profiler.
We execute our experiments using Pharo (http://pharo.org/),
which offers a simple object model and runtime. In total, we
have carried out an analysis over six large Pharo applications.
Contributions. The paper makes the following contribu-
tions:
• We carefully analyzed the object productions of six
large Pharo application executions and found that, on
average, 46.3% of the objects are equivalent, i.e., objects
that may be removed without affecting the application
behavior. These objects represent 45% of the memory
consumption of the application.
• Wehavemanually implemented 14 optimizations (mostly
caches) and we have reduced memory consumption in
more than 40% on half of the studied applications.
• We partially replicate Marinov et al.’s experiment. We
discuss thoroughly their approach similarities and dif-
ferences from our approach. For example, we found
that the class String and Point are indeed a cause of
redundant objects.

• We introduce the concept of kernel objects, which treats
objects from known core libraries in a different way
for achieving better performance or results.

Findings. Our findings:
• We found that a reduced set of classes in the core li-
braries of the language contribute to the largest mem-
ory saving opportunities.
• Strongly connected components do not contain equiv-
alent objects.

Outline.The paper is structured as follows. Section 2 presents
object equivalence, our technique to identify redundantmem-
ory consumption. Section 3 describes the experiment we
conducted to assess the relevance of object equivalence in
relevant software executions. Section 4 runs our experiments
and presents our results. Section 5 highlights some relevant
aspects of our implementation. Section 6 positions our work
against Marinov’s experiment. Section 7 describes the work
related to our effort. Section 8 concludes out work.

2 Object Equivalence
2.1 Intuition
We define object equivalence, ≈, a condition between objects
describing redundancy. We say that two objects are equiva-
lent, o1 ≈ o2, if making all objects pointing to o1 to point to
o2 preserves the program invariant, i.e., does not affect the
program behavior.

A B C D

o1 o2

A B C C

o1 o2
o1 ≈ o2

Figure 1. Object equivalence relation

Figure 1 illustrates this idea: if o1 is equivalent to o2 dur-
ing the whole execution of the application, the creation of
o1 may be considered as unnecessary and may be avoided
without impacting the invariant of the program. Intuitively,
two objects are equivalent if:
• both objects are instances of the same class;
• both objects instance variables reference the same ob-
jects or equivalent ones;
• the identity hash value is never retrieved and object
pointers are never compared for both objects;
• both objects remain unchanged, beyond their initializa-
tion. This means that instance variables values do not
change after the object construction and initialization.

2.2 Object Equivalence

Unchanging Objects. Identifying whether an object has a
varying state during the application execution is a critical

28

http://pharo.org/

Object Equivalence: Revisiting Object Equality Profiling DLS’17, October 24, 2017, Vancouver, Canada

aspect of our approach. In order to reduce memory bloat
from equivalent objects, both objects are required to remain
unchanged during the rest of the execution. Unchanged prop-
erty is required for ensuring that equivalence is preserved
during the execution.

Definition 1. Let t , t ′ ∈ T , being T the timestamps of all
operations performed over the object o. An object o is un-
changed, written unchanged(o) iff:

∀f ∈ instVars (o)

∄t < t ′

o. ft , NULL and o. ft , o. ft ′

Where o. ft represents the value of the instance variable
f of the object o at instant t of the execution. For instance,
this definition forbids an object instance variable o. f from
having a different value after being initialized.
Unchanged property is a more permissive property than

object immutability, enabling objects to be initialized out-
side objects constructor and to have lazy initialized instance
variables.
Identity Operations. The object identity allows the pro-
gram to distinguishing two objects that may be shared. A
known example of an identity operation is the identity test
called using == in Java and Pharo. As soon as the object iden-
tity is used, then the object is not equivalent to any other
object.
An object o does not expose its identity, noIdExpose(o) iff

there is no identity based operation applied to o during the
program execution. In our experiment setting, the opera-
tions we consider are (i) object reference comparisons (use
of ==) and (ii) using default hash implementation (use of
identityHash in the Pharo programming language).
Object Cycles.When configuring the equivalence of two ob-
jects to depend on the equivalence of their instance variables,
we are defining a recurrence relation. Cyclic structures have
to be treated in a particular way to compare them. Therefore,
we differentiate whether the relation is used with objects in
a cycle or not. An object o belongs to a cycle iff:

∃f1, f2, ..., fn |o. f1. f2.... fn = o

Object Equivalence. Consequently we define object equiv-
alence, o1 ≈ o2 in two different cases:

Definition 2. If both o1 and o2 do not belong to a cycle, then
o1 ≈ o2 iff:

o1 = o2 or

class(o1) = class (o2)

∀f ∈ instVars (o1) | o1. f ≈ o2. f

unchanдed (o1) and unchanдed (o2)

noIdExpose (o1) and noIdExpose (o2)

The condition that all the instance variable pairs must be
equivalent, ensures that all the possible paths from the ob-
jects must reference equivalent objects. Therefore, an object
that does not belong to a cycle can not be equivalent to an
object that does belong to one, and viceversa.

Definition 3. If botho1 ando2 belong to a cycle, theno1 ≈ o2
iff o1 = o2 or:

∀k ∈ {1, ...,n} |

*...........
,

class (e1k) = class (e2k)

∀f ∈ instVars (e1k) |

e1k . f = e1t =⇒ e2k . f = e2t e1k . f ∈ scc (o1)

e1k . f ≈ e2k . f e1k . f < scc (o1)

unchanдed (e1k) and unchanдed (e2k)

noIdExpose (e1k) and noIdExpose (e2k)

+///////////
-

Where scc (o1) = (e11, ..., e
1
n) and scc (o2) = (e21, ..., e

2
n), with

scc a function that returns the list of objects belonging to the
strongly connected component, using a depth-first search.
We have e11 = o1 and e

2
1 = o2.

By definition, the nodes in a graph belonging to the same
cycle are members of the same strongly connected compo-
nent. A strongly connected component (SCC) is a set of nodes
that for every node a path to every other nodes exists. An
essential property of SCC is that there must exist at least
one cycle that involves all the nodes of the same SCC. Fur-
thermore, if o1 and o2 belong to different strongly connected
components then there is no cycle that contains o1 and o2 [3].

The definition above indicates that two objects are equiv-
alent iff they are instances of the same class and the object
graphs reachable from the objects are equivalent. In the case
that o1 does not belong to a cycle the recurrence is straight-
forward, since a recursive definition always finds a base case.
For the case that o1 does belong to a cycle, we have to ana-
lyze: (1) the topology of the strongly connected component
and the relative position of each member and (2) all the ref-
erences from the strongly connected component members
to other parts of the object graph.

2.3 Object Characterization
For the analysis we characterize the objects produced during
the execution of a program P (i.e., set of classes composing
the program) and using a runtime R (i.e., set of classes used
by P but defined in system libraries) in three distinct groups:
• Domain objects corresponds to instances of the classes
that belong to P . A domain object typically describes
an entity created and modeled by P . Equivalent do-
main objects are described by the≈ relation, previously
given.
• External objects refer to instances of classes that are not
defined in P . External objects are created by libraries
used by P or directly generated from R. We consider
these objects as non-equivalent.

29

DLS’17, October 24, 2017, Vancouver, Canada Alejandro Infante and Alexandre Bergel

• Kernel objects are a subset of the external objects for
which it is known that they are prone to be redundant
(e.g., String, Point). A kernel object is an instance of
a class defined in R.

The object equivalence definition given previously is used
to identify redundant objects characterized as domain objects.
Kernel objects are subject to particular object equivalence
relations, as described below.

2.4 Kernel Objects
Kernel objects are defined by the language or libraries and
have a known invariant. We use this in
Numbers. Numbers are part of the core of the system and
are widely used in software systems. In Pharo, a number
is represented as an immutable instance of a class belong-
ing to the Number class hierarchy. As in most programming
languages, the numbers library provides different represen-
tations for the same value. For example, the value 4 can be
represented as the integer 4, the float 4.0, the fraction 8/2, or
as a large integer. All numbers representing the same value
are equivalent.
String. Strings are part of the core of the system and their
manipulation may lead to unnecessary intermediate objects.
Because Strings are immutable, two strings having the same
ordered set of characters are then equivalent objects.
Collections. Collections are intensively used. Our equiva-
lence relation for kernel objects considers the most four
frequently used collections: Array is a fixed-size collection;
OrderedCollection is an expandable sequential collection;
Set describes an unordered expandable collection; Dictionary
is an expandable unordered key-value collection. We have
the following equivalence relations:
• An array is equivalent to another array if its size and
content are the same and both meet the unchanged
property.
• An ordered collection is equivalent to another ordered
collection under our approach if their sizes at the end
of the execution are the same, their contents are identi-
cal, and the collections have been filled only appending
elements at the end, without removing elements.
• A set is equivalent to other sets if their size and con-
tents are the same, while forbidding elements removal.
• A dictionary is equivalent to other dictionaries if their
sizes are the same, they have the equivalent keys asso-
ciated with equivalent values and that no association
{key,value} is redefined in the dictionary during the
execution.

These relations ignore the inner state of collections such
as collection capacity or the inner hash table.
Point andRectangle.Graphical applications do heavily rely
on the classes Point and Rectangle. In Pharo, these classes
are immutable as value objects, which implies that their
equivalence is trivially determined.

Association. Associations are simple key / value pairs and
are widely used in the implementation of Dictionaries and
other structures. Two associations are equivalent if both
their keys and values are equivalent.
Pharo does not strictly prohibit Numbers, String, Point

and Rectangle mutation, but their immutability is a known
invariant and mutations are infrequent.

2.5 Equivalency Example
Consider the following contrived example using a Java syn-
tax:

class A {
B ivar1;
C ivar2;

}
class B {
A ivar3;

}
class C {
int ivar4;

}

main() {
A a1 = new A();
B b1 = new B();
C c1 = new C();
A a2 = new A();
B b2 = new B();
C c2 = new C();
a1.ivar1 = b1;
a1.ivar2 = c1;
b1.ivar3 = a1;
c1.ivar4 = 33;
a2.ivar1 = b2;
a2.ivar2 = c2;
b2.ivar3 = a2;
c2.ivar4 = 33; }

c2

Polygon shape: Class of the object
Edge label: Instance variable name
No shape values: Primitive values

a1

b1 c1

a2

b2

33

Class A

Class B

Class C

ivar1

ivar3
ivar2

ivar4 ivar4

ivar2
ivar1

ivar3

Figure 2.Object graph of example which shows thata1 ≈ a2,
b1 ≈ b2, and c1 ≈ c2.

The snippet of code generates the object graph shown in
Figure 2. We can identify two portions of the graph that are
equivalent between them. We deduce that c1 ≈ c2 because
both objects reference the same object, the integer 33.
In order to evaluate if a1 is equivalent to a2, we analyze

the possibilities of equivalence between the cycles {a1,b1}
and {a2,b2}. Firstly scc (a1) = (a1,b1) and scc (a2) = (a2,b2),

30

Object Equivalence: Revisiting Object Equality Profiling DLS’17, October 24, 2017, Vancouver, Canada

then a1.ivar1 = b1 holds the same position in the strongly
connected component as a2.ivar1 = b2. For a1.ivar2 = c1 is
equivalent to a2.ivar2 = c2. Finally b1.ivar3 = a1 which is
matched by b2.ivar3 = a2. With all these, and ensuring that
no mutations and identity based operations are performed,
we conclude that a1 ≈ a2, b1 ≈ b2 and c1 ≈ c2.

2.6 Equivalent Object Group
Object equivalence is an equivalence relation. It is then pos-
sible to group objects into equivalence groups.

Definition 4. Object Equivalence Group:
Let O be the set of all objects allocated by a program. We
define the object equivalence group of the object a using the
notation [a] as:

Be O all objects in the execution.
[a] = {o ∈ O |o ≈ a}

The main property of these groups is that only a single
element of the group is required in the execution. The rest
of the elements of the group are redundant.

The object groups are defined by the equivalence relation
definition. Therefore, do not hold a relation with the place
or moment of the computation where they were created.
Despite that, identifying the allocation or creation context is
fundamental in order to reduce the bloat, which is performed
by allowing the garbage collection of redundant objects or
avoiding their creation.

3 Design of the Experiment
This section describes the experiment we performed to assess
our technique to identify equivalent objects.

3.1 The Pharo Object Model
We use the Pharo programming language in our experiment
as the execution and analysis platform. We chose Pharo
for the simplicity of both its object model and its runtime.
Pharo’s object model is uniform: Pharo does not contains
primitive types, which means that all the computation hap-
pens by sending messages.

3.2 Experiment
To evaluate our technique and compare it with the related
work, we introduce an experiment that uses our profiler on
a representative benchmark suite. The data is then analyzed
to achieve the following specific objectives:

1. Measure the overall memory redundancy bloat of a set
of representative software executions.

2. Measure the memory consumption of redundant ker-
nel objects.

3. Evaluate the impact of memory optimizations pro-
posed for reducing memory bloat.

To achieve the proposed objectives we use the following
methodology for the experiment:

1. Build a representative benchmark suite for which to
apply our technique.

2. Propose a set of metrics that enable the objectives of
the experiment.

3. Run the profiler on the benchmarks and obtain the
profiler report.

4. Compute metric values of execution before implement-
ing optimizations from the profiler report.

5. Analyze profiler report and implement optimization
for all applications in the benchmark suite.

6. Rerun the profiler on the benchmark suite with the
optimizations and obtain the report of the profiler.

7. Compute metric values of execution after implement-
ing optimizations.

3.3 Metrics
Equivalent objects indicate an opportunity to improve the
memory management. Avoiding their creation reduces the
memory footprint without changing the application behavior.
To measure the amount of redundant objects and measure
the effect of the memory footprint reduction, we provide a
set of 15 metrics to cover the different aspects of memory
management related to equivalent objects. Table 1 lists our
metrics.
Related to the Number of Objects. As described in Sec-
tion 2.3, objects created during a program execution belong
to one of three distinct groups. We therefore provide the
metrics NDO, NKO, NEO describing the number of domain,
kernel, and external objects, respectively. In addition, we
measure the number of non-primitive objects, named NOP,
which represents the total number of objects with non-zero
memory consumption. Both SmallInteger and the special
value nil are encoded into their reference, without consum-
ing space in the heap. Our approach therefore consists in
reducing the NOP value for our benchmark.
Related to EquivalentObjects.Wedefine 5metrics formea-
suring the quantity of equivalent objects on the execution.
We then define NEqD and NEqK as the number of equiva-
lent domain and kernel objects, respectively. Furthermore
we define NEqO, which corresponds to the total number
of equivalent objects and this metric is the sum of the two
previous metrics. Lastly we describes the number of equiva-
lence groups using NEqDG and NEqKG, being the number
of domain groups and kernel groups, respectively.
The number of equivalent object groups represents the

quantity of objects that are needed to fulfill the behavior
of all the objects of the category. For example, NEqDG is
the minimum number of objects needed to represent all
of the NEqD objects. The ideal case for reducing memory
consumption corresponds to low amount of groups and a
high amount of equivalent objects.
Related toMemory Consumption.We provide 6 metrics to
detail the memory consumption:MDO andMKO describe

31

DLS’17, October 24, 2017, Vancouver, Canada Alejandro Infante and Alexandre Bergel

Table 1.Metric definitions

Short Metric
Number of Objects by category

NOP Number of Non-Primitive Objects
NDO Number of Domain Objects
NKO Number of Kernel Objects
NEO Number of External Objects (Excluding NKO)

Number of Equivalent Objects by category
NEqO Equivalent Objects
NEqD Equivalent Domain Objects
NEqDG Domain Objects Equivalence Groups
NEqK Equivalent Kernel Objects
NEqKG Kernel Objects Equivalence Groups

Memory Consumption by category (KB)
MOP Non-Primitive Objects
MDO Domain Objects
MKO Kernel Objects
MEqO Equivalent Objects
MEqD Equivalent Domain Objects
MEqK Equivalent Kernel Objects

the amount of KB consumed by domain objects and kernel
objects respectively; MOP is the total memory consump-
tion of the application as the addition of the previous two
metrics; MEqD and MEqK describe the amount of KB con-
sumed by equivalent domain and equivalent kernel objects
respectively; MEqO is the amount of memory consumed by
all the equivalent objects, which corresponds to the addition
of the previous two metrics.
Expected Variations. These metrics allows us to measure
the impact of equivalent objects in the memory consumed by
our benchmark. An improvement on memory consumption
is reflected by a reduction on the number of objects (NOP)
and total memory consumption (MOP). Furthermore, this is
related to a reduction in the number and memory used by
equivalent objects (NEqO and MEqO), which are the target
object for optimizations in this research.

3.4 Benchmarks
We have considered six applications in our benchmark: Roas-
sal2 (a visualization engine), Nautilus (a source code browser),
SciSmalltalk (a scientific library), NeoJSON (JSON parser),
NeoCSV (CSV parser), and PetitParser (a parser framework).
These applications are heavily maintained by the Pharo com-
munity and represent valuable assets.
We have a representative execution using a large input

provided by the author of each application.

4 Results
We present the measurement obtained from computing the
metrics during the execution of our set of applications (Sec-
tion 4.1). We then discuss the optimization we manually
implemented and their impact on the memory footprint (Sec-
tion 4.2).

4.1 Metrics Analysis

Number of Objects.We have run our analysis on each ap-
plication composing our benchmark. Table 2 gives the met-
ric values for our benchmark. The NOP column sums the
columns NDO, NKO, and NEO. The complete benchmark
execution produces over 1.1M objects, for which 22% are
domain objects (i.e., object instances of the class defined by
the applications), 68% are kernel objects (e.g., numbers, col-
lections, strings), and only 10% are external objects. This
measurements highlight that a significant portion of created
objects during an execution are kernel objects.
Equivalent Objects. Table 3 gives the number of equivalent
objects measured in our benchmark. Half of our benchmarks
report that more than 65% of the objects created are equiva-
lent (NEqO column), being the average ratio of equivalent
objects 46.3%. We also report that 38.6% of the total number
of objects corresponds to equivalent kernel objects (NEqK
column).

Figure 3 shows that NEqK is in high proportion, represent-
ing over 40% of the objects for all applications but one. NEqD
tops at 28% for the PetitParser application, but we found
equivalent domain objects only on 2 of the 6 benchmarks.
We have the relation NEqO = NEqD + NEqK: the number of
equivalent objects is equal to the number of equivalent do-
main objects summed up with the number of equivalent ker-
nel objects. These figures indicate that a significant portion
of kernel objects are redundant during a program execution.

Also we distinguish that SciSmalltalk benchmark is an out-
liner because only 1,773 objects were found to be equivalent,
representing 0.5% of the total number of objects.

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

Roasssal2 Nautilus SciSmalltalk NeoJSON NeoCSV PetitParser

DomainObjects Kernel Objects External Objects
Equivalent Domain Objects Equivalent Kernel Objects

Figure 3. Distribution of objects and equivalent objects in
benchmarks.

Memory Footprint. Table 4 gives the memory footprint of
objects produced during the benchmark execution. The col-
umn MOP gives the memory used by non-primitive objects,
i.e., objects that are not nil or small-integers. It indicates
that the 1.1M objects produced during the benchmark execu-
tion consumes 20,771KB. This amount is the total memory
consumed within the heap. In practice, this 20MB have a

32

Object Equivalence: Revisiting Object Equality Profiling DLS’17, October 24, 2017, Vancouver, Canada

Table 2. Results in number of objects

NOP NDO NKO NEO
Roassal2 188,901 34,931 (18%) 132,950 (70%) 21,010 (11%)
Nautilus 245,602 59,468 (24%) 162,611 (66%) 23,523 (10%)
SciSmalltalk 342,455 60,947 (18%) 218,253 (64%) 63,255 (18%)
NeoJSON 85,017 5,003 (6%) 80,009 (94%) 5 (0%)
NeoCSV 75,935 2 (0%) 75,862 (100%) 71 (0%)
PetitParser 184,649 83,544 (45%) 95,190 (52%) 5,915 (3%)
Total 1,122,559 243,895 (22%) 764,875 (68%) 113,779 (10%)

Table 3. Number of equivalent objects

NOP NEqO NEqD NEqDG NEqK NEqKG
Roassal2 188,901 104,915 (55.5%) 21 (0.0%) 5 104,894 (55.5%) 758
Nautilus 245,602 191,872 (78.1%) 34,449 (14.0%) 582 157,423 (64.1%) 1,357
SciSmalltalk2 342,455 1,773 (0.5%) 0 (0.0%) 0 1,773 (0.5%) 767
NeoJSON 85,017 40,000 (47.0%) 0 (0.0%) 0 40,000 (47.0%) 13
NeoCSV 75,935 50,923 (67.1%) 0 (0.0%) 0 50,923 (67.1%) 4,746
PetitParser 184,649 129,738 (70.3%) 51,955 (28.1%) 5,168 77,783 (42.1%) 2,041
Total 1,122,559 519,221 (46.3%) 86,425 (7.7%) 959 432,796 (38.6%) 1,614

Table 4. Results in memory usage (KB)

MOP MDO MKO MEqO MEqD MEqK
Roassal2 4,018 1,228 (31%) 2,791 (69%) 1,963 (49%) 0 (0.0%) 1,963 (48.8%)
Nautilus 5,268 1,916 (36%) 3,352 (64%) 3,613 (69%) 478 (9.1%) 3,135 (59.5%)
SciSmalltalk2 5,066 1,659 (33%) 3,407 (67%) 19 (0%) 0 (0.0%) 19 (0.4%)
NeoJSON 1,380 78 (6%) 1,302 (94%) 456 (33%) 0 (0.0%) 456 (33.0%)
NeoCSV 1,486 0 (0%) 1,486 (100%) 740 (50%) 0 (0.0%) 740 (49.8%)
PetitParser 3,552 1,621 (46%) 1,931 (54%) 2,655 (75%) 1,006 (28.3%) 1,649 (46.4%)
Total 20,771 6,502 (31%) 14,269 (69%) 9,446 (45%) 1,484 (7.1%) 7,962 (38.3%)

Table 5. Reduction of memory footprint due to our optimizations

NOP Before NOP After Reduction MOP Before (KB) MOP After (KB) Reduction
Roassal2 188,901 126,349 33.1% 4,018 2,223 44.7%
Nautilus 245,602 96,948 60.5% 5,268 3,072 41.7%
SciSmalltalk2 342,455 342,455 0.0% 5,066 5,066 0.0%
NeoJSON 85,017 55,025 35.3% 1,380 1,081 21.7%
NeoCSV 75,935 29,796 60.8% 1,486 817 45.1%
PetitParser 184,649 175,526 4.9% 3,552 3,303 7.0%
Total 1,122,559 826,099 26.4% 20,771 15,560 25.1%

larger footprint due to the memory management. Section 4.4
discusses that topic further.
In the benchmarks, memory consumption of equivalent

objects MEqO represented more than 50% of the total mem-
ory consumption in half of the benchmarks. In our set, half
of the applications have the potential to reduce memory
consumption by more than 50%. We also notice that domain
objects consume less memory than kernel objects, 25% and
75% respectively. Equivalent objects represent 45% of the
memory consumed by the benchmark execution. Equivalent
specific objects represent 38.3% of the whole memory.

4.2 Avoiding Equivalent Object Creation
Table 3 indicates that 46.3% of the objects created during the
benchmark executions are equivalent. This value represents
therefore the maximum amount of object reduction we can
obtain by avoiding the creation of equivalent objects. Note
that we cannot remove all equivalent objects since at least
one object per group of equivalent objects has to remain. In
several cases, completely avoiding the creation of equivalent
objects is not worth the effort, e.g., if the equivalence object
groups are very small and with a low memory footprint.

33

DLS’17, October 24, 2017, Vancouver, Canada Alejandro Infante and Alexandre Bergel

We use the profiling information and the object creation
context given by our profiler to avoid the creation of the
largest groups of equivalent objects. We manually revised
all the equivalent object groups and implemented 14 opti-
mizations across five applications in our benchmark suite.
Despite of these optimizations were relatively simple to

implement, they have a significant impact on the measure-
ments. Table 5 gives the metric values and their variations.
In total our optimizations have reduced the number of object
creations by 26.4%, approximately representing 2/3 of the
total number of equivalent objects (NEqO). This represents
a reduction in memory consumption of more than 40% on
half of the applications in the benchmark suite.

0

1000

2000

3000

4000

5000

6000

Initial	Memory	Consumption Optimal	Memory	Consumption

After	Optimization	Memory	Consumption

Figure 4. Comparison of initial memory consumption, opti-
mal consumption and after optimizations consumption.

4.3 Optimizations Implemented
4.3.1 Strategies for Proposing Optimizations
The profiling tool we designed provides an analysis environ-
ment enabling the practitioner to inspect the object graph
of the execution. Our tool supports an expressive graph API
for finding memoization opportunities. The strategies are
the following:
Large Equivalent Object Groups. Largest groups corre-
spond to immediate memory saving opportunities by intro-
ducing a cache. A single object is needed for each equivalence
group, but the use of several cache implementations may be
needed to reduce the bloat, one for each allocation context.
An example of this is presented on the single object cache
description in Section 4.3.2.
Equivalent Objects with Shared Allocation Context.
Some allocation contexts are responsible for the creation
of many equivalent objects, but not all of them belong to
the same equivalence group. Even if the size of the object
group is small, the impact in memory consumption can be
significant if the number of equivalence groups is big enough.

In this case, several objects needs to be cached to remove
the memory bloat. One object per each equivalence group
involved. An example of this is presented on the map of
objects cache description in Section 4.3.2.

4.3.2 Classification of Optimizations
Using our profiler we have proposed and implemented 14
optimizations in 5 applications of the benchmark suite. We
spent 14 hours in total for proposing and implementing the
optimizations.
We classified the 14 optimizations we found in four cate-

gories:
Single Object Cache (5 Implementations). The single ob-
ject cache is an optimization that targets a single equiva-
lence object group. It consists in implementing a cache on
the factory method that is responsible for creating equiva-
lent objects. The cached object is stored in a variable, so it
can be reused for later calls. If required, an if condition is
implemented to test a property on the argument for deciding
if returning the cached value or creating a new object is the
desired action.
We found in Nautilus that 22% of the equivalent domain

objects are instances of MethodSelected created using null

as model. The following pseudo-code illustrates our solution:

class MethodSelected {
private model;
static create(model){
return new MethodSelected(model);
}

...
}
// Original code

class MethodSelected {
private model;
static nilModel =
new MethodSelected(null);

static create(model){
if(model == null) return nilModel;
return new MethodSelected(model);}

} //Modified code

Map of Objects Cache (2 Implementations). The map of
objects cache is a strategy that targets multiple equivalence
object groups. In order to be applicable, the equivalent ob-
jects must be permanent in the execution and be created in
the same object production site.
It consists in implementing a cache using a hash map.

The map key corresponds to the lookup value, which is usu-
ally the argument of the object factory and the map value
corresponds to the cached object.
We found in Nautilus that 15% of the equivalent domain

objects are instances of Changed. They are created using the
strings #sourceCodeFrom:, #getHistoryList or #currentHisto-
ryIndex as possible commands. The following pseudo-code
illustrates this cache:

class Changed {
private command;
static create(command){
return new Changed(command);
}

...
}

// Original code

class Changed {
private command;
static cache = new HashMap();
static create(command){
if(not cache.containsKey(command))
cache.put(model,
new Changed(command));

return cache.get(command);}
} //Modified code

Weak Map of Objects Cache (5 Implementations). The
weak map of objects is used to cache objects that are not

34

Object Equivalence: Revisiting Object Equality Profiling DLS’17, October 24, 2017, Vancouver, Canada

permanent in the execution or have a short life. Even though
they have lower memory consumption impact than perma-
nent objects, they may still cause significant impact on mem-
ory consumption or time performance, caused by excessive
object creation and excessive garbage collection.
This cache is used when the map of objects cache is not

applicable. Storing cached objects in a map prevents their
garbage collection, which may cause severe performance
problems when used improperly. To provide a memory-leak
safe approach, the weak map of objects cache uses weak
references, which do not prevent object garbage collection.
This optimization is used to implement unique String

values, named Symbols in Pharo.
Others (2 Implementations). This category holds imple-
mentations that do not belong to the previous categories
and their proposal is performed by manual inspection of the
profiler output and the application source code.
An example of this is the case of PetitParser. We found

that PPContext instances uses Dictionary instances of ca-
pacity 5, but only hold 1 element. This class is heavily used
and we achieved a reduction in memory consumption by
using the implementation optimized for small collections
SmallDictionary. This approach does not reduce the num-
ber of Dictionaries, instead it reduces empty space on inner
arrays. The impact of this change is a reduction in memory
consumption of 7.0% in our benchmark.

4.4 Memory and Run Time Impact on the System
The measurements reported in Table 4 and Table 5 are given
from the application point of view: the size of an object is
computed by summing up the size of the object’s headers
with the size of each instance variable.

From the operating system point of view, the memory
consumed by the application is essentially expressed with
the heap size, stack size, native resources and the virtual
machine caches. Reducing the amount of created objects is
likely to reduce the memory allocation for the heap.
We use Pharo as our runtime. The size of a clean Pharo

process for this experiments is 62.9MB. Upon executing the
Roassal benchmark, the size of the process raises to 69MB,
but when executing the benchmark with the optimizations
the size of the process raised only to 65.2MB. We attribute
this decrease on memory consumption to the optimizations
proposed in this research.

Accurately measuring the memory variation from the op-
erating system point of view is difficult and not easily repro-
ducible: two runs of the very same process do not produce
identical memory footprint. However, we estimated that the
reduction of 1,122,559 - 826,099 = 296,460 object results in a
memory reduction of 19Mb, from the operating system point
of views.

We have measured the execution time of the benchmarks
before and after the optimizations by executing them 10

times. We computed the average and standard deviations of
the results and we found that four benchmarks suffered a
non statistically significant speed-up and one suffered a non
statistically significant slowdown.
All experiments were carried out on a Macbook Air Mid

2013 with 4GB of RAM and 1.3GHz Intel Core i5 and using a
clean Pharo Image with Moose 5.1.

5 Implementation
This section highlights some aspects of our implementation.
Our profiler is available under the MIT license (Available in
ainfante/ShareableObjects on http://smalltalkhub.com).
Profiling Technique. We used the Spy2 profiling frame-
work [1] to build our profiler, not depending on a customized
virtual machine. To capture the necessary information from
the execution we have chosen the following strategies: we
capture all the instances creations and hash messages sent
using method wrappers and bytecode instrumentation; mon-
itor instance variable uses using Slots [11]; keep track of
the exact time objects are garbage collected. All this data is
stored to be analyzed after the benchmark execution.
Equivalence Analysis. In order to compute all the object
equivalence groups of the execution we model the object
graph as a directed vertex and edge labeled graph. In the
graph model we use the nodes to represent objects created
during a program execution and vertex labels represent the
classes of the objects. The edges represent the instance vari-
ables and their values and the edge labels represent the in-
stance variables names.
Computing the object equivalence group of an object a

is reduced to compute all the isomorphic sub-graphs to the
reachable sub-graph starting from a. We precompute a hash
value for each node we call soHash. This value is built to
have the following property:

soHash(a) , soHash(b) =⇒ a 0 b

The soHash function is a recursive compression collision-
resistant function. It is built by expressing the object equiv-
alence relation property as a concatenation of Strings and
then compressing it by using MD5 collision resistant func-
tion. Assuming that object a is unchanged:

soHash(a) =

MD5(soHash(a.1) + ... + soHash(a.n)+
′#′ + className (a))

Else, in case a is mutable:
soHash(a) = MD5(uniqueNodeValue (a))

Because MD5 is collision resistant, we conclude that two
objects sharing the same soHash value are equivalent be-
tween one another with a very high probability:

[a] = {o ∈ O |soHash(o) = soHash(a)}

35

http://smalltalkhub.com

DLS’17, October 24, 2017, Vancouver, Canada Alejandro Infante and Alexandre Bergel

Performance.All the experiments executionwere performed
in less than 3 hours, indicating the execution time of the pro-
filer is not an impediment for its use. But, we have not found
a direct relation between the profiler execution time and the
benchmark original execution time or the number of objects
created by the benchmark.
We have not attempted to research further on this topic

because the execution time has not been a problem for exe-
cuting the experiments.

Marinov et al.’s approach reported a median overhead of
169.9x for their tool, which included profiling and analysis
time [7]. Other analysis techniques, such as Nguyen et al.’s
approach, incurred in an average overhead of 201.96x [8].
Despite the large overheads, they have reported that the
large overhead was not a problem to use the tool and gather
the data for their work.
Implementation in Other Languages. We have identified
some constraints when porting our approach to other lan-
guages. The first constraint is the applicability of object
equivalence. The definition is not applicable to all languages,
but only to object-oriented languages with classes. For in-
stance, we believe that the current state of the research is not
directly applicable to prototype object oriented languages,
such as Javascript. Also, new equivalence definition for ker-
nel objects are required since it depends on the language
core and libraries.

We are currently working on a port of this profiling tech-
nique to Java using DiSL [6] and to VisualWorks Smalltalk
using Spy. We believe it is possible to port it also to Ruby
and Python using equivalent instrumentation frameworks
or libraries.

6 Partial Replication of Marinov et al.
Experiment

The work presented in this paper originates from the object
equality profiling technique proposed by Marinov et al. [7]
to identify objects that are redundant in an execution. Our
technique is similar enough to be called a partial replication
study of their research. This section contrasts our research
similarities, differences, agreements and disagreements Mari-
nov’s approach.

6.1 Similarities

Individual Object Monitoring. Both approaches rely on
instrumentation to keep track of every single object of inter-
est in the execution. Both projects register object allocation
and changes of state of objects.
Proposal of a Recurrence Relation. Both approaches pro-
posed a recurrence relation to identify redundant objects,
then this property is evaluated post-mortem of the execution
by the analysis of the object graphs. The redundancy relation
we proposed is called Object Equivalence, while the relation
proposed by Marinov is called Mergeability.

Optimization Opportunities. Both approaches measure
the potential impact of memory consumption reduction by
identifying objects that satisfy the proposed redundancy
relation. These research opportunities are reflected by the
number of equivalent objects and in the research of Marinov
are reflected by the number of mergeable objects.

6.2 Differences

Mergeability Time.Marinov et al. identify the time where
an object becomes mergeable with others. From that perspec-
tive, from that time the object becomes redundant and is no
longer needed in the execution. Each object has their own
mergeability, which may happen way after their creation.
In practice, optimizing objects that become mergeable after
their creation is difficult.
Our approach reduces its target scope to objects that are

redundant during their whole life. Then preferring practical-
ity over recall. Furthermore, caches for redundant objects
are easier to implement, because the optimization spots are
also the allocation spots, which are collected by the profiler
and are made available to the practitioner.
Regarding objects that are not mergeable from the be-

ginning, Marinov’s paper does not provide any example of
optimizations for these objects. Marinov et al.’s empirical
case of study provided optimizations only for immutable ob-
jects (Point and String), objects that were mergeable during
their whole life.
Classification ofObjects. In contrast toMarinov’s research,
our research does not equally consider all objects in the
execution. In particular, the object equivalence relation as
described in Section 2 is only applied to domain objects. We
propose ad-hoc definitions for the most used and prone to
be redundant objects. We call these objects kernel objects.

For these objects we proposed equivalence definitions ac-
cording to the invariant of the objects. This has allowed us to
identify and implement optimizations that can not be iden-
tified by Marinov’s technique, e.g., expandable collections
whose internal changes of capacity used to be marked as not
mergeable.
Allocation Context. Marinov’s approach captures only the
allocation spot when an object is created, i.e., the concrete
method and the program counter where the object is allo-
cated. In many situations, we found that the allocation spot
is not enough to propose a solution for the bloat identified
by this research. For this reason, our technique captures a
reduced stack trace of the allocation point.
Memory Analysis. We were not able to compare how the
data is analyzed in order to produce the optimizations be-
cause Marinov’s paper does not explain it in detail. We be-
lieve that providing support to practitioners for analyzing the
data produced by the profiler is key to achieve an important
memory gain.

36

Object Equivalence: Revisiting Object Equality Profiling DLS’17, October 24, 2017, Vancouver, Canada

Table 6. OEP Marinov’s mergeability results [7]

Average Base Average Merge
Memory (MB) Memory (MB) Save

db 7.6 4.38 42%
compress 4.83 4.77 1%
raytrace 3.38 1.91 43%
mtrt 5.44 2.25 59%
jack 0.44 0.25 43%
jess 0.91 0.81 11%
javac 4.77 4.35 9%
resin 6.23 3.03 51%
tomcat 2.18 1.63 25%
Total 35.78 23.38 35%

6.3 Results and Conclusions Comparison
There are two results that are comparable between the ap-
proaches. The first result is the potential saving opportuni-
ties. The second result is the achieved memory consumption
reduction by the implementation of optimizations proposed
by the use of the output of the profiler.
Potential Saving Opportunities. Marinov et al. analyzed
9 benchmarks, from which 7 are included in SpecJVM98
benchmark and 2 are widely used web application servers.
Table 6 presents the average memory consumption potential
saving for each benchmark.
The average memory consumption potential saving in

their research is 35%, meanwhile our technique shows a
potential saving of 45% in average. Moreover, Marinov’s
approach was able to find a memory redundancy over 50%
for only one fifth of the benchmarks, compared with our
results where half of the benchmarks presented a potential
saving over 50% with our approach.

It is not possible to compare objects that were marked as
redundant in the research of Marinov et al. with our cate-
gories of domain, kernel and external objects. Despite that,
our profiling technique treated 68% of the objects as Kernel
Objects. These objects have a more adequate equivalence
definition, hence explaining why our tool was able to find
more redundant objects than the approach of Marinov et al..
Impact of ProposedOptimizations.Both studies used their
own technique to propose and implement memory optimiza-
tions on parts of the source code of the benchmark projects.

We have attempted to optimize all of our benchmarks and
have optimized 5 of 6 applications. In contrast, Marinov et al.
chose 2 from the 10 applications to perform their case study.
The reasons why these two applications were chosen instead
of other applications is not detailed. They chose mtrt and
db, being the 1st and 4th application with most optimization
potential in their benchmark suite.

Marinov implemented only 2 optimizations, targeting in-
stances of String and Point, being both classes of immutable
objects. We found that their optimizations performed (hash-
consing and memoization) are a subset of the implementa-
tions we proposed for our benchmarks.

The optimizations of Marinov for db and mtrt achieved a
reduction in memory consumption of 47% and 38% respec-
tively. Even though the average memory consumption reduc-
tion for our benchmarks was 25%, half of our benchmarks
had a reduction in memory consumption over 40%.
Comparison of Conclusions. Both approaches agrees re-
garding the existence of optimization opportunities caused
by object bloat. We also agree over the fact that a dynamic
analysis technique that keep track of the state of individual
objects contributes to propose optimizations that reduce the
bloat caused by redundant objects.
Our analysis suggests that most of the optimization op-

portunities are related to kernel objects. This is partially
supported in the research of Marinov by the fact that all op-
timizations proposed by them are related to kernel objects.
Finally, we do agree with the work of Marinov on the

statement in their discussion that cyclic structures are pos-
sibly not relevant in the analysis of redundant objects. The
statement is supported by the fact that the vast majority of
the mergeability opportunities they found do not depend
on cycles. From all the benchmarks we executed, we have
not found optimization opportunities depending on cycles,
which is consistent with their results.

7 Related Work
This section covers the work related to our approach.
Object Equality Profiling. Our work is inspired and based
on Marinov et al.work [7]. We gave a formal definition of ob-
jects that can be merged after their initialization, discarding
the time as a variable of the analysis. Our different formal
definition allowed us to simplify the post-mortem analysis
while increasing the recall of feasible optimization opportu-
nities.
Cachetor. Nguyen et al. research [8] describes a novel tech-
nique that statically binds the cost of two extremely expen-
sive dynamic analysis techniques, such as dynamic depen-
dence profiling and value profiling. This allowed them to
provide an effective tool capable of proposing caching imple-
mentations to large applications that usually are not subject
to this kind of analysis due to scalability problems.
Instead of relying on value profiling analysis which at-

tempts to record computed values at each instruction, we
rely on instance variable instrumentation and object creation
instrumentation. This way, we reduce the amount of possible
optimization spots only to object creation spots, allowing us
to scale our analysis.
Object-sharing Refactorings. Rama et al.’s work [9] is also
based on Marinov et al.’s research. For this reason there are
several similarities between these works.

Isomorphic definition is similar to our equivalence defini-
tion with three main differences:

37

DLS’17, October 24, 2017, Vancouver, Canada Alejandro Infante and Alexandre Bergel

• Our unchanging state condition is per instance vari-
able, allowing an object to be lazy initialized, instead
of enforcing strict immutability. Isomorphic definition
does not allow this since two isomorphic objects that
have mutated are not candidates for sharing.
• Our analysis works over the cycles of the graph avoid-
ing transforming the object graph into an acyclic graph,
losing potential optimization opportunities.
• The use of kernel objects allows us to simplify the
analysis and identify other opportunities.

Unfortunately, the paper does not provide enough infor-
mation about the fixes and concrete refactorings performed
in order to compare them.
We value the discussion proposed by the authors about

long-life and short-life objects. In contrast to their work, we
do not monitor and use the object age (i.e., elapsed between
their creation and their collection by the garbage collector)
to rank optimization opportunities.
Maximal Sharing. Steindorfer et al. [10] researched the
use of dynamic analyses over weak immutable objects. They
define weak immutability as unchanged variables that are
used in the equals method. Their main objective is to find
hash-consing implementations opportunities to reduce mem-
ory consumption and increase the equals method perfor-
mance. Using their pre-condition of weak immutability they
achieved a fast analysis based on profiling object creations
and equals method calls.
The main difference with our approach is the weak im-

mutability pre-condition they require for their analysis. In-
stead, our analysis does not require it as a pre-condition
and our technique is applicable for most software projects
supported on the platform. But, this required us to instru-
ment mutations and to be able to analyze object graphs with
cycles, being unable to implement most of the possible opti-
mizations they contributed. Despite that, we have been able
to optimize 6 real industry applications.
MemoizeIt. Della Toffola et al. [4] presents a technique to
identify memoization opportunities to enhance speed perfor-
mance using an iterative profiling. At each run, they reduce
the number of candidates for optimization, allowing them
to increase the performance and precision of their analysis.
They applied their tool on 11 Java applications, for which
they found optimizations that lead to significant speedup.
In contrast to our analysis technique, they focus on all

the method calls and, in order to scale their analysis, rely
on iterations to not capture the whole object graph, but
only one level deeper each iteration. Instead, we focus on
object creations and making the analysis of the whole graph
mandatory for our equivalence definition.
FindingReusableData Structures.The research of Xu [12]
presents a technique to find allocation sites that produce ex-
pensive to compute data structures which can be reused.

They implemented their tool on a modified Jikes RVM and
applied it on 6 different real-world applications.
Regarding our research, it is relevant to mention the im-

plementation Xu suggested to compute graph isomorphism.
He relies on the computation of summaries, which are values
that represent the shape of a structure, but can be compared
efficiently at the same time. This value has a similar objec-
tive as our soHash. The main difference is that we rely on
an external collision-resistant function (MD5) and that we
provided it the capability to work on cycles.

8 Conclusion and Future Work
We have presented a new technique to monitoring the ex-
ecution of an application. Characterizing each object and
identifying equivalent objects enabled us to implement 14
optimizations for 6 applications, without having a particu-
lar knowledge about their internal representation. We took
the work of Marinov et al. as the base of our approach. We
improved their original technique by considered specific
objects, which have specific equivalence relations. As fu-
ture work we plan to inject our technique within a virtual
machine.

We gratefully thank LAM Research for its financial support. Ale-
jandro Infante is supported by CONICYT-PCHA/MagísterNacional/
2015-22150809.

References
[1] Alexandre Bergel, Felipe Ba nados, Romain Robbes, and David Röth-

lisberger. 2011. Spy: A flexible Code Profiling Framework. Journal of
Computer Languages, Systems and Structures 38, 1 (Dec. 2011).

[2] Adriana E. Chis, NickMitchell, Edith Schonberg, Gary Sevitsky, Patrick
O’Sullivan, Trevor Parsons, and John Murphy. 2011. Patterns of Mem-
ory Inefficiency. In Proceedings of ECOOP ’11.

[3] Thomas H Cormen. 2009. Introduction to algorithms. MIT press.
[4] Luca Della Toffola, Michael Pradel, and Thomas R. Gross. 2015. Per-

formance Problems You Can Fix: A Dynamic Analysis of Memoization
Opportunities. In Proceedings of OOPSLA ’15.

[5] Lu Fang, Liang Dou, and Guoqing (Harry) Xu. 2015. PerfBlower:
Quickly Detecting Memory-Related Performance Problems via Ampli-
fication. In Proceedings of ECOOP ’15.

[6] Lukáš Marek, Alex Villazón, Yudi Zheng, Danilo Ansaloni, Walter
Binder, and Zhengwei Qi. 2012. DiSL: A Domain-specific Language
for Bytecode Instrumentation. In Proceedings of AOSD ’12.

[7] Darko Marinov and Robert O’Callahan. 2003. Object equality profiling.
In Proceedings of OOPSLA ’03.

[8] Khanh Nguyen and Guoqing Xu. 2013. Cachetor: Detecting Cacheable
Data to Remove Bloat. In Proceedings of ESEC/FSE ’13.

[9] Girish Maskeri Rama and Raghavan Komondoor. 2014. A Dynamic
Analysis to Support Object-sharing Code Refactorings. In Proceedings
of ASE ’14.

[10] Michael J. Steindorfer and Jurgen J. Vinju. 2016. PerformanceModeling
of Maximal Sharing. In Proceedings of ICPE ’16.

[11] Toon Verwaest, Camillo Bruni, Mircea Lungu, and Oscar Nierstrasz.
2011. Flexible object layouts: enabling lightweight language extensions
by intercepting slot access. In Proceedings of OOPSLA ’11.

[12] Guoqing Xu. 2012. Finding Reusable Data Structures. In Proceedings
of OOPSLA ’12.

38

	Abstract
	1 Introduction
	2 Object Equivalence
	2.1 Intuition
	2.2 Object Equivalence
	2.3 Object Characterization
	2.4 Kernel Objects
	2.5 Equivalency Example
	2.6 Equivalent Object Group

	3 Design of the Experiment
	3.1 The Pharo Object Model
	3.2 Experiment
	3.3 Metrics
	3.4 Benchmarks

	4 Results
	4.1 Metrics Analysis
	4.2 Avoiding Equivalent Object Creation
	4.3 Optimizations Implemented
	4.4 Memory and Run Time Impact on the System

	5 Implementation
	6 Partial Replication of Marinov et al. Experiment
	6.1 Similarities
	6.2 Differences
	6.3 Results and Conclusions Comparison

	7 Related Work
	8 Conclusion and Future Work
	References

