
Generating Object-Oriented Source Code Using
Genetic Programming
Vicente Illanes Alexandre Bergel

vicente.illanes.v@gmail.com abergel@dcc.uchile.cl

ISCLab, Department of Computer Science (DCC), University of Chile

Abstract—Using machine learning to generate source code is
an active and highly important research area. In particular,
it has been shown that genetic programming (GP) efficiently
contributes to software repair. However, most of the published
advances on applying GP to generate source code are limited
to the C programming language, a statically-typed procedural
language. As a consequence, applying GP to object-oriented
and dynamically-typed languages may represent a significiant
opportunity.

This paper explores the use of genetic programming to
generate objected-oriented source code in a dynamically-typed
setting. We found that GP is able to produce missing one-line
statements with a precision of 51%. Our preliminary results
contributes to the state of the art by indicating that GP may
be effectively employed to generate source code for dynamically-
typed object-oriented applications.

I. INTRODUCTION

Generating source code using machine learning is a challeng-
ing and promising research area. In particular, machine learning
has the potential to significantly reduce the programmer’s
burden to manually fix software errors [1], [2].

Genetic programming. In the area of artificial intelligence,
genetic programming (GP) is a computational technique, based
on the biological principles of the Darwinian evolution theory,
which allows one to find a computational program that solves
a specific task in an automated and iterative way [3], [4].
Throughout iterations, also called generations, the execution
of GP maintains a population of individuals, where each
one of them is a computational program represented by its
abstract syntax tree (AST). At each generation, GP uses genetic
operators to transform individuals into variants, and thus,
producing new programs. The initial population is generated
at random using the universe of variables and functions of the
particular problem. The quality of the individuals is measured
using a fitness function, which is evaluated by compiling and
executing the AST. The algorithm stops when a particular
condition is met.

Code generation. GP has been successfully employed to
generate software patches. Most of the proposed approaches,
pioneered by Weimer et al. [1], operate with C, a statically-
typed and procedural programming language. The 2021 edition
of Tiobe’s ranking1 reveals that nine of the ten most popular
programming languages support object-orientation and six

1https://www.tiobe.com/tiobe-index/

are dynamically typed. As such, all indicate that studying
the expressiveness of genetic programming for dynamically-
typed object-oriented programming language is a valuable and
relevant research area to explore. Our paper makes a significant
step in this field by evaluating how well does GP generate
code for a dynamically-typed object-oriented programming
language.
Single statement. A software failure may be caused by one
single line of code. Such failures are called single-statement
bugs and their syntactic constructions follow relatively simple
patterns [5]. Software repair techniques therefore consider
single-statement bugs as a relevant target.

To assess the expressiveness of GP to produce code, we
employ GP to generate the body of an arbitrarily designed
method. We only consider methods that have exactly one
statement in their body to solely focus on the code generation
while avoid bug localization.
Methodology. For a given application that has unit tests, we
iteratively use GP to produce the body of each single-statement
method. The fitness function reflects the number of tests that
successfully pass after replacing a method’s body with the
GP-produced body. The performance of GP is then assessed
by comparing the produced code with the original method
body. The traditional GP algorithm and genetic operations
are complemented with a weight mechanism that takes into
account particularities of a dynamically-typed object-oriented
programming language.

We design our experiment using the Pharo programming
language [6]2, which has the property to be homogeneous
in its syntax (e.g., all the computation is expressed using a
unique syntactic construct, the message send) and it has an
extremely reduced set of involved concepts (e.g., a program
under execution is expressed using objects and objects interact
with each other by sending messages).

We use a set of weights that associate probabilities to
different values that may be used when generating a node
in the abstract syntax tree. In particular, the weights reflect
programming style and convention used in class hierarchy,
class reference, instance variables, and method locations. Each
weight represents a probability to pick a particular value for
the AST node under generation (e.g., variable name, method
call). This set of weights is calibrated using a large codebase.

2http://pharo.org

S1: Test execution

S2: Inferring the involved
classes

S3: Type inferencer from
executing the tests

S4: Identifying
syntactical elements

S5: Hyperparameter
tuning S6: Code generation

S7: Result analysis

Fig. 1: Our methodology in 7 steps.

Results. We have run our approach on Roassal [7], a medium
sized visualization engine written in Pharo. Our implementation
of GP, using the set of weights, is able to produce 51 methods
from a total of 99 (= 51%).

Furthermore, using the set of weights to favor particular
values used in the AST nodes help improve identifying methods
that are more complex in their structure.
Paper outline. The paper is structured as follows: Section II
details the research question and the methodology we have
adopted to answer the question; Section III explains how we
represent Pharo code using GP; Section IV describes our
experiment and the results it has produced; Section V presents
how we expressed similarity between methods using weights;
Section VI concludes and outlines our future work.

II. METHODOLOGY

The research question we are investigating is:
How suitable is genetic programming to generate
code for an object-oriented, class-based, dynamically
typed programming language?

To answer this question we defined a methodology presented
in Figure 1. Our methodology is composed of seven differ-
ent steps, each describing a particular experimental phase.
To illustrate the methodology, consider the method called
maxValueX that belongs to the class RSAbstractPlot, itself
belonging to the package named Roassal3-Charts in the
Roassal application:

RSAbstractPlot >> maxValueX
”Return the maximum X value of the plot, excluding NaN and infinite”
ˆ self definedValuesX max

The body of the method is highlighted in bold and it returns
the maximum of the defined values for X. It uses the self

variable3 to which it sends the message definedValuesX.
The expression self definedValuesX returns a collection of
numbers. The message max returns the maximum value of this
collection. Since computation is almost exclusively expressed
using method calls in Pharo, a source code generation must
determine which other methods (defined in the class or not)
must be called. As such, the sequence of calls must fulfill non-
explicit type requirements as in any programs written using a
dynamically-typed programming language.

This section details our methodology and illustrates
how a single-statement method body is generated, ˆ self

definedValuesX max in our example. Our methodology as-
sumes the presence of unit tests that cover (either directly or
indirectly) the method whose body has to be generated.

3The self keyword is used in Pharo to reference the current object,
equivalent to this in Java and C++.

S1 - Test execution. The first step of our methodology is to
run the unit tests of the project that comprise the method to
generate. Tests are executed in a controlled environment in
which each method call is monitored. We use the Spy profiling
framework [8] to (i) monitor all the passing values as arguments
and return values, and (ii) to extract the call-graph.

The model obtained from monitoring the unit tests are key
to infer the classes that may be involved in the method body
(S2) and identify method signature (S3).

S2 - Inferring the involved classes. The second step of our
methodology is to determine which classes may be involved
in the method body to be generated. These classes are useful
to determine all the possible methods that may be invoked in
the method body generation. For example, the original body
definition of maxValueX involves two classes:

• RSAbstractPlot since the self keywords reference an
instance of one of the subclass of RSAbstractPlot, and

• OrderedCollection since the method definedValuesX

returns a collection of numerical values. The maximum
value of an OrderedCollection is obtained by sending
the message max to it.

We deduce the classes that may be involved in the method
body from the model obtained from Step S1. The coverage of
the tests refers to the portion of the base code to be executed by
the tests. Classes that are marked as fully or partially covered
by the tests are considered as potential classes involved in the
method body to be generated.

S3 - Deducing method signature. The signature of a method
consists of a method name, the number of arguments, the types
of these arguments, and the return type. Dynamically typed
languages, including Pharo, do not explicitly state method
signature. As such, programmers rely on knowledge and
documentation to deduce the types of the argument and return
values.

From the result of Step S1, method signatures are deduced
based on the values during the test executions. We therefore
built a simple type model that simply consists in identifying
the type of a variable from the classes of the object held in
that variable during the execution.

Method signatures will be employed in the subsequent steps
to calibrate the weights and to generate type-safe sequence of
method calls.

S4 - Identifying syntactical elements. Genetic programming
is about generating adequate abstract-syntax trees, themselves
formed with node representing syntactic elements. We identify
such elements from various sources:

• instance variables defined in the class and its superclasses
of the method under search;

• all the methods defined in the class and its superclasses
of the method under search;

• methods that are covered during the test execution (S1);
• built-in variable such as self;

S5 - Hyperparameter tuning. Our approach involves numerous
hyparameters. Beside the classical hyperparameter associated

with the genetic programming algorithm (e.g., population size,
probability to perform a genetic operation), our approach
associates a weight to each kind of syntactic element the
algorithm can pick during the genetic operations and when
creating the initial population. We consider theses weights as
hyperparameter since they are used to control the generation
and evolution process.

Relevant syntactical elements, identified in S4, are accom-
panied with weights that are determined through empirically
mining a large code base of Pharo. In particular, we have
found that methods defined in a class are more likely to access
the variables defined in that class than variables defined in its
superclass chain. Similarly, a method is more likely to invoke
a method within the same class rather than invoking located
up in the superclass chain.

Empirically, we have found that a method having only one
statement performs between 0 and 2 calls. About 73% of single-
statement methods do not perform any calls (e.g., accessor and
mutator methods), oppositely, only 2% of single-statement
methods performs 6 or more calls. The method body we
generate uses a chain of invocation that does not exceed the
maximal length of method call chain that we empirically found.

During the tests executions we determine the number of
times each method is invoked. The number of time a method
is invoked is also used when generating method nodes in the
AST. The rational is that a method that is frequently executed
is more likely to appear in the method to be generated.

S6 - Code generation. The code generation is driven by the
genetic programming algorithm. The fitness the algorithm tries
to optimize is the number of passing tests. It may happens that
some individual takes a long time to execute. The execution
happens within a dedicated thread. In case the thread takes an
excessive amount of time, it is killed by a supervisor.

Consider the following method possible individual:

RSAbstractPlot >> maxValueX
”Return the maximum X value of the plot, excluding NaN and infinite”

ˆ self maxValueX

Listing 1: Example solution with error

Such a method creates an infinite loop. The supervisor thread
stops the execution and a comparatively bad fitness is given to
the individual.

S7 - Result analysis. In the previous step, the genetic program-
ming algorithm produces a method body that maximizes the
amount of passing tests. Several outcomes are possible:

• The generated method body is identical to the original
one. In this case, the algorithm produced the very same
code that the author produced;

• The generated method body is syntactically different but
semantically equivalent. On our example, the genetic algo-
rithm could produce the body ˆ xValues max (listing 2),
which has exactly the same semantics than the original
definition, ˆ self definedValuesX max.

• The generated method body is syntactically and semanti-
cally different than the original method body:

– If the fitness of the best individual did not reach
0, meaning that some tests are failing, then the
method is too complex for the algorithm. In this
case, augmenting the population or adjusting some
hyparameters may solve the case;

– If the fitness indicates that all the test passes, then
the method is not executed by the tests, which means
that the method may not be a good candidate to be
run by our approach since it is covered by the test.
In this case, new tests have to be added.

RSAbstractPlot >> maxValueX
”Return the maximum X value of the plot, excluding NaN and
infinite”

ˆ xValues max

Listing 2: Example solution found by technique

Summary. The methodology this section presents is designed
to use genetic programming to generate a method body for a
program that (i) is written in a dynamically-typed programming
language, and (ii) is accompanied with a set of tests. We applied
our methodology to the Pharo programming language, however
it is not tied to it and we believe it may be applied to a different
language.

The following section discusses some details about our
implementation of the genetic programming algorithm.

III. GENETIC PROGRAMMING

A. Program representation

We represent each candidate program as an abstract syntax
tree (AST), which includes a generated statement to be com-
piled as the body of the searched method. The different ways
in which this line of code can be composed and constructed
directly influences the way in which genetic operators operate.
At the time of constructing an individual, GP must select the
type of statement in a random way, not necessarily uniform.
Our approach considers three types of statements:

• Return Statement: the program returns a value or the call
to another method, as is the case with maxValueX.

• Assignment Statement: programs that allow mutation of
instance variables. In this case, care is taken to not generate
an assignment that reassigns self, since it is illegal.

• Void Statement: a call to a method that indirectly performs
an assignment (return self).

B. Selection, crossover and mutation

The roulette algorithm is used to select individuals for the
next generation, where the probability of choosing an individual
is directly proportional to their fitness within the population. We
always select the best individual of each generation (elitism). So,
if the population size is P , we apply P/2 times the selection
algorithm where in each case two individuals are selected,
which will be used as parents to apply the genetic operators
on the AST and generate two new individuals.
The technique considers the two traditional genetic operators:
the crossover will produce two new individuals, while the

mutation will have a small chance of changing a subtree of the
AST. However, these operators must be careful not to generate
irrelevant statements, such as assigning to self, or making too
many calls to other methods. Therefore, each time an individual
is added to the population, it must fulfill certain predicates,
in case it does not fulfill any, the individual is discarded and
the operators are applied again until individuals that fulfill the
invariants are obtained.
The crossover is calculated using a cutoff point in the AST
in one of the parents, and then we swap the subtrees based
on this point. This generates two new ASTs. In the case of
mutation, it is defined in terms of the crossover between the
individual and another completely new one.

C. Fitness function

Given an individual, the fitness function measures how
acceptable and effective the solution offered by an individual is.
These values are important for the continuation of the algorithm
in future generations, since the selection algorithm requires
the fitness of each program. The value is calculated as the
absolute value of the difference between the total number of
tests and the number of tests that pass positively. Note that
GP’s goal is to minimize this value to zero. Those methods
that do not compile, generate errors, make too many calls are
penalized with fairly high fitness values, so that our algorithm
discards it. It should be noted that the quality of this function
depends exclusively on the set of tests, so if there are too many
successful tests from the beginning, it will be more difficult for
the technique to find a solution. In addition, it is important that
the tests cover the searched methods, so that the functionalities
that are required in the application are rescued.

IV. EXPERIMENTS WITH UNIFORM WEIGHT SYSTEM

We have run our experiment as described in our methodology
on the Roassal3-Chart library. This library has more than 180
methods, for which 99 methods (i) have a body length of one
line of code and (ii) are tested by some unit tests. We will run
GP to iteratively generate the body of these 99 methods. By
iteratively, we refer to assuming the original definition of 99
methods, we will produce the body of one designed method.

Also, abstract methods are not considered, since it is trivial
that tests pass when redefined by a minor class, and also those
methods that use blocks (In Pharo these are loops statements).
As mentioned above, the added statement only has three
possible forms: return, assignment, or indirect mutation.

A. Calibration algorithm

Sample and Tests. The library has its own test package called
Roassal3-Chart-Tests with 65 unit tests. We extract the Roassal
methods that participate in some way in the tests to form the
sample of the methods that the technique will look for. We
have 34 methods that participate statically, that is, that are used
directly in the source code. On the other hand, these methods
can make calls to other methods during the execution flow
that are not necessarily statically present. We have 65 different
methods that are called indirectly. We make this distinction,

since the technique needs a good coverage from the tests
cases, because the fitness calculation is used to determine
which individuals are better. For example, if 90% has already
been met since the beginning of the 65 tests, it will be more
difficult to find the correct code. The ideal case is that the first
generation of individuals does not pass too many tests, to have
greater expectations of improvement through the generations.
Subdivision Sample. We have 99 methods that technique
will look for. These methods can be subdivided into the
functionalities that comply with the application:

• Accessors: methods that return an instance variable. For
example, GP is able to found the method shape of the
RSLinePlot class. This method simply returns shape,
a variable that belongs to the same class. We have 33
accessors methods.

RSLinePlot >> shape
”Return instance variable shape”
ˆ shape

Listing 3: Example accessor method found.

• Setters: methods that mutate the value of an instance
variable. This methods take an argument that will be the
new value of the variable. In total, we have 19 setters
methods.

RSLinePlot >> shape: aShape
shape := aShape

Listing 4: Example setter method found.

• Complex: methods that make calls to other methods. For
example maxValueX is designed as a complex method.
In the sample, we have 43 complex methods.

Weight System. The need to take into account the context in
which the searched method is used arises from the fact that
GP needs to create the individuals according to the universe
of variables and functions, but this set grows considerably
considering all the methods and variables accessible by the
participating classes. Consequently, GP may explore a restricted
small part of the universe or worse, never use the relevant
components to generate the expected result. Therefore, it is
important to build a technique that assigns values (weights)
to each method and variable to influence the way GP selects
elements for a new candidate AST. These weights can be
considered as probabilities with respect to the total sum of the
assigned weights.

For a first approximation, we consider a uniform system
weight where all methods have the same probability to be
chosen. On the other side, variables have different weights
according to the class hierarchy. Previously, it was mentioned
that the variables within child classes will have greater weights
than the parent classes:

• Variables in the same class, have the same weight w.
• If A is the parent class of B and weight of variables of B

is w, then the variables of A have weight equal to w/2.

Fig. 2: Number of real calls of the methods in Roassal

Hyper-parameters. Our technique needs these to control
execution algorithm. Also, there are some parameters chosen
before with prior research. For example, building individuals
must consider the OOP context to build consistent programs.
A priori, a line of code can generate M arbitrary calls to other
methods. In reality, the number of calls is quite limited. In the
graph in the figure 2, the methods are distributed according to
the number of actual calls they make. These percentages are
used in GP, where if p% of methods make n calls, then with
probability p, GP creates an expression that makes n calls to
other methods. On the other hand, when performing genetic
operations it is possible that the number of calls increases.
Therefore, it is arbitrarily decided that it is reviewed whether
or not the program complies with a certain number of calls
(also decided through probabilities) if the individual does not
comply, it is discarded and the genetic ops are applied again.
Within the Roassal methods, 57% did not call other methods,
but instead returned a value. 33% make between 1 and 2 calls.
Therefore, it is sensible for an individual to have very little
chance of generating an AST that makes more than 2 calls.

The size of the population used is 25. While the maximum
number of generations is 30. The mutation rate is 15%, when
GP creates a new generation.
Optimizations. When GP calculates an individual’s fitness, it
is cached for future reference. Then those variants that are
simply copied to the next generation are not recalculated their
associated fitness. Logically if an individual changes its AST,
the fitness must be calculated.

B. Experimental Results

Table I summarizes experimental results where we use
uniform system weight to search for 99 Roassal methods. We
mentioned that we separate methods in two categories:

• 34 methods directly called by tests (i.e., the test contains
a reference to the method), and

• 65 methods that are indirectly called by the tests (i.e., the
tests do not contain reference of the method).

The intuition we are here exploring, is that greater the
distance in terms of intermediary calls between the method
to be generated and the test, more difficult the generation is.

Correctly generated methods are those that managed to have a
fitness 0. The Time column is the estimate according to the
sum of all search processes.

Methods Total System Weight Corrects Time (Hours)
Directly Calling 34 Uniform 16 34:17:32

Indirectly Calling 65 Uniform 28 65:13:17

TABLE I: Experiments Results with uniform weight system.

C. Characterization of methods found

Using uniform weights (i.e., all the methods have the same
probability to be chosen when generating the AST), GP
correctly generated 44 methods from the 99 methods (= 44%).
Table II details the number of correct generation for accessors,
setter, and complex methods.

Methods Directly Indirectly %
Accessors 11 19 91%

Setters 0 9 47%
Complex 5 0 12%

TABLE II: Characterization of methods found correctly by
Uniform

From this information it is observed that generating accesses
does not represent a great challenge for GP even with a uniform
selection in. It is only necessary to select the variable (which
is part of the search universe) and form an AST of the return
type, which has a high probability of occurring. On the other
hand, there is the possibility of finding assemblers with success
but with less precision. This should be due to the fact that
there are more restrictions when constructing an assignment,
as the instance variable needs to be matched with the value
in question (again, there is a high probability of using the
argument).

In the case of complex methods, it is remarkable to consider
that it was only possible to construct the semantics necessary
to fulfill the tests, without achieving the expected syntax. This
implies breaking an important OOP rule about delegating
responsibility to the method or object as appropriate. For
example, the code in listing 2 is passed to carry the delegation
that would correspond to definedValuesX.

Another example that confirms a research question is
that the solution obtained is sensitive to the quality of the
set of tests. The isVerticalBarPlot method of the
RSAbstractPlot class returns false. Then GP will look
for a line of code that satisfies this, the solution offered by
GP is to call another method call isLinePlot of the same
class and that also returns false. This could cause problems
in child classes when redefining parent methods. The problem
is solved by adding a test that ensures that the result of both
methods does not have to match according to a context.

V. EXPERIMENTS WITH SIMILARITY WEIGHT SYSTEM

We use a second weight system that consider other particular
aspect of OOP. The intuition we are here exploiting is structural
elements, such as class and methods, having similar name are

likely to have similar code definition. The rationale is that
names given to structural elements may expression aspect of
the collaboration the element should have, and therefore, have
some similarity in their definition.

The similarity between two strings w1 and w2, is calculated
using the Levenshtein algorithm [9], which counts the number
of inserts, exchanges or deletions that must be done to transform
w1 to w2. Where the best similarity is 0. In this case, to
calculate the weight of an individual I is calculated as:

Weigth(I) = C − α ∗ Similarity(I)

Where for the experiments we consider C = 1000 and
α = 10. While closer to zero the similarity, the greater the
weight assigned to the method or variable, and therefore it is
more likely to be chosen.

A. Experimental Results

Table III summarizes our experimental results where we use
similarity as system weight for methods and variables.

Methods Total System Weight Corrects Time (Hours)
Directly Calling 34 Similarity 17 32:18:07

Indirectly Calling 65 Similarity 34 53:16:39

TABLE III: Experiments Results with Similarity System
Weight.

B. Characterization methods found

If the information between Table II and IV is compared,
it is observed that both systems behave similarly in the
case of directly called methods. However, using similarity
considerably improves the search in some cases. In particular,
they considerably increase the number of setters found, this
probably because the similarity is maximum between the formal
name of the method and the variable to be mutated. On the
other hand, despite having obtained quantitatively equivalent
results in the case of complex methods, results were obtained
that maintain the logic of delegation of application, unlike the
uniform system.

Methods Directly Indirectly %
Accessors 11 21 97%

Setters 3 11 61%
Complex 3 2 12%

TABLE IV: Characterization of methods found correctly by
Similarity

VI. CONCLUSION AND FUTURE WORK

We present a first version of an automated technique for
generating code with wide room for improvement. From the
context in which a method lives, it is possible to extract
important information to find the required code. This shows
the feasibility so that in the future corrective patches can be
generated in programs written in Pharo. Our algorithm uses
GP combined with a weight system that takes this context into
account. This allows scaling to methods where your body is

not trivial (return of a value). A fundamental part of the search
is the use of test cases that show the functional requirements
that the code returned by the algorithm must meet. We are
able to generate correctly for 51 different methods of a single
line in Pharo Smalltalk out of a total of 99. We note that each
weight system used has its own advantages. What motivates
to find a harmony between these two systems and to consider
other aspects of the context, in such a way that it increases
the precision and the technique is able to find both accessors
and setters, as well as more complex methods that make calls.

ACKNOWLEDGMENTS

We thanks Lam Research and the ANID FONDECYT
Regular 1200067 for partially sponsoring the work presented
in this paper.

REFERENCES

[1] W. Weimer, T. Nguyen, C. Le Goues, S. Forrest, Automatically
finding patches using genetic programming, in: Proceedings of the
31st International Conference on Software Engineering, ICSE ’09,
IEEE Computer Society, Washington, DC, USA, 2009, pp. 364–374.
doi:10.1109/ICSE.2009.5070536.
URL http://dx.doi.org/10.1109/ICSE.2009.5070536

[2] C. Le Goues, M. Dewey-Vogt, S. Forrest, W. Weimer, A systematic study
of automated program repair: Fixing 55 out of 105 bugs for $8 each, in:
Proceedings of the 34th International Conference on Software Engineering,
ICSE ’12, IEEE Press, 2012, p. 3–13.

[3] J. Koza, Genetic Programming: On the Programming of Computers by
Means of Natural Selection, MIT Press, 1992.

[4] J. R. K. I, R. Poli, A Genetic Programming Tutorial. Introductory Tutorials
in Optimization, Search and Decision Support, Chapter 8, 2003.

[5] R.-M. Karampatsis, C. Sutton, How often do single-statement bugs
occur? the manysstubs4j dataset, in: Proceedings of the 17th International
Conference on Mining Software Repositories, MSR ’20, Association
for Computing Machinery, New York, NY, USA, 2020, p. 573–577.
doi:10.1145/3379597.3387491.
URL https://doi.org/10.1145/3379597.3387491

[6] A. Bergel, D. Cassou, S. Ducasse, J. Laval, Deep Into Pharo, Square
Bracket Associates, 2013.
URL http://books.pharo.org/deep-into-pharo/

[7] A. Bergel, Agile Visualization, LULU Press, 2016.
URL http://AgileVisualization.com

[8] A. Bergel, F. Bañados, R. Robbes, D. Röthlisberger, SPY: A flexible code
profiling framework. Computer Languages, Systems & Structures (Volume
38) (April, 2012).

[9] G. Hicham, Introduction of the weight edition errors in the Levenshtein
distance, IJARAI, 2012.

