
Does JavaScript Software Embrace Classes?

Leonardo Humberto Silva

Federal Institute of

Northern Minas Gerais, Brazil

leonardo.silva@ifnmg.edu.br

Miguel Ramos,

Marco Tulio Valente

Federal University of

Minas Gerais, Brazil

{miguel.ramos,mtov}@dcc.ufmg.br

Alexandre Bergel

Department of Computer Science

DCC - Pleiad Lab

University of Chile

abergel@dcc.uchile.cl

Nicolas Anquetil

RMoD Project-Team

INRIA Lille Nord Europe

France

nicolas.anquetil@inria.fr

Abstract—JavaScript is the de facto programming language for
the Web. It is used to implement mail clients, office applications,
or IDEs, that can weight hundreds of thousands of lines of code.
The language itself is prototype based, but to master the complex-
ity of their application, practitioners commonly rely on informal
class abstractions. This practice has never been the target of
empirical research in JavaScript. Yet, understanding it is key
to adequately tuning programming environments and structure
libraries such that they are accessible to programmers. In this
paper we report on a large and in-depth study to understand
how class emulation is employed in JavaScript applications. We
propose a strategy to statically detect class-based abstractions in
the source code of JavaScript systems. We used this strategy in
a dataset of 50 popular JavaScript applications available from
GitHub. We found four types of JavaScript software: class-free
(systems that do not make any usage of classes), class-aware
(systems that use classes, but marginally), class-friendly (systems
that make a relevant usage of classes), and class-oriented (systems
that have most of their data structures implemented as classes).
The systems in these categories represent, respectively, 26%, 36%,
30%, and 8% of the systems we studied.

Index Terms—JavaScript; Class-based languages; Reverse En-
gineering.

I. INTRODUCTION

JavaScript is the de facto programming language for the

Web [1]. The language was initially designed in the mid-

1990s to extend web pages with small executable code. Since

then, its popularity and relevance has only grown [2], [3].

For example, JavaScript is now the most popular language at

GitHub, considering new repositories created by language. It is

also reported that the language is used by 97 out of the web’s

100 most popular sites [4]. Concomitantly with its increasing

popularity, the size and complexity of JavaScript software is

in steady growth. The language is now used to implement

mail clients, office applications, IDEs, etc, which can reach

hundreds of thousands lines of code1.

Despite the complexity, size, and relevance of modern

JavaScript software, only a few research effort has been

carried on how developers effectively organize and manage

large JavaScript software systems. Specifically, JavaScript

is an imperative, and object-oriented language centered on

prototypes, rather than a class-based language [1], [5], [6].

Despite not having explicit class constructions, the prototype-

based object system of the language is flexible enough to

1http://sohommajumder.wordpress.com/2013/06/05/gmail-has-biggest-
collection-of-javascript-code-lines-in-the-world, verified 11/15/2014

support the implementation of mainstream class-based abstrac-

tions, including attributes, methods, constructors, inheritance

hierarchies, etc. However, structuring a software around such

abstractions is a design decision, which should be taken

by JavaScript developers. In other words, the language is

flexible enough to support different modularization paradigms,

including procedural programming (e.g., considering a system

as a set of functions, like in C), modular programming (e.g., a

system is a set of modules that encapsulate data and operations,

like in Modula-2), and class-based object-oriented programming

(e.g., a system is a set of classes, like in Java).

In this paper, we report on an empirical study conducted

to shed light on how often JavaScript developers modularize

their systems around abstractions that resemble object-oriented

classes. We found that almost 40% of the systems we studied

make a relevant usage of classes. Therefore, one might consider

the adaptation to the JavaScript ecosystem of tools, concepts,

and techniques widely used in class-based languages, such

as reverse engineering techniques, IDEs with class-based

views, bad smells detection tools, recommendation engines

and techniques to detect violations and deviations in class-

based architectures. Furthermore, the new standard version

of JavaScript, named ECMAScript 6, will include syntactical

support for classes [7]. Therefore, revealing how JavaScript

developers currently emulate classes is a valuable information

for those that plan to use classes in their systems, according

to this new standard syntax.

The main contributions of our work are as follows:

• We document how prototypes in JavaScript are used to

support the implementation of structures including both

data and code and that are further used as a template for

the creation of objects (Section II). In this paper, we use

the term classes to refer to such structures, since they

have a very similar purpose as the native classes available

in mainstream object-oriented languages. We also propose

a strategy to statically identify classes in JavaScript code

(Section III).

• We propose an open-source supporting tool, called

JSCLASSFINDER, that practitioners can use to detect

and inspect classes in JavaScript software. This tool is

described in Section III-B

• We provide a thorough study on the usage of classes

in a dataset of 50 popular JavaScript software available

at GitHub (Section IV). This study aims to answer

978-1-4799-8469-5/15 c© 2015 IEEE SANER 2015, Montréal, Canada

Accepted for publication by IEEE. c© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

73

the following research questions: (a) Do developers use

classes in JavaScript applications? (b) Do developers use

inheritance in JavaScript applications? (c) What is the

size of JavaScript classes?

II. CLASSES IN JAVASCRIPT

This section lists the different mechanisms to emulate classes

in JavaScript. To identify these mechanisms we carefully

conducted an informal survey on documents available on

the web, including tutorials2, blogs3, and StackOverflow

discussions4. We also surveyed a catalogue of five encapsulation

styles for JavaScript proposed by Gama et al. [8] and JavaScript

books targeting language practitioners [9], [10].

Basically, an object in JavaScript is a set of name-value

pairs. Method and variable names are strings, called properties,

and the values are any objects, including immediate values

(e.g., numbers, boolean) and functions. To implement classes in

JavaScript — i.e., data structures that resemble the class concept

of mainstream object-oriented languages; the most common

strategy is to use functions. Particularly, any function can be

used as template for the creation of objects. In a function, the

standard JavaScript keyword this is used to define properties

that emulate attributes and methods. Attributes are properties

associated with any object, except functions. Methods are

properties associated with inner functions. The keyword new

is used to create objects for a class.

To illustrate the definition of classes in JavaScript, we use

a simple Circle class. Listing 1 presents the function that

defines this class (lines 1-6), which includes a radius attribute

and a getArea method.

1 function Circle (radius) { // function -> class

2 this.radius= radius; // property -> attribute

3 this.getArea= function () {// function -> method

4 return (3.14 * this.radius * this.radius);

5 }

6 }

7 // Circle instance -> object

8 var myCircle = new Circle (10);

Listing 1. Class declaration and object instantiation

Each object in JavaScript has an implicit prototype prop-

erty that refers to another object. The instance link between an

object and its class in OOP is assimilated to the prototype link

between an object and its prototype. To evaluate an expression

like obj.p, the runtime starts searching for property p in obj,

then in obj.prototype, then in obj.prototype.prototype,

and so on until it finds the desired property or reaches an empty

object. When an object is created using new C its prototype

is set to the prototype of the function C, which by default

is defined as pointing to an Object. Therefore, a chain of

prototype links usually ends at Object.

2https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction to
Object-Oriented JavaScript, verified 11/15/2014

3http://javascript.crockford.com/prototypal.html, verified 11/15/2014
4http://stackoverflow.com/questions/387707/whats-the-best-way-to-define-

a-class-in-javascript, verified 11/15/2014

By manipulating the prototype property, we can define

a method whose implementation is shared by all object

instances. It is also possible to define properties shared by

all objects of a given class, akin to static attributes in class-

based languages. In listing 2, Circle includes a pi static

attribute and a getCircumference method. It is worth noting

that getCircumference is not a method attached to the class

(as a static method in Java). It has for example access to

the this variable, whose value is not determined using lexical

scoping rules, but instead using the caller object.

1 // prototype property -> static attribute

2 Circle.prototype.pi = 3.14;

3

4 // function -> method

5 Circle.prototype.getCircumference= function () {

6 return (2 * this.pi * this.radius);

7 }

Listing 2. Using prototype to define methods and static attributes

Prototypes are also used to simulate inheritance hierarchies.

In JavaScript, we can consider that a class C2 is a subclass of

C1 if C2’s prototype refers to an instance of C1. For example,

Listing 3 shows a class Circle2D that extends Circle with

its position in a Cartesian plane.

1 function Circle2D (x, y) { // class Circle2D

2 this.x = x;

3 this.y= y;

4 }

5

6 // Circle2D is a subclass of Circle

7 Circle2D.prototype = new Circle(10);

8

9 // Circle2D extends Circle with new methods

10 Circle2D.prototype.getX = function () {

11 return (x);

12 }

13 Circle2D.prototype.getY = function () {

14 return (y);

15 }

Listing 3. Implementing subclasses

Alternatively, the subclass may refer directly to the prototype

of the superclass, which is possible using the Object.create()
method. This method creates a new object with the specified

prototype object, as illustrated by the following code:

1 Circle2D.prototype=Object.create(Circle.prototype)

Table I summarizes the mechanisms presented in this section

to map class-based object-oriented abstractions to JavaScript

abstractions.

III. DETECTING CLASSES IN JAVASCRIPT

In this section, we describe a strategy to statically detect

classes in JavaScript source code (Section III-A). Section III-B

describes the tool we implemented to detect classes in

JavaScript using the proposed strategy. We also report lim-

itations of this strategy, mainly due to the dynamic behavior

of JavaScript (Section III-C).

74

TABLE I
CLASS-BASED LANGUAGES VS JAVASCRIPT

Class-based languages JavaScript

Class Function
Attribute Property
Method Inner function
Static attribute Prototype property
Inheritance Prototype chaining

A. Strategy to Detect Classes

To detect classes, we reused with minimal adaptations

a simple grammar for JavaScript, originally proposed by

Anderson et al. [11] to represent the way objects are created

in JavaScript and the way objects acquire fields and methods.

This grammar is as follows:

Program ::= FuncDecl*
FunDecl ::= function f() { Exp }
Exp ::= new f()

this.a= Exp;
this.a= function { Exp }
f.prototype.a= Exp;
f.prototype.a= function { Exp }
f.prototype= new f();

Object.create(f.prototype);

This grammar assumes that a program is composed of

functions, and that a function’s body is an expression. The

expressions of interest are the ones to create objects and to

add properties to functions via this or prototype.

Definition #1: A class is a tuple (C,A,M), where C is the

class name, A = {a1, a2, . . . , ap} are the attributes defined

by the class, and M = {m1,m2, . . . ,mq} are the methods.

Moreover, a class (C,A,M), defined in a program P , must

respect the following conditions:

• P must have a function with name C.

• P must include at least one expression new C() or

Object.create(C.prototype).
• For each a ∈ A, the function C must include an assign-

ment this.a = Exp or P must include an assignment

C.prototype.a = Exp.

• For each m ∈ M, function C must include an assignment

this.m = function {Exp} or P must include an

assignment C.prototype.m = function {Exp}.

Functions that partially match these conditions are not

classified as classes. For example, if a function matches all

conditions, except the one that requires a new expression in

the program, it is not listed as a class.

In the JavaScript examples of Section II we have two classes:

• (Circle,{radius,pi},{getArea,getCircumference})

• (Circle2D, {x, y}, {getX, getY})

Definition #2: Assuming that (C1,A1,M1) and (C2,A2,M2)
are classes in a program P , we define that C2 is a subclass

of C1 if one of the following conditions holds:

• P includes an assignment C2.prototype = new C1().
• P includes an assignment C2.prototype =
Object.create(C1.prototype).

In the examples of Section II, Circle2D is a subclass of

Circle.

B. Tool Support

We implemented a tool, called JSCLASSFINDER, for identi-

fying classes in JavaScript programs. As illustrated in Figure 1,

this tool works in two steps. In the first step, Esprima5—a

widely used JavaScript Parser—is used to generate a full

abstract syntax tree, in JSON format. In the second step,

we implemented an application that supports the strategies

described in Section III-A to detect classes in a JavaScript

AST in the JSON format. JSCLASSFINDER also collects the

following basic object oriented metrics: Number of Attributes

(NOA), Number of Methods (NOM), Depth of Inheritance Tree

(DIT), and Number of Children (NOC) [12].

Fig. 1. JSClassFinder

C. Limitations

The proposed strategy requires each class C to have at least

one corresponding new C expression in the program. This is

important because any function in JavaScript has access to

this and can use it to add properties to the calling object or to

the global context. For example, consider the following code:

1 function f(x) {

2 this.x= x;

3 }

4 f(10);

The call to f does not have a target object. In this case, the

result is to add a property x in the object that represents the

global context in JavaScript programs. Therefore, although f

resembles a constructor function, it is not in fact used as a

template to create objects, since the program does not include

a new. For this reason, it is not classified as a class, according

to our definition. On the other hand, classes designed to be

instantiated by client applications, as would be the case of

the public interface of APIs, are not detected by the proposed

strategy. In this case, the call to new is typically made by the

clients.

We also acknowledge that there is not one single strategy

to emulate classes in JavaScript. For example, it is possible to

create “singleton” objects directly, without using any class-like

construction, as in this example:

5http://esprima.org, verified 11/15/2014

75

1 var myCircle = {

2 radius: 10,

3 pi: 3.14,

4 getArea: function () { ... }

5 }

In addition, there are numerous JavaScript frameworks, like

Prototype6 and AngularJS7, that support their own style for

implementing class-like abstractions. For this reason, we do

not struggle to cover the whole spectrum of alternatives to

implement classes. Instead, we consider only the strategy

closest to the syntax and semantics of class-based languages.

Recognizing other ways to mimic classes could be the goal of

some future work.

Moreover, there are abstractions related to classes that are

more difficult to emulate in JavaScript, like abstract classes and

interfaces. Encapsulation is another concept that does not have a

straightforward mapping to JavaScript. A common workaround

to simulate private members in JavaScript is by using local

variables and closures. As shown in Listing 4, an inner function

f2 in JavaScript has access to the variables of its outer function

f1, even after f1 returns. Therefore, local variables declared

in f1 can be considered as private, because they can only be

accessed by the “private function” f2. However, we decided to

not classify f2 as a private method, mainly because it cannot

access the this object, nor can it be directly called from the

public methods of the class.

1 function f1 () { // outer function -> class

2 var x; // local variable

3 function f2 () { // inner function

4 // can access "x"

5 // cannot access "this"

6 }

7 }

Listing 4. Using closures to implement “private” inner functions

In JavaScript, it is also possible to remove properties from ob-

jects dynamically, e.g., by calling delete myCircle.radius.

Therefore at runtime, an object can have less attributes than

the ones defined in its class. It is also possible to modify

the prototype chains dynamically. When we detect multiple

assignments on the prototype link of a class A, a warning is

raised reporting the alternative superclasses of A. Finally, the

behavior of a program can be modified dynamically, using the

eval operator [13], [14]. However, we do not consider the

impact of eval’s in the strategy described in Section III-A.

For example, we do not account for classes entirely or partially

created by means of eval.

IV. STUDY

The goal of this study is to evaluate whether the strategy

we propose (Section III-A) is able to detect classes in real

JavaScript software. The result of our study targets at JavaScript

developers interested in understanding and evolving the classes

used in their systems. The context we defined for this study

consists of 50 popular JavaScript systems, available at GitHub.

6http://prototypejs.org, verified 11/15/2014
7https://angularjs.org, verified 11/15/2014

In this study, we answer the following research questions:

• RQ #1: Do developers use classes in JavaScript applica-

tions?

• RQ #2: Do developers use inheritance in JavaScript

applications?

• RQ #3: What is the size of JavaScript classes, in terms of

number of methods and attributes? (Are the results similar

when comparing to traditional OO languages?)

In the following, we first describe the process we followed

to select JavaScript software from GitHub and to clean up the

downloaded code (Section IV-A). Next, we present and discuss

answers for the proposed research questions (Sections IV-B to

IV-D). Finally, we discuss threats to validity (Section IV-E).

A. Data Extraction

The JavaScript systems considered in this study are available

at GitHub. We selected systems ranked with at least 1,000 stars

at GitHub, whose sole language is JavaScript, that have at least

150 commits and are not forks of other projects. This search

was performed on June, 2014 and resulted in 50 systems. After

the check out of each system, we automatically inspected the

source code to remove the following files: compacted files used

in production to reduce network bandwidth consumption (which

have the extension ∗.min.js), copyright files (copyright.js),

documentation files (located in directories called doc or docs),

and files belonging to third party libraries (located in directories

thirdparty or node modules). We did not discard test

files and examples, because these files usually include new

expressions, which are primordial for the success of the strategy

proposed to detect classes, as described in Section III-A.

The selected systems are presented in Table II, including

their version, a brief description, size (line of code), number

of files, and number of functions. Although we did not discard

test files and examples, they are not counted when computing

the size metrics in Table II. The selection includes well-known

and widely used JavaScript systems, from different domains,

covering frameworks (e.g., angular.js and jasmine), editors

(e.g., brackets), browser plug-ins (e.g., pdf.js), games

(e.g., 2048 and clumsy-bird), etc. The largest system (ace)

has 194,159 LOC and 574 files with .js extension. The smallest

system (masonry) has 197 LOC and a single file. The average

size is 13,846 LOC (standard deviation 33,720 LOC) and 58.7

files (standard deviation 121.1 files). The median is 2,462 LOC

and 16 files. We also found systems with hundreds of functions

in a single JavaScript file. For example, reveal.js is a system

with a single file and 105 functions.

After downloading the systems and cleaning up the code, we

executed the JSCLASSFINDER tool to extract class information

and metrics on each system.

B. Do developers use classes in JavaScript applications?

Table II presents the total number of classes detected by

JSCLASSFINDER in the selected systems. We found classes

in 37 out of 50 systems (74%). The system with the largest

number of classes is pdf.js (144 classes), followed by ace

(133 classes), three.js (106 classes), and brackets (101

76

TABLE II
JAVASCRIPT SYSTEMS (ORDERED ON THE CUR COLUMN, SEE DESCRIPTION IN ACCOMPANYING TEXT)

System Version Description LOC # Files # Func # Class # Meth # Attr CUR SCUR DOCR

masonry 3.1.5 Cascading grid layout library 197 1 10 0 0 0 0.00 - -
randomColor 0.1.1 Color generator 361 1 17 0 0 0 0.00 - -
respond 1.4.2 Polyfill for CSS3 media queries 460 3 15 0 0 0 0.00 - -
clumsy-bird 0.1.0 Flappy Bird Game 628 7 1 0 0 0 0.00 - -
deck.js 1.1.0 Modern HTML Presentations 732 1 22 0 0 0 0.00 - -
impress.js 0.5.3 Presentation framework 769 1 23 0 0 0 0.00 - -
async 0.9.0 Async utilities 1,117 1 75 0 0 0 0.00 - -
turn.js 3.0.0 Page flip effect for HTML5 1,914 1 18 0 0 0 0.00 - -
zepto 1.1.3 Minimalist jQuery API 2,456 17 149 0 0 0 0.00 - -
jade 1.0.2 Template engine for Node 4,051 28 41 0 0 0 0.00 - -
select2 3.4.8 Replacement for select boxes 4,132 45 44 0 0 0 0.00 - -
jQueryFileUp 9.5.7 File upload widget 4,442 15 49 0 0 0 0.00 - -
semantic-UI 0.18.0 UI component framework 11,951 19 25 0 0 0 0.00 - -
wysihtml5 0.3.0 Rich text editor 5,913 69 107 2 0 3 0.02 0.00 0.50
underscore 1.6.0 Functional programming helpers 1,390 1 91 2 1 1 0.03 0.00 0.00
paper.js 0.9.18 Vector graphics framework 25,859 67 143 2 2 0 0.03 0.00 0.00
intro.js 0.9.0 Templates for introductions 1,026 1 24 1 0 2 0.04 - 1.00
timelineJS 2.25.0 Visualization chart 18,237 89 213 10 0 7 0.05 0.00 0.40
jasmine 2.0.0 JavaScript testing framework 2,956 48 239 7 8 13 0.06 0.17 0.57
reveal.js 2.6.2 HTML presentation framework 3,375 1 105 3 6 11 0.09 0.00 0.67
floraJS 1.0.0 Simulation of natural systems 3,325 26 104 4 6 8 0.10 0.00 0.50
express 4.4.1 Minimalist framework for Node 2,942 11 84 3 7 11 0.12 0.00 0.33
numbers.js 0.4.0 Mathematics library for Node 2,454 10 119 1 14 4 0.13 - 0.00
typeahead.js 0.10.2 Auto-complete library 2,468 19 95 12 0 48 0.13 0.00 1.00
video.js 4.6.1 HTML5 video library 7,939 38 432 5 53 6 0.13 0.00 0.40
sails 0.10.0 MVC framework for Node 13,053 98 154 9 15 54 0.16 0.00 0.22
ionic 1.0.0 HTML5 mobile framework 14,376 90 283 15 31 26 0.16 0.14 0.27
chart.js 0.2.0 HTML5 charts library 1,417 1 34 6 0 0 0.18 0.00 0.00
grunt 0.4.5 JavaScript task runner 1,932 11 94 1 16 8 0.18 - 0.00
angular.js 1.3.0 Web application framework 79,753 539 705 40 86 74 0.18 0.03 0.43
ghost 0.4.2 Blogging platform 15,048 122 205 12 32 17 0.21 0.18 0.08
brackets 0.41.0 Source code editor 122,971 403 2,723 101 638 452 0.27 0.15 0.34
backbone 1.1.2 Data structure for web apps 1,681 2 17 3 2 0 0.29 0.00 0.00
skrollr 0.6.25 Scrolling library 1,764 1 44 1 12 0 0.30 - 0.00
leaflet 0.7.0 Library for interactive maps 8,389 71 63 9 10 19 0.30 0.00 0.33
ace 1.0.0 Source code editor 194,159 574 3,176 133 810 535 0.30 0.14 0.53
gulp 3.7.0 Streaming build system 282 4 9 1 2 4 0.33 - 1,00
three.js 0.0.67 JavaScript 3D library 37,102 164 609 106 120 497 0.37 0.00 0.74
pdf.js 0.8.0 Web PDF reader 48,090 41 531 144 58 574 0.38 0.19 0.81
bower 1.3.5 Package manager 8,194 53 306 13 112 34 0.41 0.00 0.08
algorithms.js 0.2.0 Data structures & algorithms 1,594 29 82 7 28 13 0.43 0.33 0.14
mustache.js 0.8.2 Logic-less template syntax 571 1 27 3 9 7 0.44 0.00 0.33
parallax 2.1.3 Motion detector for devices 1,007 3 57 1 24 40 0.44 - 1,00
less.js 1.7.0 CSS pre-processor 10,578 48 202 52 42 190 0.47 0.02 0.88
2048 - Number puzzle game 873 10 66 4 33 13 0.56 0.00 0.50
pixiJS 1.5.3 Rendering engine 13,896 72 361 61 152 267 0.59 0.00 0.69
isomer 0.2.4 Isometric graphics library 770 71 47 7 29 25 0.77 0.00 0.43
slick 1.3.6 Carousel visualization engine 1,684 1 64 1 50 0 0.80 - 0.00
fastclick 1.0.2 Library to remove click delays 798 1 22 1 18 9 0.86 - 0.00
socket.io 1.0.4 Realtime application framework 1,223 4 49 4 44 36 0.98 0.00 0.25

classes). Semantic-UI is the largest system (11,951 LOC) that

does not have classes, at least as formalized in Section III-A.

Figure 2 shows two classes detected in the pixiJS system 8.

These classes represent an Ellipse (with four attributes and

three methods) and a JSONLoader (with four attributes and

four methods).

Systems in Table II are classified in ascending value of what

we called Class Usage Ratio (CUR), which is defined as:

CUR =
methods + # classes

functions

8We omitted the full code due to paper’s size constraints.

Fig. 2. Examples of classes detected in pixiJS

77

This metric is the ratio of functions in a program that are

related to the implementation of classes, i.e., that are methods

or that are classes themselves. It ranges between 0 (system

with no functions related to classes) to 1 (a fully class-oriented

system, where all functions are used to support classes). The

denominator includes all functions.

Figure 3 shows the distribution of the CUR values, consider-

ing all 50 systems (on the left and systems with CUR greater

than zero on the right). On the left, there are systems with very

small CUR values. The first quartile is 0.005 (lower bound of

the black box within the “violin”) and 13 systems have CUR

equal to zero (the width of the “violin” indicates the number

of the distribution of the systems for a given CUR value). The

median for all systems (white dot at the heart of the violin) is

0.15 and the third quartile is 0.36 (upper bound of the black

box). We also found one almost fully class-oriented system,

socket.io, with CUR equal to 0.98.

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

All systems CUR > 0

●

●

C
U

R

Fig. 3. Class Usage Ratio (CUR) distribution

There is a significant change in the CUR distribution when

we only consider the systems with CUR greater than zero, as

represented in the violin plot on the right. One could consider

that these systems are those that chose to use classes with the

convention that our tool is looking for. Other systems might

use other conventions, or no class abstraction at all. The first

quartile of CUR is now 0.13, the median is 0.27, and the third

quartile is 0.43. In other words, 26% of the systems do not use

classes at all or are using an abstraction other than the one we

are looking for. This might be a deliberate design decision of

their developers. On the other hand, in the remaining systems,

the emulation of class represents on the median 27% of the

functions.

Figure 4 shows scatterplots with size metrics on the x-axis in

a logarithmic scale and CUR on the y-axis. We also computed

the Spearman’s rank correlation coefficient between CUR and

the following system size metrics: LOC, number of files, and

number of functions. The intention is to clarify the effect

of the system’s size on the usage of class-based structures.

The results are presented in Table III. We found a very weak

correlation for LOC (ρ=0.11, p-value=0.45), and number of

files (ρ=0.22, p-value=0.13), and slightly better for number of

functions (ρ=0.29, p-value=0.04).

TABLE III
SPEARMAN CORRELATION BETWEEN CUR AND SIZE METRICS

LOC # Files # Func

Spearman 0.110 0.217 0.295
p-value 0.446 0.130 0.037

In summary, we observed four main groups of systems:

• Class-free systems: 13 systems that do not use classes at

all (CUR = 0).

• Class-aware systems: 18 systems that use classes, but

marginally (CUR ≤ 0.21).

• Class-friendly systems: 15 systems where classes represent

a common data structure (0.21 < CUR < 0.59)

• Class-oriented systems: four systems that have most of

their structures organized as classes (CUR ≥ 0.77).

We used the Kruskal-Wallis test to check if the LOC

distributions in these groups are equal. For this test, we merged

the class-friendly and class-oriented groups into a single one,

because the latter has only four systems. The test resulted in a

p-value of 0.03, leading us to reject the null hypothesis (the

groups have systems with equal size), at a 5% significance level.

In fact, the median measures of each tested group are different

(1,117; 3,350; and 1,684; respectively). It is not clear however

if this difference (statistically significant on our experimental

corpus) is relevant in practice. More research is necessary to

clarify this point.

C. Do developers use inheritance in JavaScript applications?

To evaluate the usage of inheritance, we propose a metric

called Subclass Usage Ratio (SCUR), defined as:

SCUR =
| {C ∈ Classes | DIT (C) ≥ 2 } |

| Classes | − 1

where Classes is the set of all classes in a given system. DIT

is the Depth of Inheritance Tree, and classes with DIT = 1

only inherit from the common base class. SCUR ranges from

0 (system that does not make use of inheritance) to 1 (system

where all classes inherit from another class, except one class

that is the root of the class hierarchy). SCUR is only defined

for systems that have at least two classes.

As shown in Table II, the use of prototype-based inheritance

is rare in JavaScript systems. First, we counted 29 systems

(58%) having two or more classes, i.e., systems where it is

possible to detect the use of inheritance. However, in 20 of such

systems (69%), we did not find subclasses (SCUR = 0). The

system with the highest use of inheritance is algorithms.js

(SCUR = 0.33). As an example, in this system we found a

class Stack defined as a subclass of Queue, as represented in

the class diagram of Figure 5a. In this case, Stack inherits three

methods from Queue (isEmpty(), pop(), and peek()) and

redefines one method (push()). Figure 5b shows an example

78

● ● ● ● ●● ● ● ● ●●● ●

●
● ●

●
●

●

●
●

●
●● ●

●●

● ● ●

●

●

●
● ● ●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

0.2 0.5 1.0 2.0 5.0 10.0 20.0 50.0 100.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

KLOC

C
U

R

(a) KLOC vs CUR

●● ● ●●●●● ● ● ●● ●

●
● ●
●

●
●

●
●

●
● ● ●

●●

● ● ●

●

●

●
● ● ●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

1 2 5 10 20 50 100 200 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Files

C
U

R

(b) # Files vs CUR

● ●●● ●● ●● ●●●●●

●
● ●

●
●

●

●
●

●
●● ●

● ●

● ● ●

●

●

●
● ● ●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

1 5 10 50 100 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Functions

C
U

R

(c) # Func vs CUR

Fig. 4. Size metrics vs Class Usage Ratio (CUR)

detected in pdf.js, including a WebBrowser class and two

subclasses, ChromiumBrowser and FirefoxBrowser.

(a) algorithms.js (b) pdf.js

Fig. 5. Examples of inheritance

D. What is the size of JavaScript classes in terms of number

of methods and attributes?

To answer this question, we initially investigated seven

systems with at least 40 classes: pdf.js, ace, three.js,

brackets, pixiJS, less.js, and angular.js. These systems

have a number of classes that are compatible with medium-sized

systems in class-based languages. Figure 6 shows the quantile

functions for the Number of Attributes (NOA) and Number

of Methods (NOM) values in each system. In this figure, the

black lines represent the systems. The x-axis represents the

quantiles and the y-axis represents the upper metric values for

the classes in a given quantile. For example, suppose the value

of a quantile p (x-axis) is k (y-axis), for NOA values. This

means that p% of the classes in the system in question have

at most k attributes. Moreover, Figure 6 includes a red line

that represents the whole population of classes found in our

dataset (787 classes, detected in 37 systems).

Regarding NOA, the quantile functions reveal that the vast

majority of the classes have at most, 11 attributes. Specifically,

the 90th percentile range from five attributes (angular.js) to

11 attributes (brackets and three.js). Regarding NOM, the

vast majority of the classes have less than 13 methods. In this

case, the 90th percentile ranges from one method (pdf.js) to

13 methods (brackets). In the whole population of classes,

the results are similar. For NOA, the 90th percentile is eight;

for NOM, it is seven.

When generating the quantile functions, we found a very

large class in the ace system, with 164 attributes and 503

methods. By inspecting its source code, we discovered that

this class is a PHP parser, automatically generated by a

parser generator tool. For this reason, we removed it from

the quantile functions in Figure 6. Otherwise, it would require

the presentation of very high values in the y-axis. This finding

shows that class-emulation is also a design decision followed

by the developers of code generation tools.

Figure 6 shows that the NOA and NOM values tend to

present a right-skewed (or heavy-tailed) behavior, meaning that

while the bulk of the distribution occurs for fairly small classes

there is a small number of large classes with NOA and NOM

measures much higher than the typical value. This results in

a long tail to the right, if the metric values are presented in

a histogram. In fact, this heavy-tailed behavior is normally

observed in source code metrics [15]–[17].

In Table II, 16 out of 37 systems with classes have a total

number of attributes (# Attr column) greater than the total

number of methods (# Meth column). This contrasts to the

common shape of classes in class-based languages, when

classes have usually more methods than attributes [18]. To

understand this phenomenon, we propose a metric called Data-

Oriented Class Ratio (DOCR) defined as follows:

DOCR =
| {C ∈ Classes | NOA(C) > NOM(C) } |

| Classes |

where Classes is the set of all classes in a given system. DOCR

79

0.0 0.2 0.4 0.6 0.8 1.0

0
1

0
2

0
3

0
4

0
5

0

Quantiles

N
O

A

(a) NOA

0.0 0.2 0.4 0.6 0.8 1.0

0
2

0
4

0
6

0
8

0

Quantiles

N
O

M

(b) NOM

Fig. 6. Quantile functions

ranges from 0 (system where all classes have more methods

than attributes or both measures are equal) to 1 (system where

all classes are data classes, i.e., their number of attributes is

greater than the number of methods). DOCR is only defined

for systems that have at least one class.

Table II presents the DOCR values for each system and

Figure 7 shows the DOCR distribution using a violin plot. The

median DOCR value is 0.34, which is a high measure. For

example, metric thresholds for Java suggest that classes should

have at most 8 attributes and 16 methods, i.e., they recommend

two methods per attribute for a typical class [19]. On the other

hand, half of the JavaScript systems we studied have more

than 34% of classes with more attributes than methods. We

did not inspect the code in detail to explain this fact, but we

hypothesize that it is due to JavaScript developers placing less

importance on encapsulation. For example, getters and setters

are rare in JavaScript.

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Systems

●

D
O

C
R

Fig. 7. Data-Oriented Classes Ratio (DOCR) distribution

E. Threats to Validity

First, the proposed strategy to detect classes do not handle

the whole spectrum of class styles supported by JavaScript and

also by third-party frameworks, as discussed in Section III-C.

However, we cover the style that closely resembles the syntax

and semantics of classes, attributes, and methods in class-based

languages. Second, as usual, our dataset might not represent the

whole population of JavaScript systems. But at least we selected

a representative number of popular and well-known systems,

of different sizes and covering various domains. Third, the

proposed strategy depends on new expressions to detect classes.

Therefore, it misses important classes of APIs, libraries, and

frameworks, which are designed to be instantiated by clients.

To mitigate this issue, we did not remove test files and files

with examples from our dataset, when searching for classes.

In a manual inspection, we did not find classes in such files.

However, if they exist, they are counted in our study.

V. RELATED WORK

Studies: Richards et al. [13] conducted a large-scale study on

the use of eval in JavaScript, based on a corpus of more than

10,000 popular web sites. They report that eval is popular and

not necessarily harmful. It is usually considered a best practice

for example when loading scripts or data asynchronously. After

this first study, restricted to eval’s, the authors conducted

a second study, when they investigated a broad range of

JavaScript dynamic features [4]. They concluded for example

that libraries often change the prototype links dynamically,

but such changes are restricted to built-in types, like Object

and Array, and changes in user-created types are more rare.

The authors also report that most JavaScript programs do not

delete attributes from classes dynamically. To some extent,

these findings support the feasibility of using heuristics to

80

extract class-like structures statically from JavaScript code, as

proposed in this paper.

Tools: Gama et al. [8] identified five styles for implementing

methods in JavaScript: inside/outside constructor functions us-

ing anonymous/non-anonymous functions and using prototypes.

Their main goal was to implement an automated approach

to normalizing JavaScript code to a single consistent object-

oriented style. They claim that mixing styles in the same code

may hinder program comprehension and make maintenance

more difficult. The strategy proposed in this paper covers the

five styles proposed by the authors. Additionally, we also detect

attributes and inheritance.

Fard and Mesbah [20] proposed a set of 13 JavaScript code

smells, including generic smells (e.g., long functions and dead

code) and smells specific to JavaScript (e.g., creating closures

in loops and accessing this in closures). They also describe

a tool, called JSNode, for detecting code smells based on

a combination of static and dynamic analysis. Among the

proposed patterns, only Refused Bequest is directly related to

class-emulation in JavaScript. In fact, this smell was originally

proposed to class-based languages [21], [22], to refer to

subclasses that do not use or override many elements from their

superclasses. Interestingly, our strategy to detect classes opens

the possibility to detect other well-known class-based code

smells in JavaScript, like Feature Envy, Large Class, Shotgun

Surgery, Divergent Change, etc.

There is also a variety of tools and techniques for analyzing,

improving, and understanding JavaScript code, including tools

to prevent security attacks [23]–[25], to understand event-based

interactions [26], [27], and to support refactorings [28], [29].

ECMAScript 6: ECMAScript is the standard definition of

JavaScript [1]. ECMAScript 6 [7] is the next version of this

standard, which is currently in frozen state and it is planned to

be officially released in early 20159. Interestingly, a syntactical

support to classes is included in this new release. For example,

it will support the following class definition:

1 class Circle {

2 constructor (radius) {

3 this.radius= x;

4 }

5 getArea() {

6 return (3.14 * this.radius * this.radius);

7 }

8 }

However, this support to classes does not impact the

semantics of the language, which remains prototype-based.

For example, the previous class is equivalent to the following

code:

1 function Circle (radius) {

2 this.radius= radius;

3 }

4 Circle.prototype.getArea= function () {

5 return (3.14 * this.radius * this.radius);

6 }

9https://developer.mozilla.org/en-US/docs/Web/JavaScript/
New in JavaScript/ECMAScript 6 support in Mozilla, verified 11/15/2014

The strategy proposed in this paper straightforwardly detects

this previous code as a Circle class, with a radius attribute

and a getArea method, as specified in ECMAScript 6.

Therefore, by revealing how JavaScript developers emulate

classes in the current version of the language we can help

developers that plan to use syntactical classes in their systems,

according to the new ECMAScript standard. The proposed

strategy and the JSCLASSFINDER tool can also support a new

variety of tools, aiming to translate “old JavaScript class styles”

to ECMAScript 6 syntax.

CoffeeScript is another language that aims to expose the

“good parts of JavaScript” by only changing the language’s

syntax10. CoffeeScript compiles one-to-one into JavaScript

code. As ECMAScript 6, the language includes class-related

keywords, like class, constructor, extends, etc.

VI. CONCLUSION

We conclude by presenting our findings (Section VI-A) and

the practical implications of this study (Section VI-B).

A. Findings

This paper provides the first large-scale study on the usage

of class-based structures in JavaScript, a language that is used

nowadays to implement complex single-page applications for

the Web. We proposed a strategy to statically detect class

emulation in JavaScript and the JSCLASSFINDER tool, that

supports this strategy. We used JSCLASSFINDER on a corpus

of 50 popular JavaScript applications, with different sizes and

from multiple domains. We summarize our findings as follows.

First, there are essentially four types of JavaScript software,

regarding the usage of classes: class-free (systems that do not

make any usage of classes), class-aware (systems that use

classes marginally), class-friendly (systems that make relevant

usage of classes), and class-oriented (systems that have the

vast majority of their data structures implemented as classes).

The systems in these categories represent, respectively, 26%,

36%, 30%, and 8% of the systems we studied.

Second, there is no significant relation between size and

class usage. Therefore, we cannot conclude that the larger the

system, the greater the usage of classes, at least in proportional

terms. For this reason, we hypothesize that the background and

experience of the systems’ developers have more impact on

the decision to design a system around classes, than its size.

Third, prototype-based inheritance is not popular in

JavaScript. We counted only nine systems making use of

inheritance. We hypothesize that there are two main reasons

for this. First, even in class-based languages there are strong

positions against inheritance, and a common recommendation

is to “favor object composition over class inheritance” [30].

Second, prototype-based inheritance is more complex than the

usual implementation of inheritance available in mainstream

class-based object-oriented languages.

Fourth, JavaScript classes tend to have a similar number

of attributes as for example Java classes. We found that most

10http://coffeescript.org, verified 11/15/2014

81

JavaScript classes have 8 attributes or less, which is close to

thresholds previously proposed for Java [19]. On the other

hand, JavaScript classes tend to have less methods than Java

ones. We found that most classes in JavaScript have less than

seven methods, when Java classes usually have less than 16

methods. We hypothesize that this predominance of attributes

over methods is due to the lack of encapsulation mechanisms

in JavaScript. For example, getters and setters are almost non-

existent in JavaScript software.

B. Practical Implications and Future Work

Javascript is a class-free, prototype-based language and will

probably always keep this status. However, almost 40% of

the systems we studied make a relevant usage of classes

(CUR ≥ 0.30). In fact, this usage may increase in the future,

as ECMAScript 6 includes syntax for classes. Therefore, we

might consider the adaptation to the JavaScript ecosystem of

many tools, concepts and techniques widely used in class-based

languages, like: (a) metrics to measure class properties like

coupling, cohesion, complexity, etc; (b) reverse engineering

techniques and tools to extract class and other diagrams from

source code; (c) IDEs that include class-based views, like

class browsers; (d) tools to detect bad smells in JavaScrip

classes; (e) recommendation engines to suggest best practices;

(f) techniques to detect violations and deviations in the class-

based architecture of JavaScript systems; (g) tools to migrate

to ECMAScript 6.

We also plan to: (i) compare our findings with projects

written in languages that support OO natively; (ii) investigate

strategies used by JavaScript frameworks to implement classes;

(iii) measure precision and recall of our strategy to detect

classes.

Our tools and data set are freely available at:

http://aserg.labsoft.dcc.ufmg.br/JSClasses

ACKNOWLEDGMENTS

This research is supported by CNPq, CAPES, FAPEMIG

and FONDECYT (project 1120094, Chile). We thank Renato

Cerro for his feedback on the writing.

REFERENCES

[1] “European association for standardizing information and communication
systems (ECMA). ECMA-262: ECMAScript language specification.
edition 5.1,” 2011.

[2] H. Kienle, “It’s about time to take JavaScript (more) seriously,” IEEE

Software, vol. 27, no. 3, pp. 60–62, May 2010.
[3] A. Nederlof, A. Mesbah, and A. van Deursen, “Software engineering for

the web: the state of the practice,” in 36th International Conference on

Software Engineering (ICSE), Companion Proceedings, 2014, pp. 4–13.
[4] G. Richards, S. Lebresne, B. Burg, and J. Vitek, “An analysis of

the dynamic behavior of JavaScript programs,” in Conference on

Programming Language Design and Implementation (PLDI), 2010, pp.
1–12.

[5] A. H. Borning, “Classes versus prototypes in object-oriented languages,”
in ACM Fall Joint Computer Conference, 1986, pp. 36–40.

[6] A. Guha, C. Saftoiu, and S. Krishnamurthi, “The essence of JavaScript,” in
24th European Conference on Object-Oriented Programming (ECOOP),
2010, pp. 126–150.

[7] “European association for standardizing information and communication
systems (ECMA). ECMAScript language specification, 6th edition, draft
october, 2014.”

[8] W. Gama, M. Alalfi, J. Cordy, and T. Dean, “Normalizing object-oriented
class styles in JavaScript,” in 14th IEEE International Symposium on

Web Systems Evolution (WSE), Sept 2012, pp. 79–83.
[9] D. Crockford, JavaScript: The Good Parts. O’Reilly, 2008.

[10] D. Flanagan, JavaScript: The Definitive Guide. O’Reilly, 2011.
[11] C. Anderson, P. Giannini, and S. Drossopoulou, “Towards type inference

for JavaScript,” in 19th European Conference on Object-Oriented

Programming (ECOOP), 2005, pp. 428–452.
[12] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented

design,” IEEE Transactions on Software Engineering, vol. 20, no. 6, pp.
476–493, 1994.

[13] G. Richards, C. Hammer, B. Burg, and J. Vitek, “The eval that men do:
A large-scale study of the use of eval in JavaScript applications,” in 25th

European Conference on Object-oriented Programming (ECOOP), 2011.
[14] F. Meawad, G. Richards, F. Morandat, and J. Vitek, “Eval begone!:

Semi-automated removal of eval from JavaScript programs,” in 27th

Conference on Object Oriented Programming Systems Languages and

Applications (OOPSLA), 2012, pp. 607–620.
[15] G. Baxter, M. Frean, J. Noble, M. Rickerby, H. Smith, M. Visser,

H. Melton, and E. Tempero, “Understanding the Shape of Java Software,”
in 21st Conference on Object-oriented Programming Systems, Languages,

and Applications (OOPSLA). ACM, 2006, pp. 397–412.
[16] P. Louridas, D. Spinellis, and V. Vlachos, “Power Laws in Software,”

ACM Transactions on Software Engineering and Methodology, vol. 18,
pp. 1–26, 2008.

[17] R. Wheeldon and S. Counsell, “Power Law Distributions in Class
Relationships,” in International Working Conference on Source Code

Analysis and Manipulation, 2003, pp. 45–54.
[18] R. Terra, L. F. Miranda, M. T. Valente, and R. S. Bigonha, “Quali-

tas.class Corpus: A compiled version of the Qualitas Corpus,” Software

Engineering Notes, vol. 38, no. 5, pp. 1–4, 2013.
[19] P. Oliveira, M. T. Valente, and F. Lima, “Extracting relative thresholds

for source code metrics,” in IEEE Conference on Software Maintenance,

Reengineering and Reverse Engineering (CSMR-WCRE), 2014, pp. 254–
263.

[20] A. Fard and A. Mesbah, “JSNOSE: Detecting JavaScript code smells,”
in 13th Working Conference on Source Code Analysis and Manipulation

(SCAM), 2013, pp. 116–125.
[21] M. Fowler, Refactoring: improving the design of existing code. Addison-

Wesley, 1999.
[22] M. Lanza and R. Marinescu, Object-oriented metrics in practice: using

software metrics to characterize, evaluate, and improve the design of

object-oriented systems. Springer, 2006.
[23] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Krügel, and G. Vigna,

“Cross site scripting prevention with dynamic data tainting and static
analysis,” in Network and Distributed System Security Symposium (NDSS),
2007.

[24] A. Guha, S. Krishnamurthi, and T. Jim, “Using static analysis for Ajax
intrusion detection,” in 18th International Conference on World Wide

Web (WWW), 2009, pp. 561–570.
[25] D. Yu, A. Chander, N. Islam, and I. Serikov, “JavaScript instrumentation

for browser security,” in 34th Symposium on Principles of Programming

Languages (POPL), 2007, pp. 237–249.
[26] S. Alimadadi, S. Sequeira, A. Mesbah, and K. Pattabiraman, “Under-

standing JavaScript event-based interactions,” in International Conference

on Software Engineering (ICSE), 2014, pp. 367–377.
[27] A. Zaidman, N. Matthijssen, M. D. Storey, and rie van Deursen,

“Understanding Ajax applications by connecting client and server-side
execution traces,” Empirical Software Engineering, vol. 18, no. 2, pp.
181–218, 2013.

[28] A. Feldthaus, T. D. Millstein, A. Møller, M. Schäfer, and F. Tip,
“Refactoring towards the good parts of JavaScript,” in 26th Conference

on Object-Oriented Programming (OOPSLA), Companion Proceedings,
2011, pp. 189–190.

[29] ——, “Tool-supported refactoring for JavaScript,” in 26th Conference on

Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA), 2011, pp. 119–138.
[30] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides, Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional, 1994.

82

