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Abstract—Identifying dependencies between classes is an essen-
tial activity when maintaining and evolving software applications.
It is also known that JavaScript developers often use classes to
structure their projects. This happens even in legacy code, i.e.,
code implemented in JavaScript versions that do not provide
syntactical support to classes. However, identifying associations
and other dependencies between classes remain a challenge due
to the lack of static type annotations. This paper investigates the
use of type inference to identify relations between classes in legacy
JavaScript code. To this purpose, we rely on Flow, a state-of-the-
art type checker and inferencer tool for JavaScript. We perform
a study using code with and without annotating the class import
statements in two modular applications. The results show that
precision is 100% in both systems, and that the annotated version
improves the recall, ranging from 37% to 51% for dependencies
in general and from 54% to 85% for associations. Therefore,
we hypothesize that these tools should also depend on dynamic
analysis to cover all possible dependencies in JavaScript code.

Index Terms—JavaScript; Reverse engineering; Class depen-
dencies.

I. INTRODUCTION

Accurately identifying dependencies between software com-

ponents is essential in reengineering, reverse engineering, and

software maintenance activities [1], [2]. In a statically typed

language (e.g., Java), dependencies are directly expressed from

the type of a program structure (e.g., method definitions,

variables, class references). Dependencies are therefore trivially

deduced. However, dynamically-typed languages, including

JavaScript, do not offer type information which significantly

raises the difficulty to extract dependencies. These dependencies

form the basis to provide, for example, class diagrams for

JavaScript applications.

Type inference is a known technique that identifies the type

of variables using static code analysis. Several type inferencer

tools have been proposed for JavaScript [3], [4]. Oddly, no

attempt has been made to evaluate the accuracy of such tools

to retrieve dependencies in legacy JavaScript programs, as far

as we know. In this paper, we employ the term legacy to refer

to applications that do not use the latest JavaScript standard,

known as ECMAScript 6 (ES6), which offers syntactic support

of classes. However, even without native support, classes

are often emulated in legacy JavaScript using the prototype

mechanism of the language. For example, in a previous work,

we found that structures emulating classes are present in 74% of

the studied systems [5]. It is also important to mention that most

of the JavaScript projects are currently implemented according

to ECMAScript 5 (ES5), the version prior to ES6, representing

a large codebase of legacy code that needs maintenance and

evolution.

This paper evaluates the use of Flow type inferencer to

extract dependencies between classes in legacy JavaScript code.

We perform a study using code with and without annotating

the class import statements in two modular applications. The

results show that precision is 100% in both systems, and that

the annotated version improves recall, ranging from 37% to

51% for dependencies in general and from 54% to 85% for

associations.

The remainder of this paper is organized as follows.

Section II provides a background on class emulation in

legacy JavaScript code, class dependencies, and type inference.

Section III describes the methodology used to detect class-

to-class dependencies in legacy JavaScript code. Section IV

describes the research questions that guide this work, along with

the dataset and metrics used in our study. We discuss answers

to the proposed research questions in Section V. Threats to

validity are exposed in Section VI and related work is presented

in Section VII. We conclude by summarizing our findings and

discussing future work in Section VIII.

II. BACKGROUND

A. Class Emulation in Legacy JavaScript Code

Using functions is the common strategy to emulate classes

in legacy JavaScript [5], [6]. Particularly, any function can

be used as a template for the creation of objects. When a

function is used as a class constructor, the this variable is

bound to the new object under construction. Variables linked

to this are used to define properties that emulate attributes

and methods. If a property is an inner function, it represents a

method; otherwise, it is an attribute. The operator new is used

to instantiate class objects.

To illustrate the emulation of classes in legacy JavaScript

code, we use a simple Queue class. Listing 1 presents the code

that defines this class, which includes a constructor function

(lines 2-4), one attribute elements (line 3), and methods

isEmpty, push, and pop (lines 5-7).

Indeed, the implementation in Listing 1 represents one possi-

bility of class emulation in JavaScript. Variations are possible,

like implementing methods inside/outside class constructors

and using anonymous/non-anonymous functions [5], [7].
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1 // Class Queue

2 function Queue() { // Constructor function

3 this._elements = new LinkedList();

4 }

5 Queue.prototype.isEmpty = function() {...}

6 Queue.prototype.push = function(e) {...}

7 Queue.prototype.pop = function() {...}

Listing 1: Class emulation in legacy JavaScript code

B. Class Dependencies

Based on the UML specification [8], we consider two types

of class-to-class dependencies in this work. Associations are

particular cases of dependencies in which a class contains one

or more attributes that are bound to instances of other classes.

Figure 1 shows two examples of associations commonly found

in JavaScript systems. In code (1), the constructor function

for class Z is implemented in lines 4-6. The attribute x, that

belongs to class Z, receives an instance of class X (line 5),

creating an association between the two classes. In code (2),

the constructor function Z has a parameter x. In line 6, an

instance of Z is created, with x bound to an object of type X.

1 // fileZ.js

2 var X = require("fileX.js");

3

4 function Z() {

5 this.x = new X();

6 }

(1)

1 // fileZ.js

2 function Z(x) {

3 this.x = x;

4 }

5 // testCase.js

6 var z = new Z(new X());

(2)

Fig. 1: Examples of associations (from class Z to class X)

When the relationship between classes does not involve

assignments of objects to class attributes, we have a uses

relationship, because one class just uses the other. Figure 2

shows two examples of dependencies in which a class Z uses

another class X. In code (1), we can see a method foo (lines

1-6) of a class Z. This method receives an object as argument

and uses it to invoke its method bar (line 4). In code (2),

the method foo creates an instance of X and stores it in a

temporary variable x for later use (line 4).

1 Z.prototype.foo =

2 function(x)

3 {

4 var _bar = x.bar();

5 ...

6 }

(1)

1 Z.prototype.foo =

2 function()

3 {

4 var _x = new X();

5 ...

6 }

(2)

Fig. 2: Examples of dependencies of type “uses”

In the remaining of this paper, the term dependency is used

generically to reference associations and dependencies of the

type uses.

C. Type Inference

A type is a collection of program entities that share common

properties. In general, we refer to the process of reasoning

about unknown types as type inference [9]. A type inference

mechanism analyzes a program to infer the types of some

or all of its expressions. Commonly, a type checker verifies

if all the types are properly defined and used according to

the semantics of the programming language. Statically typed

languages, such as Java and C++, perform type checking at

compile-time, demanding the developers to explicitly declare

the types in the source code. Dynamically typed programming

languages, such as JavaScript and Smalltalk, only check types

at runtime.

Flow1 is a static type checker for JavaScript designed by

Facebook. It employs a control-flow analysis that compilers

typically perform to extract semantic information from code,

and then uses this information for type inference. Listing 2 is

one example of code in which Flow can detect incompatible

types involving an expression (line 3) and the type passed as

argument of the function call (line 5). Listing 3 shows the

result of applying Flow to the code in Listing 2. As we can

see, Flow indicates a type error in line 3 (a string is used as

an operand in a multiplication).

1 // Function foo expects a number as argument

2 function foo(x) {

3 return x * 10;

4 }

5 foo(’Hello, Flow!’);

Listing 2: Example of incompatible types detected by Flow

1 foo.js:5

2 5: foo(’Hello, Flow!’);

3 ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ function call

4 3: return x * 10;

5 ˆ string. This type is incompatible with

6 3: return x * 10;

7 ˆˆˆˆˆˆ number

Listing 3: Warning messages from Flow for the code in Listing 2

Developers can also use type annotations to document their

systems and to help Flow during type checking, although this

is not mandatory.

III. EVALUATED APPROACH

Our central goal in this paper is to describe the first results

of a study that uses a static type checker (Flow) to identify

dependencies between structures that emulate classes in legacy

JavaScript code. Figure 3 presents an overview of the approach

investigated in our study. Given a JavaScript legacy application,

we perform the following steps.

Step 1: Identify classes. In the first step, we identify the

classes emulated in a legacy JavaScript codebase using JSClass-

Finder [10], which is a tool designed to detect classes in legacy

JavaScript code. JSClassFinder works on the application’s

abstract syntax tree that is generated after pre-processing the

source code. The tool then applies a set of heuristics to identify

classes, methods, and attributes [5].

Step 2: Infer types. We execute Flow passing the application’s

source code and tests as input. The generated output is a text file

that contains the coordinates (line, column) for every element

1http://flowtype.org/
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Fig. 3: Overview of the evaluated approach

of the source code, and their respective types. Listing 4 shows

Flow’s output for the code in Listing 2. In line 1, for example,

we can see that there is a function, denoted by the arrow

(“=>”), whose name is located in line 1 of the file foo.js,

between columns 10 and 12. This function has a string x as

argument (line 1, column 14) and returns a number.

1 foo.js:1:10-12: (x: string) => number

2 foo.js:1:14: string

3 foo.js:2:9: string

4 foo.js:2:9-14: number

5 foo.js:2:13-14: number

6 foo.js:4:1-3: (x: string) => number

7 foo.js:4:1-19: number

8 foo.js:4:5-18: string

Listing 4: Example of Flow’s type inference algorithm output file

To provide the necessary input for Flow (step 2), the

application’s test cases are used together with the source code

files. In this case, the tests are important to determine the types

involved in class instantiations and method calls. On the other

hand, the class identification (step 1) is based only on the

source files, without the tests.

Step 3: Locate the dependencies. The classes (step 1) and the

inferred types (step 2) are used by the component Dependency

Analyzer (see Figure 3) to identify associations and uses

dependencies. In this step, we look for inferred types that

correspond to classes detected by JSClassFinder. To classify

the associations we identify the types linked to class attributes.

IV. EVALUATION DESIGN

In this section, we describe a first study that aims to answer

the following research questions:

• RQ1: What is the accuracy of the proposed approach

in detecting class dependencies? Answering this research

question is important to assess how accurate and complete

are the class dependencies and associations identified by the

approach described in Section III. We measure precision and

recall to answer this first research question.

• RQ2: Do module annotations improve the accuracy of

the proposed approach? We use this research question to

analyze the impact of including type annotations in the

correspondent import/export statements of the JavaScript

source files. For example, in Figure 1, code (1), we can see

an import statement (line 2), represented by a call to function

require(), that assigns to variable X the definitions exported

by fileX.js. Listing 5 shows the same import statement of

Figure 1, code (1), but with a class type annotation. This

annotation informs Flow that the variable X (line 1) has

indeed the type X. We compare the measures obtained in

RQ1 with the ones obtained after manually including similar

annotations in all import (require) statements.

1 var X: Class<X> = require("fileX.js");

2 ...

Listing 5: Example of import statement with annotation

Dataset and the oracle. For our study, we need systems

that emulate classes in legacy JavaScript in order to find

the dependencies between these classes. We also need an

oracle of class dependencies. We use two TypeScript open-

source projects to build this oracle and minimize possible

bias. TypeScript is an extension of JavaScript that offers

a module system, classes, interfaces and a gradual type

system [11]. In order to execute, TypeScript code is transpiled

to vanilla JavaScript.2 By parsing and extracting explicit types

in TypeScript programs, class-to-class dependencies can be

found and added to the oracle. The strategy of using TypeScript

projects to build an oracle is also adopted by Rostami et al. [6]

in their work to detect constructor functions in JavaScript.

Table I presents the main characteristics of the two selected

TypeScript projects, including version number, size (LOC),

number of classes, number of dependencies, and number of

dependencies that are class associations. INVERSIFYJS
3 is a

lightweight inversion of control container for TypeScript and

JavaScript applications. SATELLIZER
4 is an end-to-end token-

based authentication module for AngularJS.

TABLE I: CHARACTERISTICS OF THE ANALYZED SYSTEMS.

System Version LOC # Classes # Class # Class

Dependencies Associations

INVERSIFYJS 2.0.1 1,527 20 160 26

SATELLIZER 0.15.5 990 11 39 20

As an example of class in TypeScript, Listing 6 shows part

of the implementation of class QueryString in INVERSIFYJS.

We can see type annotations in attributes (line 2), which are

used to infer associations, and in parameters (lines 4 and 7),

which are used to infer uses relations.

1 class QueryableString {

2 private str: string;

3

4 constructor(str:string) {

5 this.str = str;

6 }

7 public startsWith (searchString: string): boolean {

8 ...

9 }

10 }

Listing 6: Example of class in TypeScript

2A transpiler is a source-to-source compiler. Transpilers are used, for
example, to convert from TypeScript to JavaScript, in order to guarantee
compatibility with existing browsers and runtime tools. The automatically
generated transpiled code contains all function constructors and methods, along
with their dependencies, very similar to a naturally written code.

3https://github.com/inversify/InversifyJS
4https://github.com/sahat/satellizer
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V. RESULTS

A. What is the accuracy of the proposed approach in detecting

class dependencies?

As described in Section IV, we evaluate our approach using

precision and recall. Table II summarizes the results according

to the proposed approach. As we can see, precision is 100%

in all evaluated scenarios and systems. Maximal precision

values suggest that the type inference mechanism is very

conservative. No false positives were found in both systems.

In the case of recall, we can observe a very low result for

class dependencies in INVERSIFYJS (6%) and a slightly better

result if we only consider class associations (19%). Listing 7

shows one example of dependency that could not be identified

in INVERSIFYJS. This example includes the implementation

of method getAllTagged in class Kernel. Flow was not

able to identify that the object created in line 5 represents an

instance of class Metadata, therefore missing a dependency

from Kernel to this class.

TABLE II: PRECISION AND RECALL RESULTS

System All Dependencies Associations

TP FP FN Prec. Recall TP FP FN Prec. Recall

INVERSIFYJS 9 0 151 100% 6% 5 0 21 100% 19%

SATELLIZER 17 0 22 100% 44% 17 0 3 100% 85%

1 var metadata_1 = require("metadata.js");

2 ...

3 Kernel.prototype.getAllTagged =

4 function (serviceIdentifier, key, value) {

5 var metadata = new metadata_1(key, value);

6 ...

7 };

Listing 7: Example of dependency not detected in INVERSIFYJS

The results are more accurate for system SATELLIZER, where

recall ranges from 44% for all dependencies to 85% when

considering only associations. The better results achieved in

SATELLIZER may be explained due to the fact that associations

in this system represent 51% of the cases, against 16% in

INVERSIFYJS.

Summary: The proposed approach has a precision of 100%

(in both systems). Recall ranges from 6% to 44% for

all dependencies and from 19% to 85% for associations.

Further investigation is needed to understand the causes

of false negatives, specially for dependencies that are not

associations.

B. Do module annotations improve the accuracy of the pro-

posed approach?

Table III summarizes the results with the import statements

annotated. We have high precision values (100%), as in RQ

#1. In the case of recall, we observe a significant improvement

in INVERSIFYJS with 37% for all class dependencies and 54%

if we only consider class associations. By contrast, system

SATELLIZER is less sensitive to the presence of annotations

having 51% for dependencies and preserving the same 85%

for class associations.

TABLE III: PRECISION AND RECALL WITH EXPLICIT MODULE

ANNOTATIONS

System All Dependencies Associations

TP FP FN Prec. Recall TP FP FN Prec. Recall

INVERSIFYJS 59 0 101 100% 37% 14 0 12 100% 54%

SATELLIZER 20 0 19 100% 51% 17 0 3 100% 85%

Summary: The use of explicit module annotations in import

statements improved the values of recall, which now ranges

from 37% to 51% for all dependencies and from 54% to

85% for associations.

VI. THREATS TO VALIDITY

External Validity. We studied two open-source JavaScript/Type-

Script systems. For this reason, our preliminary results might

not represent all possible cases of class dependencies and

associations. If other systems were considered, the effect of

adding module annotations could vary. To allow the replication

of our study, the oracle along with the detected dependencies

for both systems is available on-line.5

Internal Validity. In the evaluation we only address module

dependencies that comply with CommonJS6. There are different

strategies to incorporate modules into JavaScript programs, e.g.,

global functions and AMD7, which also support modules that

can be annotated according to our approach. Therefore, we can

extend our study by including applications using other module

systems.

Construct Validity. The classes emulated in the legacy code were

detected by JSClassFinder [5], [10]. Therefore, it is possible

that JSClassFinder wrongly identifies some structures as classes

(false positives) or that it misses some classes in the legacy

code (false negatives). Likewise, we rely on Flow to infer

the types needed for identifying class relations. However, the

results we achieved for precision and recall indicate that both

tools presented consistent behavior.

VII. RELATED WORK

In a previous work, we present a set of heuristics followed

by an empirical study to investigate the prevalence of class-

based structures in legacy JavaScript code [5]. The study was

conducted on 50 popular JavaScript systems, implemented

according to ECMAScript 5. The results indicated that class-

based constructs are present in 74% of the studied systems. We

also implemented a tool, JSClassFinder [10], to detect classes

in legacy JavaScript code. We used this tool to identify the

emulated classes in the presented paper.

5https://github.com/leonardo-silva/JSClassDependencies
6http://requirejs.org/docs/commonjs.html
7https://github.com/amdjs/amdjs-api/wiki/AMD
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Rostami et al. [6] propose an alternative tool, called JS-

Deodorant, to detect constructor functions in legacy JavaScript

systems. They first identify all object instantiations, even when

there is no explicit object instantiation statement (e.g., the

keyword new), and then link each instance to its constructor

function. Finally, the identified constructors represent the

emulated classes and the functions that belong to these

constructors (inner functions) represent the methods.

Cloutier et al. [12] present a reverse engineering tool, called

WAVI, that uses static analysis and a filter-based mechanism

to retrieve and document the structure of a Web application.

WAVI provides customized class diagrams for JavaScript, as

proposed by web application extensions (WAE) [13]. However,

the tool is not able to identify class constructors nor their

dependencies in legacy JavaScript code.

Jensen et al. [14], [15] introduce TAJS, which is a dataflow

analyzer for JavaScript that relies on allocation site abstraction

for objects and constant propagation for primitive values. The

authors also provide an Eclipse plug-in that can be used to

catch type-related errors. Therefore, future work can extend

our study using TAJS as type inferencer.

There are also tools and techniques that rely on execution

traces to understand event-based interactions in JavaScript.

Alimadadi et al. [16] presented a tool, called Clematis, for

supporting comprehension of web applications. The tool cap-

tures a detailed trace of a web application’s behaviour during a

particular user session and creates a behavioural model through

a combination of automated JavaScript code instrumentation

and transformation. This model is then presented to the

developers as an interactive visualization that depicts the

creation and flow of triggered events. Zaidman et al. [17]

presented a tool, called FireDetective, to record execution

traces of the JavaScript code that is executed in the browser

(client) and also in the server. The level of detail used is the call

level: the tool records the names of all functions and methods

that were called, and in what order they were called, allowing

the reconstruction of a call tree representation of each trace.

Although event-based interactions do not involve class relations

directly, future work can use similar techniques to extend our

approach by looking for dependencies in execution traces.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we propose an approach that uses type inference

to identify class-to-class dependencies and associations in

legacy JavaScript code. We report a study on two open-source

projects to identify relations between classes and modules. Our

results show that precision reaches 100% in the two systems

evaluated in the paper. However, recall is lower, ranging from

6% to 44% for dependencies in general and from 19% to 85%

for associations. We also show that, after manually annotating

import statements with type information, Flow’s recall increases,

reaching 37% to 51% for dependencies and from 54% to 85%

for associations, which is probably not sufficient to provide

reliable reverse engineering tools to JavaScript developers.

Therefore, we hypothesize that these tools should also depend

on dynamic analysis to cover all possible dependencies in

JavaScript code.

As future work, we intend to enrich our research in two

directions. First, we plan to extend our study analyzing a

larger set of JavaScript systems. In this way, we can identify

other instances of missing dependencies (false negatives) and

visualize other opportunities to introduce annotations. Second,

we plan to improve recall by combining our approach with

dynamic analysis. We can instrument JavaScript code to record

execution traces using, for example, tools like Aran [18].
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