
Efficiently Identifying Object Production Sites

Alejandro Infante, Alexandre Bergel

Pleiad Lab, Department of Computer Science (DCC), University of Chile

Abstract—Most programming environments are shipped with
accurate memory profilers. Although efficient in their analyses,
memory profilers traditionally output textual listing reports, thus
reducing the memory profile exploration as a set of textual
pattern-matching operations.

Memory blueprint visually reports the memory consumption
of a program execution. A number of simple visual cues are
provided to identify direct and indirect object production sites,
key ingredients to efficiently address memory issues. Scalability
is addressed by restricting the scope of interest both in the
call graph and the considered classes. Memory blueprint has
been implemented in the Pharo programming language, and is
available under the MIT license.

I. INTRODUCTION

Debugging memory issues is known to be tedious and
challenging. Memory profilers are dedicated tools to help prac-
titioners address memory anomalies, including memory leaks or
suspicious memory fragmentation. The primary objective of a
memory profiler is to detail the memory allocated during a code
execution. A memory profiler essentially reports its analysis
by listing the number of instances per class (e.g., Yourkit1,
JProfiler2). Such a listing is typically presented as a tree-widget
in which each method context node is annotated with the
resources it consumes. Using a textual medium to convey a
complex data set, such as the memory usage profile, involves
textual operations (such as searching and comparing) which
are known to be suboptimal when compared to a dedicated
visualization tool3. Visualizing the execution and tracing the
memory consumption has been the topic of numerous research
efforts [2], [3], [4]. Although efficient at indicating the global
memory state, many of the proposed techniques for heap and
memory visualization [5], [6], [7], [8] have been designed for
program behavior comprehension and understanding. As far as
we are aware, none of the proposed visualization techniques
are made to identify and characterize object production sites,
i.e., methods and static initialization parts that create objects.

Memory blueprint is a visual representation of a memory
profile. Our memory blueprint indicates direct and indirect
object production source code sites. Such information is meant
to be used by practitioners to identify memory bloat and
optimization opportunities.

Our blueprint augments the method call graph obtained
from a traditional code profiler with visual cues to indicate
and characterize object production sites. Memory blueprint
is a polymetric view [9] that (i) reports direct and indirect

1http://www.yourkit.com
2https://www.ej-technologies.com/products/jprofiler/overview.html
3Wettel et al. [1] have demonstrated an improvement of correctness and

completion time of some classical software engineering tasks when using the
CodeCity visualization tool compared with Eclipse and Excel.

object production sites along a call-graph, (ii) characterizes
the production site using dynamic metrics using visual cues,
(iii) supports incremental execution, and (iv) offers interactive
options to drill-down from the visual report to the actual source
code.

This paper describes memory blueprint, and presents some
practical scenarios for which visualization plays an important
role in understanding a memory profile.

The paper is structured as follows: Section II describes
memory blueprint. Section III highlights some of our experience
when applying memory blueprint in an industrial setting.
Section IV gives a brief overview of the related work. Section V
concludes and presents our future work.

II. MEMORY BLUEPRINT

A. In a Nutshell

Properly identifying and characterizing object production
sites is critical to understanding the memory footprint of an
application. Consider the following contrived, but representative,
example4:

class Element { int x, y; }

class ElementFactory {
Element create() { /* D */
return new Element();

}
}

class Canvas {
List<Element> elements = new ArrayList<Element>(); /* B*/

void add(Element e) { elements.add(e); }

void fillWithElements(int nbElement) { /* C */
ElementFactory factory = new ElementFactory();
for(int i = 0; i < nbElement; i++) this.add(factory.create());

}

public static void main(String[] argv) { /* A */
new Canvas().fillWithElements(100);

}
}

The code given above defines three classes and five methods.

4We give a Java code excerpt as an illustration. Memory blueprint is written
for the Pharo programming language (http://pharo.org).

http://www.yourkit.com
https://www.ej-technologies.com/products/jprofiler/overview.html
http://pharo.org


A

B

D

C

Fig. 1: Memory blueprint example

There are four object production sites, marked in bold in
the code given above:

• create() instantiates the class Element

• fillWithElements(int) instantiates ElementFactory

• main(...) instantiates Canvas

• the constructor of Canvas instantiates ArrayList.

Profiling the code example and reporting the result using
memory blueprint results in the visualization reported in
Figure 1. The central horizontal chart indicates that there
are 100 instances of the class Element, consuming 1,600
bytes (each instance of Element weights 16 bytes, two 4-
byte variables and an 8 byte-long object header). The left
hand-side of Figure 1 indicates the call-graph of the methods
and constructor producing objects. The main(...) method,
indicated with A on the figure, invokes the Canvas’s constructor
(B) and fillWithElements(int) (C), itself invoking create()

(D).

Each inner box refers to a class instantiated during the
execution. The gray border around an inner box indicates that
the class is directly instantiated by the encapsulating method,
otherwise it is indirect. The A method directly instantiates the
class Canvas, indicated by the gray-bordered pink box. The pink
box is relatively small, meaning that very few instances from
Canvas has been created, and this instance does not consume
much memory. We have deliberately used the informal terms
(e.g., small, very few) to designate a relative visual comparison.
A tooltip window indicating the exact represented number is
accessible by moving the mouse above the visual element.

Similarly, one can notice that the constructor B instantiates
the class ArrayList (class and methods names are obtained
by placing the mouse cursor above a box). Method A and C

indirectly instantiates Element by calling the D method.

B. Memory Blueprint Detailed

Blueprint description. Our blueprint is composed of two
complementary reports: (i) a partial method call graph that
indicates memory consumption along the execution path,
located on the left-hand side, and (ii) a quantitative report
represented as a double-bar chart, located on the right-hand

TABLE I: Memory blueprint (call graph) specification

visual dimension description
outer box factory method

outer box border light gray = indirect object producer; black =
direct object producer

outer box layout cycle-resistant tree layout
inner colored box instantiated class by the encapsulating

method
inner box color a unique color to distinguish classes

inner box border dark = direct production site
inner box width number of instances created by the encapsu-

lating method (log scale)
inner box height number of bytes allocated by the instances

created by the encapsulating method (log
scale)

inner box layout grid layout; classes are ordered according to
their consumption

edge an upper method call methods located below

side. The partial method call graph is a polymeric view [9],
specified in Table I.

Figure 2 illustrates memory blueprint with an execution of
an application using a complex graphical user-interface. The
partial method call graph is made of 38 methods producing
objects. Only methods that are directly or indirectly producing
objects are shown in the call graph: the complete call-graph has
234 methods, for which only 38 methods directly or indirectly
produce objects.

A double-bar chart is located on the right hand side of
Figure 2. This chart offers quantitative information for each
class instantiated. Classes are ordered along their number of
instances created by the encapsulating method. The red bar
indicates the memory consumption totaled by all the class
instances (number of instances multiplied by the size in byte of
each instance). The gray bar indicates the number of instances
created during the program execution.

Identifying object production sites. The method indicated with
“start” in Figure 2 is the entry point of the execution. This
method instantiates 20 different classes, for which only 4 classes
are directly instantiated by the start method (i.e., the source
code of the start method contains three class instantiations). The
remaining 16 classes are indirectly instantiated, i.e., methods
directly or indirectly called by start instantiate these classes.

Visual cues. Memory blueprint uses several visual cues to
indicate relevant parts of the visualization. We designed the
call graph to be intuitive: large methods are methods that
consume a large portion of memory, small methods consume a
relatively small portion of memory. A method is located below
its calling methods, whenever possible.

The color border indicates a production site: (i) a method
directly producing some objects is highlighted in black, and
(ii) a class contained in a method has a black border if the
encapsulating method directly instantiates that class.

Each class has a particular color. Class colors are a visual
aide to indicate occurrence of classes along the method call-
graph. Class details may be obtained by locating the mouse
above it, as a tooltip. We employ an algorithm that tries to apply
a distinct color to each of the most memory consuming classes.



isolatedstart

Fig. 2: Memory blueprint profile

We employ the color scheme proposed by ColorBrewer5.

Cycle in the call graph. A method call sequence may form
a cycle. The memory blueprint uses a tree layout to order
represented methods. In presence of a cycle, edges extremities
indicates the direction of the method invocation.

Consider the situation described in Figure 3 with three
methods: A calls B; B calls C; C calls A. These three methods
are cycling. An edge, representing a method call, begins from
the bottom of the calling method and ends at the top of the
invoked method. This way to represent cycles is similar to the
cycle representation in Class Blueprint [11].

Profile exploration. Memory blueprint supports several options
to interact with practitioners. Each element of the memory
blueprint has a contextual menu and tool tip. These interactions
are intended to facilitate the navigation and the exploration of
the code profile. In particular jumping from a method to the
source code is one click away.

5http://colorbrewer2.org [10].

A

B

C

Fig. 3: Representation of cycles between method invocations

By locating the mouse cursor over class names contained
in the double-bar chart, methods in the call-graph directly in-
stantiating the pointed class are highlighted. This complements
well the class coloring mechanism since class names are visible
only by mouse tooltip. Methods may be dragged and dropped
to accommodate the layout.

Profiling. The memory profile is obtained via a third-party
application. In our case, we designated a memory profiler that
associate classes to method producing objects using Spy, a

http://colorbrewer2.org


profiling framework [12] for the Pharo language.

III. EXPERIENCE GAINED

Memory blueprint is regularly employed in an industrial
setting. ObjectProfile.com is a software company. Engineers of
this company have used Memory Blueprint to track memory
bloats. Such experience has been crucial for adequately tuning
our visualization.

Call graph size. Call-graphs for non-trivial application may be
large. Moret et al. [13] report that for the DaCapo benchmarks,
the number of methods involved in a computation may go
beyond 11,000 and the depth of a context-calling tree may be
over 400. These figures are comparable with the situations we
regularly meet in our development.

Memory blueprint only reports a subset of the complete
method call graph: methods that are directly or indirectly pro-
ducing objects are reported while methods not producing objects
are not reported (i.e., variable accessors). The rationale behind
this decision we made is that a practitioner will necessarily
focus on methods producing objects when addressing a memory
issue.

A positive aspect of reporting only object production sites
is to significantly reduce the call graph, since on average less
than one third of the methods are object production sites. We
considered 10 different and representative applications in the
Pharo software ecosystems. We found that the ratio of executed
methods being a production site ranges from 5% to 75%, with
an average of 29%, a median of 23% and with a standard
deviation of 17. Only such a small portion of the call graph
is represented in memory blueprint. On a 27-inch screen, our
blueprint reports graphs large of hundreds of methods without
needing to scroll or zoom out. This is enough for most of the
situations we have faced.

Local vs global. Traditional memory profilers report for a code
execution the global memory consumption. Such reports are
particularly efficient at conveying the general impression of
how the memory is used. It also indicates classes that are likely
to be problematic. However, quickly identifying culprit methods
from such a global report is not trivial.

Memory blueprint complements traditional memory reports
by indicating which methods directly and indirectly create
objects. From our experience, memory blueprint is well adapted
to track object production sites for dozens of classes for a call-
graph less then 500 methods. Memory blueprint is apparently
suitable for local memory introspection (such a claim will be
carefully measured in our future work).

Linear and logarithm scales. The method-call graph reported
on the left-hand side of a blueprint indicates for each method
(i) the classes the method directly or indirectly instantiated,
(ii) the number of produced instances, and (iii) the number of
bytes used by these instances. These two metrics are visually
reported using a logarithmic scale. Logarithm scales handle
well disparities between represented values. The double-bar
chart, reported on the right-hand side, uses a linear scale. This
is useful for easily identifying large memory consumption.

The linear scale has the benefit of letting the practitioner
informally relate classes from their number of instances.

Such relation may pinpoint application invariant, letting the
programmers deciding whether the invariant is correct or not.
For example, consider the example given in Figure 2. The gray-
bar indicates that the class RTElement and TRBoxShape have the
same number of instances. Classes TRLineShape and RTEdge

have also the same number of instances. These relations between
classes may reveal an invariant of the profiled application: the
classes RTElement / TRBoxShape and TRLineShape / RTEdge

have the same amount of instances.

The size of the input often correlates with the number of
objects involved in a computation. One of the case studies we
studied consists in displaying an annotated world map. In total,
169 countries were represented using a SVG path. We have
found that exactly 507 SVG path objects were created, which
is three-times more than the number of countries. This revealed
that 2 extra SVG path objects were created per country. This
information was useful for improving the memory footprint of
this application.

To accommodate the difference between different visual
elements in a profile, the logarithm scale used in the call graph
may be replaced with a softer (e.g., square root) or a more
aggressive disparity reduction scale (e.g., adding a factor).

IV. RELATED WORK

Analyzing and visualizing memory consumption has been
the topic of several research works. This section summarizes
the most prominent works in the field.

Condensed Run-time Information. Ducasse et al. [3] have
employed polymetric views to visualize different aspects of
an executing system. The instance usage overview shows
which classes are instantiated and used an execution. The
communication interaction view shows the communication
between classes of a system. The creation interaction view
shows instance creation between classes.

Waxlamp. Understanding how caches are used during a program
execution is subtle and delicate. Waxlamp [14] presents a cir-
cular visual representation of cache behavior. The visualization
represents salient events related to cache hits and misses. Time
is circularly represented, producing a compact view.

Visualizing the Heap. Reiss [5] proposes a condensed visual
representation of the heap. The visualization is structured along
the class hierarchy. Size of the class indicates the number of
instances the class has created during an execution. It also
partially support differentiation between different executions.

Memory allocation and death plot. Veroy et al. [8] presents a
scalable visualization that indicates in which method an object
was allocated and in which method that object is likely to die.
The proposed visualization uses a hive plot6 [15] to indicate
object profile sites. Contrary to memory blueprint, method call
graphs are not presented.

V. CONCLUSION AND FUTURE WORK

Identifying where and how in a source code objects are
instantiated is difficult, despite the relevance to address memory-
related issues. In addition, understanding the relation between

6http://www.hiveplot.net

http://www.hiveplot.net


factory methods helps practitioners understand who are the
real culprits when facing an abnormal memory consumption.
This paper presents memory blueprint, a visual representation
of a memory consumption along the method call graph. Our
blueprint is designed to easily identify and characterize object
production sites.

Our memory blueprint has been employed in an industrial
setting, which gives us confidence about the design decisions
made in our blueprint. However, such claims have not been
empirically validated. This is the topic of our future work.

We hope the work presented in this paper will contribute to
the community to explore alternatives to textual and list-based
memory profile reports.

ACKNOWLEDGMENTS

This work was partially supported by FONDECYT project
1120094 - Chile and by Program U-Apoya, University of Chile.

REFERENCES

[1] R. Wettel, M. Lanza, and R. Robbes, “Software systems as
cities: a controlled experiment,” in Proceedings of the 33rd
International Conference on Software Engineering, ser. ICSE ’11.
New York, NY, USA: ACM, 2011, pp. 551–560. [Online]. Available:
http://doi.acm.org/10.1145/1985793.1985868

[2] R. J. Walker, G. C. Murphy, B. Freeman-Benson, D. Wright, D. Swanson,
and J. Isaak, “Visualizing dynamic software system information through
high-level models,” in Proceedings of International Conference on
Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA’98). ACM, Oct. 1998, pp. 271–283.

[3] S. Ducasse, M. Lanza, and R. Bertuli, “High-level polymetric views
of condensed run-time information,” in Proceedings of 8th European
Conference on Software Maintenance and Reengineering (CSMR’04).
Los Alamitos CA: IEEE Computer Society Press, 2004, pp. 309–318.

[4] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and
R. Koschke, “A systematic survey of program comprehension through
dynamic analysis,” IEEE Transactions on Software Engineering, vol. 35,
no. 5, pp. 684–702, 2009.

[5] S. P. Reiss, “Visualizing Java in action,” in Proceedings of SoftVis 2003
(ACM Symposium on Software Visualization), 2003, pp. 57–66.

[6] E. E. Aftandilian, S. Kelley, C. Gramazio, N. Ricci, S. L. Su, and
S. Z. Guyer, “Heapviz: interactive heap visualization for program
understanding and debugging,” in Proceedings of the 5th international
symposium on Software visualization, ser. SOFTVIS ’10. New
York, NY, USA: ACM, 2010, pp. 53–62. [Online]. Available:
http://doi.acm.org/10.1145/1879211.1879222

[7] C. Myers and D. Duke, “A map of the heap: Revealing design
abstractions in runtime structures,” in Proceedings of the 5th
International Symposium on Software Visualization, ser. SOFTVIS ’10.
New York, NY, USA: ACM, 2010, pp. 63–72. [Online]. Available:
http://doi.acm.org/10.1145/1879211.1879223

[8] R. L. Veroy, N. P. Ricci, and S. Z. Guyer, “Visualizing the allocation
and death of objects.” in Proceedings of IEEE International Workshop
on Visualizing Software for Understanding and Analysis (VISSOFT),
2013, pp. 1–4.

[9] M. Lanza and S. Ducasse, “Polymetric views—a lightweight visual
approach to reverse engineering,” Transactions on Software Engineering
(TSE), vol. 29, no. 9, pp. 782–795, Sep. 2003.

[10] C. A. Brewer, G. W. Hatchard, and M. A. Harrower, “Colorbrewer in
print: a catalog of color schemes for maps,” Cartography and geographic
information science, vol. 30, no. 1, pp. 5–32, 2003.

[11] S. Ducasse and M. Lanza, “The Class Blueprint: Visually supporting
the understanding of classes,” Transactions on Software Engineering
(TSE), vol. 31, no. 1, pp. 75–90, Jan. 2005.

[12] A. Bergel, F. Bañados, R. Robbes, and D. Röthlisberger, “Spy: A
flexible code profiling framework,” Journal of Computer Languages,
Systems and Structures, vol. 38, no. 1, Dec. 2011.

[13] P. Moret, W. Binder, A. Villazón, D. Ansaloni, and A. Heydarnoori,
“Visualizing and exploring profiles with calling context ring charts,”
Softw. Pract. Exper., vol. 40, no. 9, pp. 825–847, Aug. 2010. [Online].
Available: http://dx.doi.org/10.1002/spe.v40:9

[14] A. N. M. I. Choudhury and P. Rosen, “Abstract visualization of runtime
memory behavior,” in IEEE International Workshop on Visualizing
Software for Understanding and Analysis (VISSOFT). IEEE, 2011, pp.
1–8.

[15] M. Krzywinski, I. Birol, S. Jones, and M. Marra, “Hive plots – rational
approach to visualizing networks,” Briefings in Bioinformatics, dec 2011.

http://doi.acm.org/10.1145/1985793.1985868
http://doi.acm.org/10.1145/1879211.1879222
http://doi.acm.org/10.1145/1879211.1879223
http://dx.doi.org/10.1002/spe.v40:9

	Introduction
	Memory Blueprint
	In a Nutshell
	Memory Blueprint Detailed

	Experience Gained
	Related Work
	Conclusion and Future Work
	References

