
Received: 12 August 2016 Revised: 12 January 2017 Accepted: 14 February 2017

DOI: 10.1002/smr.1864

R E S E A R C H A R T I C L E

Identifying Classes in Legacy JavaScript Code

Leonardo Humberto Silva1 Marco Tulio Valente1 Alexandre Bergel2

Nicolas Anquetil3 Anne Etien3

1Department of Computer Science, Federal

University of Minas Gerais, Belo Horizonte,

Brazil
2Department of Computer Science, DCC -

Pleiad Lab, University of Chile, Santiago, Chile
3RMod Project Team, INRIA Lille Nord Europe,

France

Correspondence

Leonardo Humberto Silva, Department of

Informatics, Federal Institute of Northern

Minas Gerais, Salinas, Brazil.

Email: leonardo.silva@ifnmg.edu.br

Funding information

STICAmSud, Grant/Award Number: 14STIC-02;

FONDECYT, Grant/Award Number: 1160575

Abstract

JavaScript is the most popular programming language for the Web. Although the language is

prototype-based, developers can emulate class-based abstractions in JavaScript to master the

increasing complexity of their applications. Identifying classes in legacy JavaScript code can sup-

port these developers at least in the following activities: (1) program comprehension; (2) migration

to the new JavaScript syntax that supports classes; and (3) implementation of supporting tools,

including IDEs with class-based views and reverse engineering tools. In this paper, we propose

a strategy to detect class-based abstractions in the source code of legacy JavaScript systems.

We report on a large and in-depth study to understand how class emulation is employed, using

a dataset of 918 JavaScript applications available on GitHub. We found that almost 70% of the

JavaScript systems we study make some usage of classes. We also performed a field study with

the main developers of 60 popular JavaScript systems to validate our findings. The overall results

range from 97% to 100% for precision, from 70% to 89% for recall, and from 82% to 94% for

F-score.

KEYWORDS

JavaScript, Program comprehension, Reverse engineering

1 INTRODUCTION

JavaScript is the most popular programming language for the Web. The

language was initially designed in the mid-1990s to extend web pages

with small executable code. Since then, its popularity and relevance

only grew.1-3 JavaScript is now the most popular language on GitHub,

including newly created repositories. Richards et al4 also reported that

the language is used by 97 out of the web's 100 most popular sites.

Concomitantly with its increasing popularity, the size and complexity of

JavaScript software is in steady growth. The language is now used to

implement mail clients, office applications, and IDEs, which can reach

hundreds of thousands of lines of code.*

JavaScript is an imperative and object-oriented language centered

on prototypes, rather than a class-based language.5-7 Recently, the

new standard version of the language, named ECMAScript 6 (ES6),

included syntactical support for classes.8 In this new version, it is

possible to implement classes using a syntax very similar to the one

provided by mainstream class-based object-oriented languages, like

*http://sohommajumder.wordpress.com/2013/06/05/gmail-has-biggest-collection-of-
javascript-code-lines-in-the-world

Java and C++. However, there is a large codebase of legacy JavaScript

source code, ie, code implemented in versions prior to the ES6 stan-

dard. To mention an example, GitHub has currently over 3 million active

repositories whose main language is JavaScript†, most of them imple-

mented in ECMAScript 5. In this legacy code, developers can emu-

late class-based abstractions, ie, data structures including attributes,

methods, constructors, inheritance, etc, using the prototype-based

object system of the language, which is part of JavaScript since

its first version.

In a previous paper, we presented a set of heuristics followed by

an empirical study to analyze the prevalence of class-based structures

in legacy JavaScript code.9 This empirical study was conducted on 50

popular JavaScript systems, all implemented according to ECMAScript

5. The results indicated that (1) class-based constructs are present in

74% of the studied systems, that (2) there is no correlation between

code size and the number of class-like structures, and that (3) emulating

inheritance through prototype chaining is not common. In this paper,

we extend this previous work as follows:

† http://githut.info/

J Softw Evol and Proc. 2017;29:e1864. wileyonlinelibrary.com/journal/smr Copyright © 2017 John Wiley & Sons, Ltd. 1 of 20
https://doi.org/10.1002/smr.1864

https://doi.org/10.1002/smr.1864
http://orcid.org/0000-0003-2807-6798
http://sohommajumder.wordpress.com/2013/06/05/gmail-has-biggest-collection-of-
javascript-code-lines-in-the-world
http://githut.info/

2 of 20 SILVA ET AL.

• We conduct a new study and increase our dataset from 50 to

918 systems. We use an external library called Linguist to allow

the extraction of a large dataset from GitHub, ignoring binary or

third-party files and suppressing files generated automatically.

• We perform a field study with 60 professional JavaScript developers

to evaluate the accuracy of the proposed strategy to detect class-like

structures in legacy JavaScript code.

• We measure precision, recall, and F-score for the identification of

classes, methods, and attributes. The overall results range from 97%

to 100% for precision, from 70% to 89% for recall, and from 82% to

94% for F-score.

• We investigate if JavaScript developers intend to use the new sup-

port for classes that comes with ES6.

The main objective of this work is to propose, implement, and eval-

uate a set of heuristics to identify class-based structures and their

dependencies, in legacy JavaScript code. Identifying classes in legacy

JavaScript code is important for 2 major reasons. Firstly, it can sup-

port developers to migrate their legacy code to ES6, manually or by

using tools that rely on the heuristics proposed in this paper. Sec-

ondly, it opens the possibility to implement a variety of analysis tools

for legacy JavaScript code, including IDEs with class-based views, bad

smells detection tools, reverse engineering tools, and techniques to

detect violations and deviations in class-based architectures.

The main contributions of our work are as follows:

• We document how prototypes are used in JavaScript to support the

implementation of structures including both data and code and that

are further used as a template for the creation of objects (Section

2). We use the term classes to refer to such structures, because they

have a very similar purpose as the native classes from mainstream

object-oriented languages.

• We propose a strategy to statically identify classes in JavaScript code

(Section 3). We also propose an open source supporting tool, called

JSCLASSFINDER, that practitioners can use to detect and inspect

classes in legacy JavaScript software.

• We provide a thorough study on the usage of classes in a dataset of

918 JavaScript systems available on GitHub (Section 4). This study

aims to answer the following research questions: (RQ #1) Do devel-

opers emulate classes in legacy JavaScript applications? (RQ #2)

Do developers emulate subclasses in legacy JavaScript applications?

(RQ #3) Is there a relation between the size of a JavaScript appli-

cation and the number of class-like structures? (RQ #4) What is the

shape of the classes emulated in legacy JavaScript code? By “shape

of a class” we mean how it is organized in terms of the number of

attributes and methods.

• We report the results of a field study with 60 professional JavaScript

developers (Section 5). We rely on these developers to validate our

findings and our strategy to detect classes. This study aims to answer

the following research questions: (RQ #5) How accurate is our strat-

egy to detect classes? (RQ #6) Do developers intend to use the new

support for classes that comes with ECMAScript 6?

The remainder of this paper is organized as follows: Section 2 pro-

vides a background on how classes are emulated in legacy JavaScript

code using functions and prototypes. Section 3 introduces our

strategy and tool to identify classes in JavaScript. Section 4 describes

the research questions that guide this work, along with the dataset,

metrics, and methodology used in our studies. We show and discuss

answers to the proposed research questions in Section 5. We discuss

the implications of our results and future research opportunities in

Section 6. Threats to validity are exposed in Section 7, and related work

is discussed in Section 8. We conclude by summarizing our findings in

Section 9.

2 CLASSES IN JAVASCRIPT

In this section, we discuss how classes can be emulated in legacy

JavaScript code (Subsection 2.1). We also describe the syntax proposed

in ECMAScript 6 to support classes (Subsection 2.2).

2.1 Class emulation in legacy JavaScript code

This section describes the different mechanisms to emulate classes

in legacy JavaScript. To identify these mechanisms, we conducted an

informal survey on documents available on the web, including tuto-

rials‡, blogs§, and StackOverflow discussions¶. We surveyed a cata-

logue of five encapsulation styles for JavaScript proposed by Gama

et al10 and JavaScript books targeting language practitioners.11,12

We also interviewed the developer of a real JavaScript project to

tune our tool and strategy. This developer is the leader of the

open source project select2‖ (a customizable replacement for

select boxes).

An object in JavaScript is a set of name-value pairs. Methods and vari-

ables are called properties, and their values can be any objects, including

immediate values (eg, numbers and boolean) and functions. To imple-

ment classes in JavaScript, prior to ECMAScript 6 standard, the most

common strategy is to use functions. Particularly, any function can be

used as a template for the creation of objects. When a function is used

as a class constructor, its this is bound to the new object being con-

structed. Variables linked to this are used to define properties that

emulate attributes and methods. If a property is an inner function, then

it represents a method, otherwise, it is an attribute. The operator new

and the methodObject.create(…) are usually used to instantiate

classes.

To illustrate the definition of classes in legacy JavaScript code,

we use a simple Circle class. Listing 1 presents the function that

defines this class (lines 1-8), which includes 2 attributes (radius

and color) and 2 methods (getArea and setColor). Functions

used to define methods can be implemented inside the body of the

class constructor, like getArea (lines 4-6), or outside, like setColor

(lines 9-11). An instance of the class Circle is created with the

keyword new (line 13).

‡ https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_
Object-Oriented_JavaScript
§ http://javascript.crockford.com/prototypal.html
¶ http://stackoverflow.com/questions/387707/whats-the-best-way-to-define-
a-class-in-javascript
‖https://select2.github.io/

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript
http://javascript.crockford.com/prototypal.html
http://stackoverflow.com/questions/387707/whats-the-best-way-to-define-
a-class-in-javascript
https://select2.github.io/

SILVA ET AL. 3 of 20

Each object in JavaScript has an implicit prototype property that

refers to another object. The instance link between an object and

its class in mainstream object-oriented languages is assimilated to

the prototype link between an object and its prototype in JavaScript.

To evaluate an expression like obj.p, the runtime system starts

searching for property p in obj, then in obj.prototype, then in

obj.prototype.prototype, and so on until it finds the desired

property or the search fails. When an object is created using newC its

prototype is set to theprototypeof the functionC, which by default

is defined as pointing to Object (the global base object in JavaScript).

Therefore, a chain of prototype links usually ends at Object.

By manipulating the prototype property, we can define methods

whose implementations are shared by all object instances. It is also

possible to define attributes shared by all objects of a given class,

akin to static attributes in class-based languages. In Listing 2, Cir-

cle includes a pi static attribute (line 2) and a getCircumference

method (lines 5-7). It is worth noting that getCircumference is not

attached to the class (as a static method in Java). It has for example

access to the object this, whose value is not determined using lexical

scoping rules, but instead using the caller object.

Prototypes are also used to introduce inheritance hierarchies.13,14

In JavaScript, we can consider that a class C2 is a subclass of C1 if C2's

prototype refers toC1's prototype or to an instance ofC1. For example,

Listing 3 shows a classCircle2D that extendsCirclewith its position

in a Cartesian plane.

Alternatively, the subclass may refer directly to the prototype of the

superclass, which is possible using the Object.create() method.

This method creates a new object with the specified prototype object,

as illustrated by the following code:

Table 1 summarizes the mechanisms presented in this section to map

class-based object-oriented abstractions to JavaScript abstractions.

4 of 20 SILVA ET AL.

TABLE 1 Class-based languages vs JavaScript

Class-based languages JavaScript

Class Function

Attribute Field property

Method Inner function property

Static attribute Prototype property

Inheritance Prototype chaining

2.2 ECMAScript 6 classes

ECMAScript is the standard definition of JavaScript.5 ECMAScript 68 is

the latest version of this standard, which was released in 2015**. Inter-

estingly, a syntactical support to classes is included in this last release.

For example, ES6 supports the following class definition:

However, this support to classes does not impact the semantics of the

language, which remains prototype-based. For example, the previous

class is equivalent to the following code:

The emulation strategies discussed in the previous section straight-

forwardly detects this code as aCircle class, with aradius attribute

and a getArea method. Therefore, identifying class-like structures

in legacy JavaScript code can, for example, motivate developers to

migrate such structures to syntax-based classes, according to the ES6

standard.

3 DETECTING CLASSES IN LEGACY
JAVASCRIPT

In this section, we describe our strategy to statically detect classes

in legacy JavaScript source code (Subsection 3.1). Subsection 3.2

describes the tool we implemented for this purpose. We also report

limitations of this strategy, mainly because of the dynamic nature of

JavaScript (Subsection 3.3).

** https://developer.mozilla.org/en-US/docs/Web/JavaScript/New_in_JavaScript/
ECMAScript_6_support_sin_Mozilla

3.1 Strategy to detect classes

To detect classes, we reuse with minimal adaptations a simple grammar,

originally proposed by Anderson et al15 to represent how objects are

created in JavaScript and how objects acquire fields and methods. This

grammar is as follows:

This grammar assumes that a program is composed of functions and

that a function's body is an expression. The expressions of interest are

the ones that create objects and add properties to functions via this

or prototype.

Definition 1. A class is a tuple (C,,), where C is the class name,

 = {a1, a2, … , ap} are the attributes defined by the class, and =
{m1,m2, … ,mq} are the methods. Moreover, a class(C,,), defined

in a JavaScript program P, must respect the following conditions:

• P must have a function with name C.

• For each attribute a ∈ , the class constructor or one of its meth-

ods must include an assignmentthis.a= Expor P must include an

assignment C.prototype.a= Exp.

• For each method m ∈ , function C must include an assignment

this.m= function{ Exp } or P must include an assignment

C.prototype.m= function{ Exp }.

However, when functions matching Definition #1 are implemented in

the same lexical scope, as functionsCircleandsetColor in Listing 1,

we must distinguish those that are class constructors from those that

are methods. To achieve that, we do not consider as a class constructor

a function that (1) has no inner functions bound to this, (2) does not

participate in inheritance relationships defined using prototypes, and

(3) is never instantiated with neithernewnorObject.create. In List-

ing 1, functionsetColordoes not have inner functions bound tothis

nor inheritance relationships and it is never instantiated. Therefore, it

is not considered a function constructor, but a method of classCircle.

Definition 2. Assuming that (C1,1,1) and (C2,2,2) are

classes in a program P, we define that C2 is a subclass of C1 if 1 of the

following conditions holds:

• P includes an assignment C2.prototype=newC1().

• P includes an assignment C2.prototype=Object. create

(C1.prototype).

3.2 Tool support

We implemented a tool, called JSCLASSFINDER,16 for identifying

classes in legacy JavaScript programs. As illustrated in Figure 1, this tool

https://developer.mozilla.org/en-US/docs/Web/JavaScript/New_in_JavaScript/ECMAScript_6_support_sin_Mozilla
https://developer.mozilla.org/en-US/docs/Web/JavaScript/New_in_JavaScript/ECMAScript_6_support_sin_Mozilla

SILVA ET AL. 5 of 20

FIGURE 1 JSClassFinder's architecture

FIGURE 2 Example of distribution map for system JADE, generated
by JSClassFinder

works in 2 steps. In the first step, Esprima††—a widely used JavaScript

Parser—is used to generate a full abstract syntax tree (AST), in JSON

format. In the second step, the “Class Detector” module is respon-

sible for identifying classes in the JavaScript AST and producing an

object-oriented model of the source code.

The models generated by JSCLASSFINDER are integrated with

Moose‡‡, which is a platform for software and data analysis.17

This platform provides visualizations to interact with the tool and

to “navigate” the application's model. All information about classes,

methods, attributes, and inheritance relationships is available. Users

††http://esprima.org
‡‡http://www.moosetechnology.org/

can interact with a Moose model to access all visualization fea-

tures and metric values. This model also allows the use of drill-down

and drill-up operations when an entity is selected. The visualization

options include UML class diagrams,18 distribution maps,19 and tree

views.

It is possible for a user to customize the diagrams and to choose

which elements to expose. For example, Figure 2 shows a distribu-

tion map for the system JADE. In this visualization, classes are rep-

resented by external rectangles, the small blue squares are methods,

and the links between classes represent inheritance relationships. It is

also possible to show a similar diagram where the external squares are

JavaScript files and the internal squares are classes.

JSCLASSFINDER also collects the following metrics: number of

attributes (NOA), number of methods (NOM), depth of inheritance tree

(DIT), and number of children.20

3.3 Limitations

We acknowledge that there is not a single strategy to emulate classes

in JavaScript. For example, it is possible to create “singleton” objects

directly, without using any class-like constructions, as in Listing 4. Even

though we do not consider such objects as classes, we chose to fol-

low the definition presented in the previous study,21 in which Booch

et al state that classes and objects are tightly interwoven, but there are

important differences between them (“a class is a set of objects that

share a common structure, common behavior, and common semantics,”

“a single object is simply an instance of a class,” page 93).

In addition, there are various JavaScript frameworks, like Proto-

type§§ and ClazzJS¶¶, that support their own style for implementing

§§http://prototypejs.org
¶¶ https://github.com/alexpods/ClazzJS

http://esprima.org
http://www.moosetechnology.org/
http://prototypejs.org
https://github.com/alexpods/ClazzJS

6 of 20 SILVA ET AL.

class-like abstractions. For this reason, we do not struggle to cover

the whole spectrum of alternatives to implement classes. Instead, we

consider only the strategy closest to the syntax and semantics of

class-based languages and that ES6 code can be directly translated (as

discussed in Subsection 2.2).

Moreover, there are object-oriented abstractions that are more

difficult to emulate in JavaScript, like abstract classes and interfaces.

Encapsulation is another concept that does not have a straightforward

mapping to JavaScript. A common workaround to simulate private

members in JavaScript is by using local variables and closures. As shown

in Listing 5, an inner function f2 in JavaScript has access to the vari-

ables of its outer function f1, even after f1 returns. Therefore, local

variables declared in f1 can be viewed as private, because they can

only be accessed by the “private function” f2. However, we do not clas-

sify f2 as a private method, mainly because it cannot be accessed from

the object this, nor can it be directly called from the public methods

associated to the prototype of f1.

In JavaScript, it is possible to remove properties from objects dynam-

ically, eg, by callingdeletemyCircle.radius. Therefore at runtime,

an object can have less attributes than the ones initially defined. It is

also possible to modify the prototype chains dynamically, which would

mean modifying the “inheritance” links. Finally, the behavior of a pro-

gram can also be dynamically modified using the eval operator.22,23

However, we do not consider the impact of eval in the strategy

described in Subsection 3.1. For example, we do not account for classes

entirely or partially created by means of eval.

Still because of the dynamic nature of JavaScript, if a class has a

property that receives the return of a function call, this property is

classified as an attribute, even if this call returns another function.

Listing 6 shows an example in which the property this.x (line 6)

is classified as an attribute, instead of a method, because the

language is loosely typed and we do not evaluate the results of

function calls.

4 EVALUATION DESIGN

In this section, we describe the methodology we use to evaluate and

to validate the strategy proposed to detect classes in legacy JavaScript

code. We first present the questions that motivate our research

(Subsection 4.1). Next, we describe the process we follow to select

JavaScript repositories on GitHub and to carry out the necessary clean

up of the downloaded code (Subsection 4.2). The metrics we use in our

evaluation are described in Subsection 4.3. Finally, we report the design

of a field study with JavaScript developers in Subsection 4.4.

4.1 Research questions

Our main goal is to evaluate the strategy that we propose

to detect class-like abstractions in legacy JavaScript soft-

ware. To achieve this goal, we pose the following research

questions:

• RQ #1: Do developers emulate classes in legacy JavaScript applica-

tions?

• RQ #2: Do developers emulate subclasses in legacy JavaScript appli-

cations?

• RQ #3: Is there a relation between the size of a JavaScript applica-

tion and the number of class-like structures?

• RQ #4: What is the shape of the classes emulated in legacy

JavaScript code?

• RQ #5: How accurate is our strategy to detect classes?

• RQ #6: Do developers intend to use the new support for classes that

comes with ECMAScript6?

With RQ #1, we check if the emulation of classes is a common

practice in legacy JavaScript applications. RQ #2 checks the usage of

prototype-based inheritance. With RQ #3, we verify if the number of

JavaScript classes in a system is related to its size, measured in lines of

code. With RQ #4, we analyze the shape of JavaScript classes regard-

ing the relation between the number of attributes and the number

of methods. With RQ #5, we evaluate the accuracy of the proposed

approach to identify class-like structures. With RQ #6, we verify if

developers intend to use the concrete syntax to define classes provided

by ES6.

4.2 Dataset

Our dataset includes the last version of the top 1000 JavaScript

repositories on GitHub, according to the number of stars. This selec-

tion was performed in July, 2015. After cloning the repositories,

we used an external library called Linguist‖‖ to clean up the source

code files. Linguist is used by GitHub to ignore binary, third-party,

and automatically-generated files when computing statistics on the

programming languages used by a repository. After running Linguist,

we also performed a custom-made script to remove tests, exam-

ples, documentation, and configuration files. More specifically, this

script removes the following files: gulpfile.js, gruntfile.js,

package.js, *thirdparty.js, *_test.js, *_tests.js,

‖‖https://github.com/github/linguist

https://github.com/github/linguist

SILVA ET AL. 7 of 20

FIGURE 3 Dataset size distributions (log scales). A, #Files; B, # Functions; C, LOC; LOC, lines of code

test.js, tests.js, and license.js; and the following fold-

ers: test, tests, examples, example, build, dist, spec,

demos, demo, minify, release, releases, docs, bin, test-*,

and testing.

After this clean up process, 82 systems were not exploitable because

they did not contain any significant contributions, ie, they remained

with no source code files. Therefore, the final dataset was composed of

918 systems. Figure 3 shows the distribution of number of files, num-

ber of functions, and lines of code (LOC) in logarithm scale (base 10).

The width of the “violin plot” indicates the number of systems for a

given value. The largest system (gaia) has 375,615 LOC and 1650 files

with.js extension. The smallest system (jswiki) has 8 LOC and a sin-

gle file. The average size is 8778 LOC (standard deviation 21,801 LOC)

and 41 files (standard deviation 163 files). The median (white dot at the

center of the “violin”) is 2170 LOC and 10 files.

4.3 Metrics

In the following, we describe the metrics we use to answer the first 4

research questions proposed in Subsection 4.1.

4.3.1 Class density (CD)

To measure the amount of source code related to the emulation of

classes (as defined in Subsection 3.1) we use Class Density (CD), which is

defined as:

CD = # function methods + # classes
functions

This metric is the ratio of functions in a program that are related to

the implementation of classes, ie, that are methods or that are classes

themselves. It ranges between 0 (system with no functions related

to classes) to 1 (a fully class-oriented system, where all functions are

used to support classes). The denominator includes all functions in a

JavaScript program. We use the number of functions to implement

methods (function methods) instead of the number of methods because,

in JavaScript, it is possible to share the same function to implement

multiple methods. Listing 7 shows an example found in the system

SLICK, where a function body is shared by 2 methods. In this example,

the Slick class provides 2 methods (getCurrent and slickCur-

rentSlide) that perform the same action when called. Therefore,

the number of methods is equal to 2, but the number of function

methods is 1.

We used CD to classify the systems in 4 main groups:

• Class-free systems: systems that do not use classes at all (CD = 0).

• Class-aware systems: systems that use classes but marginally (0 <

CD ⩽ 0.25).

• Class-friendly systems: systems with an important usage of classes

(0.25 < CD ⩽ 0.75).

• Class-oriented systems: systems where most structures are classes

(CD > 0.75).

4.3.2 Subclass density (SCD)

To evaluate the usage of inheritance, we propose the metric subclass

density (SCD), defined as:

SCD = |{C ∈ Classes|DIT(C) ⩾ 2}|
|Classes| − 1

where Classes is the set of all classes in a given system and DIT is

the Depth of Inheritance Tree. Classes with DIT = 1 only inherit from

the common base class (Object). SCD ranges from 0 (system that

does not make use of inheritance) to 1 (system where all classes

8 of 20 SILVA ET AL.

inherit from another class, except the class that is the root of the

class hierarchy). SCD is only defined for systems that have at least

2 classes.

4.3.3 Data-oriented class ratio (DOCR)

In a preliminary analysis, we noticed many classes having more

attributes than methods. This contrasts to the common shape of classes

in class-based languages, when classes usually have more methods than

attributes.24 To better understand the members of JavaScript classes,

we propose a metric called Data-oriented class ratio (DOCR), defined

as follows:

DOCR = |{C ∈ Classes|NOA(C) > NOM(C)}|
|Classes|

where Classes is the set of all classes in a system. Data-oriented class

ratio ranges from 0 (system where all classes have more methods than

attributes or both measures are equal) to 1 (system where all classes

are data-oriented classes, ie, their number of attributes is greater than

the number of methods).Data-oriented class ratio is only defined for

systems that have at least one class.

4.4 Field Study Design

To validate our strategy for detecting classes, we perform a field study

with the developers of 60 JavaScript applications, including 50 systems

from our previous work9 and 10 new systems. These systems have at

least 1000 stars on GitHub, 150 commits, and are not forks of other

projects. After checking out each system, we cleaned up the source

code to remove unnecessary files, as we did for the dataset described

in Subsection 4.2.

The systems considered in the field study are presented in Table 2,

including their version, a brief description, size (in lines of code), num-

ber of files, and number of functions. The selection includes well-known

and widely used JavaScript systems, from different domains, covering

frameworks (eg, ANGULAR.JS and JASMINE), editors (e.g, BRACKETS),

browser plug-ins (eg, PDF.JS), games (eg, 2048 and CLUMSY-BIRD),

etc. The largest system (ACE) has 140,023 LOC and 594 files with .js

extension. The smallest system (MASONRY) has 208 LOC and a single

file. The average size is 12,870 LOC (standard deviation 25,961 LOC)

and 56 files (standard deviation 101 files). The median size is 3,363 LOC

and 13 files.

This field study was conducted between March and June, 2015. For

each system, we performed the following steps:

1. We downloaded the latest version on GitHub and cleaned up the

source code.

2. We executed the parser (Esprima) to generate the AST.

3. We executed JSClassFinder to identify class-like structures and to

build a class diagram.

4. We used the information available on GitHub to identify the

main developers of each system. For systems supported by a

team of developers, the developer selected was the one with

the highest number of commits in the previous 3 months. We

then sent an email to the application's main developer with the

class diagram attached and asked him to validate the detected

classes. Figure 4 shows the class diagram sent to the developer of

ALGORITHMS.JS. This diagram includes 14 classes representing

common data structures, such as Stack, LinkedList, Graph,

HashTable, etc.

5. We analyzed and categorized the developer's responses.

In the mails to the developers, we asked 2 questions:

• Do you agree that the classes in the attached class diagram are

correct?

• Do you intend to use the new support for classes that comes with

ECMAScript 6? Why?

The developers had to answer the questions and point out their

reasons. The first question aims to evaluate the accuracy of our

approach to detect class-like structures (RQ #5). The second ques-

tion aims to measure the interest in a concrete syntax to implement

classes in JavaScript (RQ #6). In the cases where, after 1 month,

an answer was not received, a gentle reminder was sent. For the

systems where we did not find any classes, we also sent emails request-

ing the developers to confirm that they really do not emulate classes in

their systems.

We sent 60 emails and received 33 answers, which represents a

response ratio of 55%. Out of the 33 answers, 29 were obtained after a

first round, and the other 4 after sending a gentle reminder.

We had 3 answers that could not be properly classified in our

study. The first came from a developer who said he agreed with

our findings but he was not totally sure. In the second case, the

developer sent a web link which contains the API documentation of

his application, and he recommended us to validate the classes our-

selves. In the last case, the developer just stated that we should

never use classes. Therefore, after discarding these cases, we have 30

valid answers.

Figure 5 shows the distribution of the valid answers per group of

systems according to the class density (CD values). The distribution

indicates that our field study includes systems in all 4 main groups:

class-free (4 answers), class-aware (15 answers), class-friendly

(7 answers), and class-oriented (4 answers).

Finally, we use developers' answers to measure precision, recall, and

F-score for the classes, methods, and attributes identified by our tool.

These measures are calculated as follows:

Precision (P) = TP
TP + FP

Recall (R) = TP
TP + FN

F-score (F1) = 2 × P × R
P + R

,

where TP represents the true positives, FP the false positives, and FN

the false negatives. For classes, TP is the number of class-like structures

correctly identified by our tool, FP is the number of class-like structures

erroneously identified, and FN is the number of existing class-like struc-

tures that are not identified. F-score is the harmonic mean of precision

and recall. For methods and attributes, the measures are defined in a

SILVA ET AL. 9 of 20

TABLE 2 JavaScript systems (ordered by the CD column, see description in accompanying text). The SCD can only be computed for systems with 2
or more classes. The DOCR can only be computed for systems with at least one class

System Version Description LOC #Files #Func #Class #Meth #Attr CD SCD DOCR

masonry 3.2.3 Cascading grid layout library 208 1 10 0 0 0 0.00 - -

randomColor 0.2.0 Color generator 373 1 16 0 0 0 0.00 - -

respond 1.4.2 Polyfill for CSS3 queries 460 3 15 0 0 0 0.00 - -

resume - Resume creator 460 1 19 0 0 0 0.00 - -

clumsy-bird - Flappy Bird Game 672 7 36 0 0 0 0.00 - -

impress.js 0.5.3 Presentation framework 769 1 24 0 0 0 0.00 - -

jquery-pjax 1.9.3 Plugin to handle Ajax requests 913 1 33 0 0 0 0.00 - -

async 1.1.0 Async utilities 1,114 1 100 0 0 0 0.00 - -

modernizr 2.8.3 HTML5 and CSS3 detector 1,382 1 69 0 0 0 0.00 - -

deck.js 1.1.0 Modern HTML Presentations 1,473 6 51 0 0 0 0.00 - -

zepto.js 1.1.6 Minimalist jQuery API 2,497 17 233 0 0 0 0.00 - -

photoSwipe 4.0.7 Image gallery 4,401 9 185 0 0 0 0.00 - -

semantic-UI 1.12.3 UI component framework 18,369 23 1,191 0 0 0 0.00 - -

jQueryFileUp 9.9.3 File upload widget 4,011 14 179 1 1 3 0.01 - 1.00

leaflet 0.7.3 Library for interactive maps 8,711 75 677 4 0 7 0.01 0.00 1.00

backbone 1.1.2 Data structure for web apps 1,681 2 115 1 1 0 0.02 - 0.00

chart.js 1.0.2 HTML5 charts library 3,463 6 189 2 2 5 0.02 0.00 0.50

turn.js 4.0.0 Page flip effect for HTML5 6,916 5 267 3 3 6 0.02 0.00 1.00

react 0.13.2 Library for building UI 16,654 143 608 7 8 17 0.02 0.00 0.57

meteor 1.1.0.2 Development platform 41,195 72 1,378 15 12 14 0.02 0.21 0.20

underscore 1.8.2 Functional helpers 1,531 1 123 1 5 1 0.03 - 0.00

jasmine 2.2.1 JavaScript testing framework 7,749 62 892 3 8 11 0.03 0.00 0.67

paper.js 0.9.22 Vector graphics framework 26,039 65 1,071 30 10 115 0.04 0.00 0.90

typeahead.js 0.10.5 Auto-complete library 2,576 19 233 11 1 72 0.05 0.00 1.00

d3 3.5.5 Visualization library 13,079 268 1,259 19 45 41 0.05 0.22 0.58

wysihtml5 0.3.0 Rich text editor 5,913 69 343 2 17 8 0.06 0.00 0.00

sails 0.11.0 MVC framework for Node 12,724 101 425 8 23 40 0.07 0.00 0.25

ionic 1.0.0.4 HTML5 mobile framework 19,322 103 492 8 26 21 0.07 0.29 0.50

jquery 2.1.4 jQuery JavaScript library 7,736 79 330 6 25 31 0.09 0.00 0.50

ghost 0.6.2 Blogging platform 15,290 142 659 15 47 44 0.09 0.00 0.27

timelineJS 2.35.6 Visualization chart 18,371 93 896 12 69 11 0.09 0.00 0.08

express 4.12.3 Minimalist framework 3,590 11 131 3 12 14 0.11 0.00 0.67

reveal.js 3.0.0 HTML presentation framework 5,811 16 242 5 22 18 0.11 0.00 0.40

video.js 4.12.5 HTML5 video library 9,823 46 586 6 63 17 0.11 0.00 0.50

three.js 0.0.71 JavaScript 3D library 39,449 202 1,266 99 48 544 0.12 0.00 0.92

numbers.js - Mathematics library for Node 2,965 10 132 2 16 4 0.14 0.00 0.00

polymer 0.5.5 Library for building web apps 11,849 1 763 22 103 68 0.16 0.00 0.41

grunt 0.4.5 JavaScript task runner 1,932 11 103 1 16 8 0.17 - 0.00

skrollr 0.6.29 Scrolling library 1,772 1 58 1 12 0 0.22 - 0.00

ace 1.1.9 Source code editor 140,023 594 4,337 291 673 785 0.22 0.01 0.46

mousetrap 1.5.3 Library for handling shortcuts 1,281 5 46 1 10 0 0.24 - 0.00

hammer.js 2.0.4 Handle multi-touch gestures 2,348 19 124 6 33 25 0.31 0.00 0.33

brackets 1.3.0 Source code editor 130,770 392 4,298 173 1,239 750 0.33 0.09 0.31

angular.js 1.4.0.1 Web application framework 49,220 191 981 61 276 171 0.34 0.03 0.21

intro.js 1.0.0 Templates for introductions 1,255 1 42 1 14 2 0.36 - 0.00

algorithms 0.8.1 Data structures & algorithms 3,263 58 165 14 59 32 0.44 0.23 0.21

pdf.js 1.1.1 Web PDF reader 57,359 88 2,277 181 895 795 0.47 0.11 0.44

bower 1.4.1 Package manager 8,464 60 304 15 143 97 0.51 0.00 0.40

mustache.js 2.0.0 Logic-less template syntax 594 1 33 3 15 7 0.55 0.00 0.33

less.js 2.3.1 CSS pre-processor 12,045 99 707 64 327 278 0.55 0.21 0.34

10 of 20 SILVA ET AL.

TABLE 2 Continued

System Version Description LOC #Files #Func #Class #Meth #Attr CD SCD DOCR

gulp 3.8.11 Streaming build system 99 3 5 1 2 6 0.60 - 1.00

fastclick 1.0.6 Library to remove click delays 841 1 23 1 16 10 0.74 - 0.00

pixiJS 3.0.2 Rendering engine 21,024 113 703 87 453 546 0.76 0.33 0.46

isomer 0.2.4 Isometric graphics library 770 7 47 7 31 27 0.81 0.00 0.57

2048 - Number puzzle game 873 10 76 7 62 29 0.91 0.00 0.14

slick 1.5.2 Carousel visualization engine 2,300 1 81 1 86 0 0.93 - 0.00

floraJS 3.1.1 Simulation of natural systems 2,942 20 86 18 62 315 0.93 0.00 0.94

parallax 2.1.3 Motion detector for devices 1,007 3 57 2 56 75 0.95 0.00 1.00

jade 1.9.2 Template engine for Node 11,427 27 169 19 142 73 0.95 0.83 0.26

socket.io 1.3.5 Realtime app framework 1,297 4 57 4 58 46 1.00 0.00 0.00

Abbreviations: CD, class density; DOCR, data-oriented class ratio; LOC, lines of code; SCD, subclass density.

FIGURE 4 Class diagram for ALGORITHMS.JS, generated by JSClassFinder

FIGURE 5 Number of answers, per group, from developers that agree
with our findings

similar way, but searching for method-like and attribute-like structures,

respectively.

5 RESULTS

In this section, we present the answers to the 6 proposed research

questions.

5.1 Do developers emulate classes in legacy

JavaScript applications?

We found classes in 623 out of 918 systems (68%). The system with the

largest number of classes is GAIA (1,001 classes), followed by NODEIN-

SPECTOR (330 classes), and BABYLON.JS (294 classes). MATHJAX is

the largest system (122,683 LOC) that does not have classes. Figure 6A

shows the distribution of the number of classes for the systems that

have at least 1 class. The first quartile is 2 (lower bound of the black box

within the “violin”) with 135 systems having only 1 class. The median is

5 and the third quartile is 15 (upper bound of the black box). Listing 8

SILVA ET AL. 11 of 20

FIGURE 6 Metric distributions. Results in (A) and (C) are reported only for systems with at least 1 class. A, # Classes; B, CD(All Systems); C,CD; CD,
class density

shows an example of a class Color, detected in the system THREE.JS.

We omit part of the code for the sake of readability.

Figure 6B shows the distribution of the CD values. We found that

295 systems have CD equal to 0. In other words, 32% of the systems do

not use classes at all or are using an abstraction other than the one we

are looking for. The median is 0.08 and the third quartile is 0.41. We also

found seven fully class-oriented systems (CD = 1). Table 3 shows the 10

systems with the highest values of CD.

Figure 6C shows the CD distribution when we only consider the sys-

tems with CD greater than 0. The first quartile is 0.08, the median is

0.26, and the third quartile is 0.52. In other words, the emulation of

classes represents on the median 26% of the functions, for the systems

that include at least 1 class.

TABLE 3 Top-10 systems with highest CD values

System CD #Class LOC

SKEUOCARD 1.00 8 1,685

RAINYDAY.JS 1.00 5 1,005

SIDE-COMMENTS 1.00 3 523

ZOOM.JS 1.00 2 229

STEADY.JS 1.00 1 215

TMI 1.00 1 203

LAYZR.JS 1.00 1 164

SOCKET.IO 0.97 4 1,350

CLNDR 0.97 1 1,197

SLAP 0.97 11 938

Abbreviations: CD, class density; LOC, lines of code.

Figure 7 shows the number of systems in each of the 4 pro-

posed groups (class-free, class-aware, class-friendly, and class-oriented

systems) according to the CD values. The largest group is the

class-aware (34%), in which systems use classes but they correspond to

less than 25% of the implemented functions. Class-oriented is the small-

est group, in which the systems use more than 75% of their functions to

emulate classes.

FIGURE 7 Class density groups

12 of 20 SILVA ET AL.

5.2 Do developers emulate subclasses in legacy

JavaScript applications?

As shown in Figure 8, the use of prototype-based inheritance is rare

in JavaScript systems. First, we counted 499 systems (54%) having 2

or more classes, ie, systems where it is possible to detect the use of

inheritance. However, in 429 of such systems (86%), we did not find any

subclasses (SCD = 0). The system with the highest use of inheritance is

PROGRESSBAR.JS (SCD = 0.8). Figure 9 shows the class diagram for

this system. As can be seen, the Shape class has 4 subclasses: Circle,

Line, SemiCircle, and Square.

5.3 Is there a relation between the size of a

JavaScript application and the number of class-like

structures?

Figure 10 shows scatterplots with size metrics on the x-axis in a loga-

rithmic scale and CD on the y-axis. We also computed the Spearman's

rank correlation coefficient between CD and the following size metrics:

size KLOC, number of files, and number of functions. The results are

presented in Table 4. We found a weak correlation for KLOC (P = .250),

number of files (P = .178), and for number of functions (P = .289). For

example, there are systems with similar sizes having both low and high

class densities. ALOHA-EDITOR is an example of a system with a con-

siderable size (69 KLOC) and low class density (CD=0.05). By contrast,

END-TO-END is also a large system (67 KLOC) but with a high class

density (CD = 0.78).

We also used the Kruskal–Wallis test to check if the LOC dis-

tributions in all 4 groups (class-free, class-aware, class-friendly,

FIGURE 8 Subclass density distribution

and class-oriented systems) are equal. The test resulted in a

p-value < 2.2e−16, leading us to reject the null hypothesis (the groups

have systems with equal size), at a 5% significance level. In fact, the

median measures of each tested group are quite different (690, 5667,

2578, and 1150).

5.4 What is the shape of the classes emulated

in legacy JavaScript code?

To verify the shape of JavaScript classes, regarding the number of meth-

ods and attributes, we focus on systems that have the number of classes

greater than or equal to 15 (which represents the 3rd quartile of this

distribution). Figure 11 shows the quantile functions for the NOA and

NOM in such systems. The x-axis represents the quantiles, and the

y-axis represents the metric values for the classes in a given quantile.

For example, suppose the value of a quantile p (x-axis) is k (y-axis), for

NOA. This means that p% of the classes in this system have at most k

attributes. As can be observed, the curves representing the systems

have a right-skewed (or heavy-tailed) behavior. In fact, this behavior is

normally observed in source code metrics.25-27

Regarding NOA, the quantile functions reveal that the vast majority

of the classes have at most 28 attributes (90th percentile). Regarding

NOM, the vast majority of the classes have less than 61 methods (90th

percentile). To compare NOA and NOM measures, Figure 12 shows

the DOCR distribution using a violin plot. The median DOCR value is

0.39, which is a high measure when compared to other languages. For

example, metric thresholds for Java suggest that classes should have at

most 8 attributes and 16 methods.28 By contrast, half of the JavaScript

systems that we studied have more than 39% of their classes with more

attributes than methods. We hypothesize that it is due to JavaScript

developers placing less importance on encapsulation. For example, get-

ters and setters are rare in JavaScript.

5.5 How accurate is our strategy to detect classes?

As described in Section 4, we measure accuracy using precision, recall,

and F-score. Table 5 summarizes the results according to the develop-

ers' answers. The developers of 21 out of 30 systems (70%) fully agreed

that the class diagrams we provided, on the basis only of the code base

of their systems, correctly model the classes they implemented. There-

fore, precision, recall, and F-score for these systems are equal to 100%.

The following 2 comments are examples of answers we received for

such systems:

“Yes, everything looks like it actually is in the code base.”

(Developerof system LESS.JS)

“I do in fact agree with your findings on classes/methods/

attributes. In building numbers.js I did have OOP in mind.”

(Developer of system NUMBERS.JS)

SILVA ET AL. 13 of 20

FIGURE 9 Inheritance in system PROGRESSBAR.JS

FIGURE 10 Size metrics vs Class Density. A, KLOC vs CD; B, # Files vs CD; C, Func vs CD; CD, class density

TABLE 4 Correlation between CD and size metrics

KLOC # Files # Func

Spearman 0.250 0.178 0.289

p value 1.407e−14 6.216e−08 < 2.2e−16

14 of 20 SILVA ET AL.

FIGURE 11 Quantile functions. A, NOA; B, NOM; NOA, number of attributes; NOM, number of methods

FIGURE 12 Data-oriented class ratio distribution

5.5.1 Precision

We achieve a precision of 100% in 28 out of 30 systems for classes; in

all 30 systems for methods; and in 29 systems for attributes. In the fol-

lowing paragraphs, we discuss the false positives we detected for classes

and attributes.

False positives for classes. The developers of systems ACE and

ANGULAR.JS pointed out that our strategy incorrectly identified

some entities as classes. In both cases, the false positives are due to a lim-

itation regarding JavaScript scoping rules. Listing 9 shows an example

for ANGULAR.JS. In this example, we have aMessageFormatParser

class, with a method startStringAtMatch (lines 4-6). Since there

is also a function match in the global scope (line 1) our tool initially

classifies stringQuote as a method (line 5). However, because of the

scoping rules of JavaScript, this property is initialized with the for-

mal parameter ofstartStringAtMatch, which is also namedmatch.

Moreover, match always receives a nonfunction value, and therefore

it should have been classified as an attribute. A similar issue happens

in ACE.

False positives for attributes. We have 2 situations in which meth-

ods are indeed identified as attributes in the system ANGULAR.JS.

Listing 10 shows part of the implementation for the class JQLite. Our

strategy correctly classifies the property ready (line 2) as a method,

but it is not able to do the same with the property splice (line 3).

The function [].splice is not recognized as a function because its

implementation is not part of the source code of ANGULAR.JS (it is a

JavaScript native function from Array object). Currently, our imple-

mentation does not recognize as methods functions that are initialized

with JavaScript built-in functions.

Listing 11 shows another example of a property that is not iden-

tified as a method in ANGULAR.JS, as we can see in the following

comment:

“$get is marked as attribute a lot, it should always be a

method.” (Developer of ANGULAR.JS)

SILVA ET AL. 15 of 20

TABLE 5 Precision, Recall, and F-score results

Precision (%) Recall (%) F-Score (%)

Systems Classes Methods Attributes Classes Methods Attributes Classes Methods Attributes

ACE 93 100 100 100 100 100 96 100 100

ALGORITHMS.JS 100 100 100 100 100 100 100 100 100

ANGULAR.JS 92 100 87 100 93 100 96 96 93

BOWER 100 100 100 100 100 100 100 100 100

CLUMSY-BIRD 100 100 100 0 0 0 0 0 0

D3 100 100 100 83 48 79 91 65 88

EXPRESS 100 100 100 60 36 56 75 53 72

INTRO.JS 100 100 100 100 100 100 100 100 100

JADE 100 100 100 100 100 100 100 100 100

JASMINE 100 100 100 7 5 24 13 10 39

JQUERY 100 100 100 100 100 100 100 100 100

JQUERYFILEUP 100 100 100 100 100 100 100 100 100

LEAFLET 100 100 100 9 0 4 17 0 8

LESS.JS 100 100 100 100 100 100 100 100 100

MASONRY 100 100 100 100 100 100 100 100 100

MODERNIZR 100 100 100 100 100 100 100 100 100

MOUSETRAP 100 100 100 100 100 100 100 100 100

MUSTACHE.JS 100 100 100 100 100 100 100 100 100

NUMBERS.JS 100 100 100 100 100 100 100 100 100

PAPER.JS 100 100 100 100 3 59 100 6 74

PDF.JS 100 100 100 100 100 100 100 100 100

PIXIJS 100 100 100 100 100 100 100 100 100

RANDOMCOLOR 100 100 100 100 100 100 100 100 100

SAILS 100 100 100 100 100 100 100 100 100

SKROLLR 100 100 100 100 100 100 100 100 100

SLICK 100 100 100 100 100 100 100 100 100

SOCKET.IO 100 100 100 100 100 100 100 100 100

THREE.JS 100 100 100 100 100 100 100 100 100

UNDERSCORE 100 100 100 100 100 100 100 100 100

VIDEO.JS 100 100 100 11 15 16 20 26 28

Mean 99.5 100 99.57 85.67 80 84.6 86.93 81.87 86.73

In this case, the property $get receives an array that contains a

function in its second element. Although the developer considers that

this property is a method, our approach identifies it as an array and

therefore classifies it as an attribute.

5.5.2 Recall

We achieve a recall of 100% in 24 out of 30 systems for classes;

in 22 systems for methods; and in 23 systems for attributes. In the

following paragraphs, we discuss the false negatives we detected for

classes, methods, and attributes.

16 of 20 SILVA ET AL.

False negatives for classes. Six developers pointed out at least 1

missing class in their systems. In the case of the system CLUMSY-BIRD,

the base class constructors are not available in the GitHub repository.

The application imports an external file, which contains these

base classes.*** The import statement is placed directly in the main

HTML file. For this reason, we were not able to detect classes in

this system.

As a second case, EXPRESS' developer stated that our tool missed 2

classes, as shown in the following answer excerpt:

“So I have taken a look at the UML diagram you attached

to the email and they do look mostly right. The main thing

missing is there is also an Application class and a Router

class, to round out a total of five main classes. The three

you have there do look right, though.” (Developer of system

EXPRESS)

According to our strategy, Application and Router are not

classes. Application is implemented as a singleton object, and we

do not identify such structures as classes, as commented in Subsec-

tion 3.3. Router is not a class because its methods and attributes are

not directly bound to this nor prototype. Instead, the constructor

function uses__proto__ (an accessor property), as we can see in List-

ing 12 (line 5). In fact, __proto__ is a special name used by Mozilla's

JavaScript implementation to expose the internal prototype of the

object through which it is accessed. However, the use of __proto__

has been discouraged†††, mostly because it is not supported by other

browsers.

In the 4 remaining systems (D3, JASMINE, VIDEO.JS, and LEAFLET),

the causes for missing classes are related to the use of external

frameworks and libraries that provide their own style for implement-

ing class-like abstractions. The following comments are examples of

answers in this category:

“The classes you found are only a small part

of Leaflet classes. This is because Leaflet uses

its own class utility: https://github.com/Leaflet/

Leaflet/blob/master/src/core/Class.js” (Developer of system

LEAFLET)

*** http://cdn.jsdelivr.net/melonjs/2.0.2/melonJS.js
†††https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/
Object/proto

“From a pure Object Orientation point of view, I would prob-

ably call almost every file inside ‘src / core‘ in the jasmine

repo its own class (minus a few like ‘util.js‘ and ‘base.js‘ at

least), which is more like 45 classes.” (Developer of system

JASMINE)

False negatives for methods and attributes. In all 6 systems with

missing classes, we also have, as consequence, missing methods and

attributes. Besides these cases, developers of other 2 systems pointed

out missing methods. In the first case, for system ANGULAR.JS, our

approach identified some methods as attributes, as discussed in the

previous subsection (precision). In the second case, PAPER.JS’s devel-

opers use a customized implementation that allows our approach to

identify the classes, but not the methods. Listing 13 illustrates this

issue for the class Line. In this case, the association between the

constructor Line (line 3) and the methods getPoint(), getVec-

tor(), etc (lines 9-11) is built by using a project-specific function

calledBase.extend (line 1). The usage of this function hides the meth-

ods and some attributes from our tool.

5.5.3 F-Score

Table 5 also reports the F-score results. The measures are equal to

100% in 22 out of 30 systems for classes, methods, and also for

FIGURE 13 Overall results for precision, recall, and F-score

http://cdn.jsdelivr.net/melonjs/2.0.2/melonJS.js
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/proto
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/proto

SILVA ET AL. 17 of 20

TABLE 6 Intention to use ECMAScript 6 classes

Type of answer # %

Yes 19 58

No 12 36

Did not know 2 6

attributes. In the remaining systems, the measures range from 0%

(CLUMSY-BIRD) to 96% (ACE and ANGULAR.JS) for classes, from 0%

(CLUMSY-BIRD and LEAFLET) to 96% (ANGULAR.JS) for methods, and

from 0% (CLUMSY-BIRD) to 93% (ANGULAR.JS) for attributes. The

system CLUMSY-BIRD has F-score equal to 0 because it uses base

class constructors that are not available in its source code repository, as

discussed in Subsection 5.5.2.

5.5.4 Overall results

Figure 13 presents the results for precision, recall, and F-score con-

sidering the whole population of classes, methods, and attributes, inde-

pendently from system. The overall measurements range from 97%

(classes) to 100% (methods) for precision, from 70% (methods) to 89%

(attributes) for recall, and from 82% (methods) to 94% (attributes) for

F-score.

5.6 Do developers intend to use the new support

for classes that comes with ECMAScript 6?

Table 6 summarizes the answers for this question. Nineteen developers

(58%) answered that they intend to use the new syntax. Two of them

declared to have plans to migrate their systems to the new syntax, while

the others stated that they intend to use it only when implementing

new features and projects, as stated in the following answer:

“I'm quite confident that ES6 will make for a more robust

codebase. And I think the most interesting point is that it

can be applied progressively. We don't have to make a mas-

sive rewrite. Any new code we add can be ES6, and then we

can slowly rewrite old code to be ES6 as well.” (Developer of

system SOCKET.IO)

Twelve developers (36%) declared they do not intend to use ES6 syn-

tax for classes, because they have to keep compatibility with legacy

code, as stated in the following answer:

“For us right now it makes more sense to use CJS patterns and integrate

with existing module ecosystems. When the ES6 penetration and support is

higher, maybe we will switch.” (Developer of system PIXIJS)

6 DISCUSSION

6.1 Heuristics limitations and improvement

opportunities

On the basis of the evaluation presented in Subsection 5.5, we sum-

marize possible improvements to our heuristics to avoid both false

positives and false negatives.

A false positive may occur when there are different identifiers with

equal names, in different scopes. For example, when an identifier is

declared with the same name of a global function. In this case, when

the identifier is assigned to a class property, we can improve our heuris-

tics by checking if this identifier corresponds to a variable or parameter

that is valid in the same scope. This way, the property can be classi-

fied as an attribute, instead of being wrongly classified as a method.

We also acknowledge that, during the program's execution, identi-

fiers can receive a function as a value, transforming the class property

into a method. However, this is the case of dynamically modified fea-

tures, and our approach identifies class structures statically. The same

understanding can be applied to class properties assigned to functions

that are not part of the application, ie, functions that belong to the

JavaScript API or to external libraries and frameworks.

To reduce the chances of false negatives, we can modify the heuris-

tics to also recognize the syntax with __proto__, used by Mozilla's

JavaScript implementation, to expose the internal prototype of

objects. Even though, as mentioned in Subsection 5.5.2, the use of this

syntax has been discouraged by Mozilla. Moreover, we can also review

our heuristics regarding singletons. Because not every singleton object

is a class, further research is needed to precisely determine which ones

indeed represent classes in a legacy JavaScript system. For the other

false negatives pointed in Subsection 5.5, the base class constructors

implemented in external files (eg, in libraries and frameworks) cannot

be statically identified as classes because their source code is not part

of the system under analysis.

6.2 Practical implications

Almost 70% of the systems we studied use classes (CD > 0). In fact, this

usage may increase in the future because many developers intend to

use the new ES6 syntax for classes, as shown in our field study (Subsec-

tion 5.6). Therefore, we might consider the adaptation to the JavaScript

ecosystem of many tools, concepts, and techniques widely used in

class-based languages, like (1) metrics to measure class properties like

coupling, cohesion, complexity, etc; (2) reverse engineering techniques

and tools to extract class and other diagrams from source code; (3)

IDEs that include class-based views, like class browsers; (4) tools to

detect bad smells in JavaScript classes; (5) recommendation engines

to suggest best object-oriented programming practices; (6) techniques

to detect violations and deviations in the class-based architecture of

JavaScript systems; and (7) tools to migrate to ES6.

7 THREATS TO VALIDITY

This section presents threats to validity according to the guidelines pro-

posed by Wohlin et al.29 These threats are organized in 3 categories,

addressing internal, external, and construct validity.

Internal Validity. In the field study, to address RQ #5, we recognize 3

internal threats. First, we consider that the developers correctly evalu-

ated all elements we provided in the class diagrams of their systems. We

acknowledge this activity is error-prone. However, we asked the main

developers of each system, who are probably the most qualified people

to conduct such evaluation. Second, because some developers did not

provide the names of all classes that represent false negatives in their

systems, the first author of this study performed a manual verification

18 of 20 SILVA ET AL.

in the related source code files to identify the remaining structures. The

third internal threat is related to the nonclassification of singletons as

classes, as mentioned in Subsection 3.3. In fact, in our field study some

of the interviewed developers considered that singletons are classes.

External Validity. To address the first 4 research questions, we used

a dataset of 918 JavaScript systems. For research questions RQ #5

and RQ #6, which involved contacting developers, we used a dataset

of 60 JavaScript systems. As a threat, our datasets, both obtained

from GitHub repository, might not represent the whole population of

JavaScript systems. But, at least, we selected a representative num-

ber of popular and well-known systems, of different sizes and covering

various domains.

Construct Validity. We use the library Linguist and a custom-made

script, as described in Subsection 4.2, to remove unnecessary files from

our dataset. We assume that this clean up process does not remove any

source code files that could be used to implement classes.

8 RELATED WORK

Richards et al22 conduct a large-scale study on the use of eval in

JavaScript, on the basis of a corpus of more than 10,000 popular web

sites. They report that eval is popular and not necessarily harmful,

although its use can be replaced with equivalent and safer code or lan-

guage extensions in most scenarios. Moreover, it is usually considered a

good practice to useevalwhen loading scripts or data asynchronously.

After this first study, restricted to eval, the authors conduct a second

study on a broad range of JavaScript dynamic features.4 They conclude,

for example, that libraries often change the prototype links dynami-

cally, but such changes are restricted to built-in types, like Object and

Array, and changes in user-created types are more rare. The authors

also report that most JavaScript programs do not delete attributes

from objects dynamically. To some extent, these findings support the

feasibility of using heuristics to extract class-like structures statically

from JavaScript code, as proposed in this paper.

Gama et al10 identify 5 styles for implementing methods in

JavaScript: inside/outside constructor functions using anony-

mous/nonanonymous functions and using prototypes. Their main goal

is to implement an automated approach to normalizing JavaScript code

to a single consistent object-oriented style. They claim that mixing

styles in the same code may hinder program comprehension and make

maintenance more difficult. The strategy proposed in this paper cov-

ers the 5 styles proposed by the authors. Additionally, we also detect

attributes and inheritance.

Feldthaus et al30,31 describe a methodology for implementing auto-

mated refactorings on a nearly complete subset of the JavaScript

language (ECMAScript 5). The authors specify and implement 3 refac-

torings: rename property, extract module, and encapsulate property.

The rename property is similar to the refactoring rename field for

typed languages. The main difference is that while fields in Java, for

example, are statically declared within class definitions, properties in

JavaScript are associated with dynamically-created objects and are

themselves dynamically-created after first write. The goal of the refac-

toring extract module is to use anonymous functions to make global

functions become local. These anonymous functions will then return

object literals with properties through which the previous global func-

tions can be invoked. The encapsulate property refactoring can be used

to encapsulate state by making a field private and redirecting access

to that field via newly-introduced getter and setter methods. It targets

constructor functions that emulate classes in JavaScript. To determine

if a function works as a constructor, they look for functions that ini-

tialize an object when invoked, like those that are invoked with new or

Object.create().

Fard and Mesbah32 propose a set of 13 JavaScript code smells,

including generic smells (eg, long functions and dead code) and smells

specific to JavaScript (eg, creating closures in loops and accessing

this in closures). They also describe a tool, called JSNose, for detect-

ing code smells on the basis of a combination of static and dynamic

analysis. Among the proposed patterns, only Refused Bequest is

directly related to class-emulation in JavaScript. In fact, this smell

was originally proposed to class-based languages,33,34 to refer to

subclasses that do not use or override many elements from their

superclasses. Interestingly, our strategy to detect classes opens the

possibility to detect other well-known class-based code smells in

JavaScript, like Feature Envy, Large Class, Shotgun Surgery, Divergent

Change, etc.

Nicolay et al35 present an abstract machine for a core JavaScript-like

language that tracks write side-effects in JavaScript functions to detect

their purity. A function is considered pure if it does not generate observ-

able side effects. Because classes and methods, detected by our strat-

egy, are functions in JavaScript, it is possible to extend the concept of

purity to such class-like structures to improve program understanding

and maintenance.

Nguyen et al36 use a static-analysis–based mining method to mine

JavaScript usage patterns in web applications. They introduce JSModel,

a graph representation for JavaScript code, and JSMiner, a tool that

mines interprocedural and data-oriented JavaScript usage patterns.

Although they do not consider class-like structures in their work, the

different strategies for class emulation can be considered usage pat-

terns in JavaScript.

There is also a variety of tools and techniques for analyzing, improv-

ing, and understanding JavaScript code, including tools to prevent

security attacks,37-39 and to understand event-based interactions.40-43

CoffeeScript‡‡‡ is another language that aims to expose the “good

parts of JavaScript” by only changing the language's syntax.44,45 Coffee-

Script compiles one-to-one into JavaScript code. As ECMAScript 6, the

language includes class-related keywords, like class, constructor,

extends, etc.

9 CONCLUSION

This paper provides a large-scale study on the usage of class-based

structures in JavaScript, a language that is used nowadays to implement

complex single-page applications for the Web. We propose a strategy to

statically detect class emulation in JavaScript and the JSCLASSFINDER

tool, which supports this strategy. We use JSCLASSFINDER on a cor-

pus of 918 popular JavaScript applications, with different sizes and

from multiple domains, to describe the usage of class-like structures in

‡‡‡http://coffeescript.org

http://coffeescript.org

SILVA ET AL. 19 of 20

legacy JavaScript systems. We perform a field study with JavaScript

developers to evaluate the accuracy of our strategy and tool.

We summarize our findings as follows. First, there are essentially 4

types of JavaScript software, regarding the usage of classes: class-free

(systems that do not make any usage of classes), class-aware (systems

that use classes marginally), class-friendly (systems that make relevant

usage of classes), and class-oriented (systems that have the vast major-

ity of their data structures implemented as classes). The systems in

these categories represent, respectively, 32%, 34%, 27%, and 7% of

the systems we studied. Precision, recall and F-score measures indi-

cate that our tool is able to identify the classes, methods, and attributes

in JavaScript systems. The overall results range from 97% to 100% for

precision, from 70% to 89% for recall, and from 82% to 94% for F-score.

Second, we found that there is no significant relation between size

and class usage. Therefore, we cannot conclude that the larger the sys-

tem, the greater the usage of classes, at least in proportional terms.

For this reason, we hypothesize that the background and experience of

the systems' developers have more impact on the decision to design a

system around classes, than its size.

Third, prototype-based inheritance is not popular in JavaScript.

We counted only 70 out of 918 systems (8%) using inheritance. We

hypothesize that there are 2 main reasons for this. First, even in

class-based languages there are strong positions against inheritance,

and a common recommendation is to “favor object composition over

class inheritance”.46,47 Second, prototype-based inheritance is more

complex than the usual implementation of inheritance available in

mainstream class-based object-oriented languages.

Fourth, classes in JavaScript have usually less than 28 attributes and

61 methods (90th percentile measures). It is also common to have

data-oriented classes, ie, classes with more attributes than methods. In

half of the systems, we have at least 39% of such classes.

Fifth, 58% of JavaScript developers answered our field study saying

they intend to use the ES6 new syntax for class emulation, but usually

only for new features and projects.

As future work, we plan to adapt our approach to be able to (1)

measure other class properties, like coupling, cohesion, and complex-

ity; (2) extract class dependencies and other diagrams from source

code; (3) identify bad smells in JavaScript classes; (4) recommend best

object-oriented programming practices for JavaScript; (5) detect viola-

tions and deviations in the class-based architecture of JavaScript sys-

tems; and (6) support developers that intend to migrate their legacy

code to use ES6 classes.

All our data and toolset are publicly available at https://github.com/

aserg-ufmg/JSClassFinder.

ACKNOWLEDGMENTS

The authors would like to thank CNPq, CAPES, and FAPEMIG. This

research is partially supported by STICAmSud project 14STIC-02 and

FONDECYT1160575.

REFERENCES

1. Kienle HM. It's about time to take JavaScript (more) seriously. IEEE
Software. 2010;27(3):60–62.

2. Ocariza FS Jr., Pattabiraman K, Zorn B. JavaScript errors in the wild:
An empirical study. 22nd IEEE International Symposium on Software

Reliability Engineering (ISSRE): IEEE Computer Society, Hiroshima,
Japan; 2011:100–109.

3. Nederlof A, Mesbah A, van Deursen A. Software engineering for
the web: the state of the practice. 36th International Conference on
Software Engineering (ICSE), Companion Proceedings; Hyderabad, India;
2014:4–13.

4. Richards G, Lebresne S, Burg B, Vitek J. An analysis of the dynamic
behavior of JavaScript programs. Conference on Programming Language
Design and Implementation (PLDI); ACM, New York, USA; 2010:1–12.

5. European Association for Standardizing Information and Communica-
tion Systems (ECMA). ECMA-262: ECMAScript Language Specifica-
tion. edition 5.1; 2011.

6. Borning AH. Classes versus prototypes in object-oriented languages.
ACM Fall Joint Computer Conference; IEEE Computer Society Press,
Dallas, Texas, USA; 1986:36–40.

7. Guha A, Saftoiu C, Krishnamurthi S. The essence of JavaScript. 24th
European Conference on Object-Oriented Programming (ECOOP); Springer
Berlin Heidelberg, Maribor, Slovenia; 2010:126–150.

8. European Association for Standardizing Information and Communi-
cation Systems (ECMA). ECMAScript Language Specification, 6th edi-
tion, Draft October, 2014.

9. Silva LH, Ramos M, Valente MT, Bergel A, Anquetil N. Does JavaScript
software embrace classes? 22nd IEEE International Conference on Soft-
ware Analysis, Evolution, and Reengineering (SANER), IEEE, Montreal,
Canada; 2015:73–82.

10. Gama W, Alalfi MH, Cordy JR, Dean TR. Normalizing object-oriented
class styles in JavaScript. 14th IEEE International Symposium on
Web Systems Evolution (WSE), IEEE Computer Society, Trento, Italy;
2012:79–83.

11. Crockford D. JavaScript: The Good Parts: O'Reilly; 2008.

12. Flanagan D. Javascript: The Definitive Guide: O'Reilly; 2011.

13. Ungar D, Smith RB. SELF: The power of simplicity. 2nd Conference on
Object-Oriented Programming Systems, Languages and Applications (OOP-
SLA): ACM, Orlando, Florida, USA; 1987:227–242.

14. Borning AH. Classes versus prototypes in object-oriented languages.
Proceedings of 1986 ACM Fall Joint Computer Conference: IEEE Computer
Society Press, Dallas, Texas, USA; 1986:36–40.

15. Anderson C, Giannini P, Drossopoulou S. Towards type inference for
JavaScript. 19th European Conference on Object-Oriented Programming
(ECOOP); Springer-Verlag, Glasgow, UK; 2005:428–452.

16. Silva LH, Hovadick D, Valente MT, Bergel A, Anquetil N, Etien A.
JSClassFinder: A Tool to Detect Class-like Structures in JavaScript.
6th Brazilian Conference on Software: Theory and Practice (CBSOFT), Tools
Demonstration Track; CoRR, Belo Horizonte, Brazil; 2015:113–120.

17. Nierstrasz O, Ducasse S, Girba T. The story of moose: An agile reengi-
neering environment. 10th European Software Engineering Conference
Held Jointly with 13th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering (ESEC/FSE-13), ESEC/FSE-13. New York,
NY, USA: ACM; 2005:1–10.

18. Fowler M. Uml Distilled: A Brief Guide to the Standard Object Modeling
Language. 3rd ed.: Addison-Wesley Longman Publishing Co., Inc.; 2003.

19. Ducasse S, Gîrba T, Kuhn A. Distribution map. 22nd IEEE International
Conference on Software Maintenance (ICSM); IEEE Computer Society,
Philadelphia, Pennsylvania, USA; 2006:203–212.

20. Chidamber SR, Kemerer CF. A metrics suite for object oriented design.
IEEE Trans Software Eng. 1994;20(6): 476–493.

21. Booch G, Maksimchuk R, Engle M, Young B, Conallen J, Houston K.
Object-Oriented Analysis and Design with Applications (3rd Edition): Addi-
son Wesley Longman Publishing Co., Inc.; 2004.

22. Richards G, Hammer C, Burg B, Vitek J. The eval that men do:
A large-scale study of the use of eval in JavaScript applications.
25th European Conference on Object-Oriented Programming (ECOOP);
Springer-Verlag, Lancaster, UK; 2011;52–78.

23. Meawad F, Richards G, Morandat F, Vitek J. Eval begone!:
Semi-automated removal of eval from JavaScript programs. 27th

https://github.com/aserg-ufmg/JSClassFinder
https://github.com/aserg-ufmg/JSClassFinder

20 of 20 SILVA ET AL.

Conference on Object Oriented Programming Systems Languages and
Applications (OOPSLA); ACM, Tucson, Arizona, USA; 2012:607–620.

24. Terra R, Miranda LF, Valente MT, Bigonha RS. Qualitas.class Cor-
pus: A compiled version of the Qualitas Corpus. Software Eng Notes.
2013;38(5): 1–4.

25. Baxter G, Frean M, Noble J, Rickerby M, Smith H, Visser M, Melton H,
Tempero E. Understanding the Shape of Java Software. 21st Conference
on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA): ACM, Portland, Oregon, USA; 2006:397–412.

26. Louridas P, Spinellis D, Vlachos V. Power Laws in Software. ACM Trans
Software Eng Method. 2008;18: 1–26.

27. Wheeldon R, Counsell S. Power Law Distributions in Class Relation-
ships. International Working Conference on Source Code Analysis and
Manipulation; IEEE, Amsterdam, Netherlands; 2003:45–54.

28. Oliveira P, Valente MT, Lima F. Extracting relative thresholds for source
code metrics. IEEE Conference on Software Maintenance, Reengineer-
ing and Reverse Engineering (CSMR-WCRE); IEEE, Antwerp, Belgium;
2014:254–263.

29. Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B. Experimentation
in Software Engineering: Springer; 2012.

30. Feldthaus A, Millstein TD, Møller A, Schäfer M, Tip F. Refactor-
ing towards the good parts of JavaScript. 26th Conference on
Object-Oriented Programming (OOPSLA), Companion Proceedings; ACM,
Portland, Oregon, USA; 2011:189–190.

31. Feldthaus A, Millstein TD, Møller A, Schafer M, Tip F. Tool-supported
refactoring for JavaScript. 26th Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA); ACM, Portland,
Oregon, USA; 2011:119–138.

32. Fard AM, Mesbah A. JSNOSE: Detecting JavaScript code smells. 13th
IEEE International Working Conference on Source Code Analysis and Manip-
ulation (SCAM); IEEE Computer Society, Eindhoven, The Netherlands;
2013:116–125.

33. Fowler M. Refactoring: Improving the Design of Existing Code:
Addison-Wesley; 1999.

34. Lanza M, Marinescu R. Object-Oriented Metrics in Practice: Using
Software Metrics to Characterize, Evaluate, and Improve the Design of
Object-Oriented Systems: Springer; 2006.

35. Nicolay J, Noguera C, Roover CD, Meuter WD. Detecting function
purity in JavaScript. 15th IEEE International Working Conference on
Source Code Analysis and Manipulation (SCAM); IEEE Computer Society,
Bremen, Germany; 2015:101–110.

36. Nguyen HV, Nguyen HA, Nguyen AT, Nguyen TN. Mining interpro-
cedural, data-oriented usage patterns in JavaScript web applications.
36th International Conference on Software Engineering (ICSE); ACM,
Hyderabad, India; 2014:791–802.

37. Vogt P, Nentwich F, Jovanovic N, Kirda E, Krügel C, Vigna G. Cross site
scripting prevention with dynamic data tainting and static analysis. Net-
work and Distributed System Security Symposium (NDSS); The Internet
Society, San Diego, CA, USA; 2007; 1–12.

38. Guha A, Krishnamurthi S, Jim T. Using static analysis for Ajax intrusion
detection. 18th International Conference on World Wide Web (WWW);
ACM, Madrid, Spain; 2009:561–570.

39. Yu D, Chander A, Islam N, Serikov I. JavaScript instrumentation for
browser security. 34th Symposium on Principles of Programming Lan-
guages (POPL); ACM, Nice, France; 2007:237–249.

40. Alimadadi S, Sequeira S, Mesbah A, Pattabiraman K. Understanding
JavaScript event-based interactions. International Conference on Soft-
ware Engineering (ICSE); ACM, Hyderabad, India; 2014:367–377.

41. Zaidman A, Matthijssen N, Storey M-AD, rie van D. Understanding
Ajax applications by connecting client and server-side execution traces.
Empirical Software Eng. 2013;18(2): 181–218.

42. Alimadadi S, Mesbah A, Pattabiraman K. Hybrid DOM-Sensitive
Change Impact Analysis for JavaScript. 29th European Conference
on Object-Oriented Programming (ECOOP 2015), vol. 37; Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Prague, Czech Republic;
2015:321–345.

43. Gallaba K, Mesbah A, Beschastnikh I. Don't call us, we'll call you: Char-
acterizing callbacks in JavaScript. 9th ACM/IEEE International Sympo-
sium on Empirical Software Engineering and Measurement (ESEM): IEEE
Computer Society, Beijing, China; 2015:247–256.

44. Bates M. Programming in Coffeescript. 1st ed.: Addison-Wesley Profes-
sional; 2012.

45. MacCaw A. The Little Book on Coffeescript: O'Reilly Media, Inc.; 2012.

46. Gamma E, Helm R, Johnson R, Vlissides JM. Design Patterns: Elements
of Reusable Object-Oriented Software: Addison-Wesley Professional;
1994.

47. Stefanov S. JavaScript Patterns: O'Reilly Media; 2010.

How to cite this article: Silva LH, Valente MT, Bergel A,

Anquetil N, Etien A. Identifying classes in legacy

javascript code. J Softw Evol and Proc. 2017;29:e1864.

https://doi.org/10.1002/smr.1864

https://doi.org/10.1002/smr.1864

	Identifying Classes in Legacy JavaScript Code
	Abstract
	Introduction
	Classes in JavaScript
	Class emulation in legacy JavaScript code
	ECMAScript 6 classes

	Detecting Classes in Legacy JavaScript
	Strategy to detect classes
	Tool support
	Limitations

	Evaluation Design
	Research questions
	Dataset
	Metrics
	Class density (CD)
	Subclass density (SCD)
	Data-oriented class ratio (DOCR)

	Field Study Design

	Results
	Do developers emulate classes in legacy JavaScript applications?
	Do developers emulate subclasses in legacy JavaScript applications?
	Is there a relation between the size of a JavaScript application and the number of class-like structures?
	What is the shape of the classes emulated in legacy JavaScript code?
	How accurate is our strategy to detect classes?
	Precision
	Recall
	F-Score
	Overall results

	Do developers intend to use the new support for classes that comes with ECMAScript 6?

	Discussion
	Heuristics limitations and improvement opportunities
	Practical implications

	Threats to Validity
	Related Work
	Conclusion
	References

