
Vision: Alleviating Android Developer Burden on Obfuscation
Geoffrey Hecht

ISCLab, Department of Computer
Science, University of Chile

Cyprien Neverov
ISCLab, Department of Computer

Science, University of Chile

Alexandre Bergel
ISCLab, Department of Computer

Science, University of Chile

ABSTRACT
Mobile applications (apps) have gained an increasing importance
in the field of software engineering as they are becoming one of
the most widely used type of software. In the Android ecosystem,
obfuscation tools are available to optimize, reduce the size and
protect the intellectual properties of apps. However, despite the
clear advantages provided by obfuscation most apps do not use it,
often because of the difficulties induced by the usage of obfuscation
which requires writing rules to keep a usable app. In this paper,
we identify the concrete challenges encountered by app developers
who wish to use obfuscation in their apps. In addition, we pro-
pose an approach using crowdsourcing to automatically generate
rules, when static analysis is not sufficient. With the knowledge
gained from hundreds of projects, we hope to lighten the burden
on developers when writing rules.

ACM Reference Format:
Geoffrey Hecht, Cyprien Neverov, and Alexandre Bergel. 2020. Vision: Al-
leviating Android Developer Burden on Obfuscation. In IEEE/ACM 7th
International Conference on Mobile Software Engineering and Systems (MO-
BILESoft ’20), October 5–6, 2020, Seoul, Republic of Korea. ACM, New York,
NY, USA, 5 pages. https://doi.org/10.1145/3387905.3388611

1 INTRODUCTION
The Android documentation recommends to use a program opti-
mizer, generally called obfuscators, such as ProGuard1 or the new
Google’s R82 to optimize, shrink, and obfuscate apps. One of their
main functions is to shorten the identifier names and remove the un-
used code and resources, thus greatly reducing app’s size. By default,
identifiers are renamed using lexicographic order {a,b,...,aa,ab,...}
(see Listing 1)3 but custom mapping file can also be configured by
developers to use other identifiers.

Obfuscation is also used to protect intellectual property [12] and
offers a protection against piracy, including apps cloning. Cloning
is a very serious threat since more than 13% of apps available on
Android markets are clones or repackagings of legitimate apps,
modified with malicious code or advertisements to the attacker’s
benefits [3].

1ProGuard by Dexguard: www.guardsquare.com/en/products/proguard
2R8 optimizer by Google: https://r8.googlesource.com/r8
3Inspired by https://github.com/realm/realm-java/issues/4909

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MOBILESoft ’20, October 5–6, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7959-5/20/05. . . $15.00
https://doi.org/10.1145/3387905.3388611

However, despite the default integration of obfuscators in the
Android Gradle plugin and the listed advantages for both end-users
and developers, the use of obfuscators is still not widespread enough,
in particular on the Google Play Store where only 25% of apps use
obfuscation [13]. This could be explained by the ignorance of the
developers on such tools, but a previous study [13] has shown that
75% of them are aware of the benefits of obfuscators. 55% of them
thought about using it, but saw no valid reasons and 35% partici-
pants tried to use obfuscation, but gave up because of the complexity
of the tasks. Indeed, in theory, it is only required to change the value
of a boolean from false to true in the build.gradle to activate ob-
fuscation. But in practice, it will often be necessary for the developer
to write rules in a configuration file to keep the app usable. For
Listing 1, a rule that would not obfuscate the subclass of DBObject
would be: -keep class * extends app.database.DBObject.
The aforementioned study also tested 70 developers among which
only 17 were able to obfuscate a realistic sample app leading to the
conclusion that “more work is needed to make obfuscation tools
more usable” [13].

While previous researches investigated how and to what extent
obfuscators are used by apps [3–5, 12, 13], to the best of our knowl-
edge, none of them aimed to identify or to propose solutions to the
concrete challenges that are encountered by developers willing to
use obfuscators. While faster, more robust and more efficient obfus-
cation are being proposed [2, 8, 14], especially since the arrival of
R8 [11], it appears that the difficulties encountered by developers
while writing rules are neglected since the same rules have to be
written by developers. This is why in this paper, we propose an
approach to automatically generate obfuscator’s rules.

Listing 1: Example of a database related class using reflec-
tion

// Without obfuscation

public class DataClassFetcher {

private String fetchUUID(DBObject dbobject) {

Class dataClass = loadDataClass(dbobject);

String field = retrievePKField(dataClass);

Method getter =

dataClass.getDeclaredMethod("get"+field);

return String.valueOf(getter.invoke(getter));

}

//With obfuscation

public class a {

private String a(abc a) {

Class b = e(a);

String c = k(b);

//Crash if the method "get"+c has not been preserved

Method d = b.getDeclaredMethod("get"+c);

return String.valueOf(d.invoke(d));

}

The vision defined in this paper is summarized as follows:

MOBILESoft ’20, October 5–6, 2020, Seoul, Republic of Korea Geoffrey Hecht, Cyprien Neverov, and Alexandre Bergel

• We raise awareness about the difficulties that may discourage
developers to use obfuscators and advocate for the develop-
ment of tool-based approach to ease this burden;

• We propose the usage of crowdsourcing as a complement to
the already-used static analysis;

• We present the risks associated with our approach and an
inconclusive experience with machine learning.

2 THE DEVELOPER’S BURDEN
2.1 Identification of challenges
i) Introduction of bug: The first major drawback of using an
obfuscator is that in some situations the use of obfuscators may
lead to bugs or crashes in the apps. Common causes of bugs are
the usage of reflection, code called from Java Native Interface, data
classes, opening of resources inside an APK or annotations [7].
Indeed, if a package, class or a method has been renamed, it may
not be found by the system at runtime. For example, in Listing
1 a crash will occur when using getDeclaredMethod("get"+c))
since the original method is now renamed to another identifier.
Obfuscators use static analysis to determine which parts of the code
can be removed or safely renamed. However, this static analysis is
limited to simple cases and bugs may still appear. Use of libraries,
configuration files, requests to a database or over a network make
static analysis insufficient to know if a class should be kept or not.
To avoid this, a developer can configure the obfuscation process
with a file that specifies a set of keep rules that tells the obfuscator
to keep the code it would otherwise remove or rename.

ii) Need for expertise: Even if the syntax for writing rules is
well-documented and not particularly complex, developers must
master it to write efficient rules. In addition, developers must be
able to guess when a class or a method might need specific rules,
this implies a good knowledge of the apps and its libraries but also
of the limits of the obfuscator’s static analyzer. Sometimes it is
even necessary to know what will happen at compilation time. For
example, the bytecode produce by Kotlin classes will contains some
Kotlin specific metadata which is, among other things, used for
reflection. But the default behavior of Proguard is to remove this
metadata [9], therefore leading to bugs if developers does not write
rules to keep them.

iii) Complicated debugging: In addition to that, obfuscation
increases the difficulty of debugging because the error’s output may
refer to obfuscated identifiers in the stack trace. Developers must
therefore de-obfuscate the stack trace or search for corresponding
source code’s methods in a mapping file, which can contain several
thousand lines of correspondence between original and obfuscated
identifiers. Each version of an app has a distinctive mapping file,
therefore in case of a user bug reports, the version should be identi-
fied and the correct mapping file retrieved. This problem is further
amplified by the fact that the default build for development under
Android Studio is the debug build that does not include obfuscation.
Thus, bugs related to this phase, can only be detected in the release
build, which should be tested at runtime.

iv)Handling ofwarnings: In addition to the rules they have to
write, developers must also determine whether or not the warnings
provided during the static analysis are relevant or not, especially
since the build of the app will fail as long as there are such warnings.

Often, warnings can be ignored by the developer, since they will not
lead to any bugs. In this case, the -dontwarn command should be
used to tell the obfuscator that it could ignore the problem. In most
cases the warning is triggered by a class that cannot be referenced
by the obfuscator and those cases are irrelevant for the app.

v) Impact of libraries: Android apps heavily rely on the usage
of external libraries [1], which has the effect of amplifying all the
previously listed challenges. Not only developers must be able to
write the rules specific to apps, but they also need to handle bugs,
warnings and rules related to libraries obfuscation. In theory, li-
braries can include a consumerProguardRules file containing the
libraries specific rules which will be automatically processed dur-
ing the compilation. However the use of consumerProguardRules
is not systematic, it is common for library developers to list the
needed rules in their documentation instead. Sometimes, no rules
are provided whatsoever [7]. In any cases, other rules might be
needed when a developer is going to use, for example, heritage or
reflection mechanisms on classes in the library. In this case, the
developer should be able to write library-related rules specific to
his case, or find them in the library documentation if available.
An example of such a rule could be something like: -keep class
* implements com.some.library.NonObfuscableObjectwhich
means keep from being obfuscated all of the classes that implement
this interface from the library. In Listing 1, the data class might be
a part of some library, as it is indeed the case in the example which
inspired us on Github.

2.2 A concrete example
To illustrate how problems may arise from the usage of obfuscator,
consider the open-source app Budget Watch (version 0.21.4)4. This
small app contains only 43 classes and the developer tried to write
rules for Proguard before finally disabling obfuscation. A comment
highlights debugging reasons (challenge iii). For such a small num-
ber of classes, a mapping file of more than 27,400 lines is generated,
and without rules 1,075 warnings are triggered (challenge iv). 13
rules are written for the libraries (challenge v), essentially guava,
and although it seems that the developer found some rule exam-
ple online, most of the classes are marked by both a keep and a
dontwarn which demonstrate that the developer did not really un-
derstand them (challenge ii). In this case, only one keep is really
needed, without it the app crashes (challenge i). Interestingly this
is the class android.support.v7.widget.SearchView which is
part of the support librairies provided by Google to allow support
of multiple API versions and devices in one app. The Android doc-
umentation does not mention the need to write this rule [6] and
a research on stackoverflow shows that it is a common problem
encountered by developers.

This example shows that using obfuscation can be challenging,
even for small apps. To help developers, this paper proposes an
approach to tackle the challenges i,ii, iv and v to automatically
generate the keep and dontwarn rules specific to an app and its
libraries.

4Budget Watch on F-droid: https://f-droid.org/en/packages/protect.budgetwatch/

Vision: Alleviating Android Developer Burden on Obfuscation MOBILESoft ’20, October 5–6, 2020, Seoul, Republic of Korea

3 THE VISION
As mentioned previously, the current static analysis performed by
Proguard is limited, in particular concerning reflection. The doc-
umentation goes so far as to state that “It is generally impossible
to compute which classes have to be preserved (with their origi-
nal names) ” leading to “Obfuscating code that performs a lot of
reflection may require trial and error, especially without the neces-
sary information about the internals of the code” [10]. Obviously,
it is possible to improve this static analysis to cover more cases,
by including, for example, string analysis of potential reflection.
However, not all cases may be covered, in particular because of
the many possible sources of reflection outside the source code
of the app (libraries, configuration files, database...) determined
at runtime. This is all the more complicated in an ever-changing
ecosystem like Android. Moreover, a complex static analysis could
extend even more the compilation time when using obfuscation,
discouraging developers even more.

This is why, rather than seeking to propose an omniscient static
analysis, this paper exploits the wisdom of the crowd and machine
learning to automatically generate rules. Indeed, developers who
have successfully overcome the challenges of obfuscation provide
us with a source of knowledge and experience on when and how
to write rules adapted to an app.

The problem with android.support.v7.widget.SearchView
of our example (2.2) was encountered several times by other devel-
opers. Therefore, if we have a large enough base of knowledge, it is
reasonable to expect that a rule was written to solve this problem. So
we should be able to automatically generate this rule for all future
apps using this class. Such solution can be updated automatically
as apps evolve.

Rules specific to an app are more difficult to generate, here some
patterns, keywords, features or class roles should be identified in
order to know if a class should be kept or not. The good news is that
the precision of such approach does not have to be perfect, indeed if
some classes are kept in excess this will only have a slight effect on
the obfuscation results. However, the recall should be maximized,
since missed rules might lead to bugs.

4 WHY IS IT NEW?
When Proguard (or R8) is enabled, developers need to write the
rules adapted to their apps in specific files. Then using these rules
and its static analyzer, the obfuscator determine which classes will
be obfuscated or not before the conversion to Android bytecode.

We propose not to leave the writing of the rules to the sole re-
sponsibility of the developer. To do this, our approach will generate
an additional rule file which will be processed by Proguard/R8 the
same way as a traditional developer file. The novelty lies not only
in the automatic generation of rules, but also in the fact that we
generate these rules relying on a crowdsourced base of knowledge.

For example, by analyzing the libraries used by the current app,
we can extract the related libraries rules from apps in the base of
knowledge which are using the same library. Complex heuristics
based on machine learning may predict rules for the classes of the
app, by identifying recurring patterns, keywords or features in the
base of knowledge. To the best of our knowledge, this is the first
approach proposing to generate rules using knowledge gained from
other apps.

5 EXAMPLE OF DATASET
To test the feasibility of our approach, we created a first dataset of
open-source apps from the F-Droid repository 5. We downloaded
the latest version of the 2, 038 apps available in July 20196. Among
these 2, 038 apps, only 460 enabled an obfuscator.

We also removed from our dataset many apps which were abus-
ing of wild cards in rules (e.g. -keep class org.myapp.**). Al-
though this kind of rules are easy to write, they defeat the very
purpose of obfuscation. Consequently, we have decided to ignore
these rules so that our model does not learn from such bad prac-
tices. In total 352 apps were considered. We obtained around 1, 200
classes kept by rules for our base of knowledge.

It is early to tell if this dataset is sufficient to cover most cases
of rules, but it shows that it is possible to recover knowledge from
developers of open-source apps.

6 THE RISKS
6.1 Tale of an inconclusive attempt
We tried to exploit our dataset as a ground truth to automatically
generate app-specific rules using machine learning. To characterize
a class we used as inputs the source code of our open-source apps
and the rules attached to them, allowing us to label each class as
kept or not. We extracted two types of features: the word-based
features and metrics.

The word-based features were extracted by counting the occur-
rences of certain words in the source code like android or string,
hoping that the usage of particular keywords might help us to
determine if a class should be kept or not. The metrics used an
abstract syntax tree to count more high-level entities like numbers
of methods or reflections usage. From the keywords we selected a
set of the 30 most relevant features.

Concerning the metrics, for a given class, the number import
statements, fields, constructors and methods was counted as well
as the number of times the name of this given class is referenced
inside the classes that use reflection (imports java.lang.reflect)
in the same application. They are used to give an insight about the
complexity and role of a class. For example, if a class has lots of
fields and few methods or if the only methods in a class are getters
and setters, it is more likely that it is a data class which should not
be obfuscated. Our problem is a binary classification on features
from a 37-dimensional space (30 word-based features and 7 metrics).
Each classes is labeled as kept or not according to Proguard rules
and is processed to extract the features.

We compared the performance of three different models: SVM,
neural network with one hidden layer, 500 neurons and random
forest. A 10-fold crossvalidation shows that the random forest per-
formed consistently better than the other models with an f1 score
of 0.85. The Table 1 presents the precision, recall and f1 score of
our model. The variance of the results is less than 0.001 in all cases,
except for the recall of neural network (0.0018).

Although our results seemed to be good with an f1 score of
0.84, they are given for one class while developers may want to
know if this approach may work for their whole app. Therefore,
we intended two validations.

5F-droid apps repository: https://f-droid.org
6List of apps of our dataset https://pastebin.com/QZp3VH4i

MOBILESoft ’20, October 5–6, 2020, Seoul, Republic of Korea Geoffrey Hecht, Cyprien Neverov, and Alexandre Bergel

First, we validated our approach on already obfuscated apps
with at least one kept class, for a total of 68 apps. We tested our
model on each app, for each app the model was trained on the
whole dataset minus the app under validation. If we have no false
negatives, then the model was able to successfully identify all the
classes to keep and we consider that the rules are well-generated.
Given that the class-wise recall is of 0.85, the probability for the
model to determine all of the n classes to keep correctly is of 0.85n .
The model properly generate rules for 18 apps out of a total of 68
(29%). Concerning the apps in which the approach was imperfect,
on average only 5 correct rules out of 21 were missing.

Second, we tried to validate our model on 50 random apps which
were not already obfuscated. We decided to build them with obfus-
cation enabled and a command to ignore the warnings. We then
only selected app which were crashing because of obfuscation to
see if we could solve the bugs. The aim of this test was to see if
obfuscation causes any crashes at runtime. We tested each app
manually (login, main features, exploration of menus...) during a
minimum of five minutes. Once the rules are generated, we apply
them to the app source code, build the app and run the test again.
If there is no crash, then our approach solved the problem related
to obfuscation. Alternatively, if the app does not works properly,
then the model was not able to provide a functioning set of rules.
With this protocol we identified 15 crashing apps, unfortunately
our approach was not able to fix any of these apps. Indeed, after
further investigation, we discovered that most of the crashes were
related to libraries which are not yet considered. These bugs could
be due to missing libraries related to keep rules or could be due to
the warning we automatically ignored (often thousands per apps).
A more comprehensive approach including librairies keep rules
and dontwarn rules is therefore needed to fix all crashes related to
obfuscation.

SVM Neural Network Random Forest

Precision 0.70 0.76 0.84
Recall 0.63 0.61 0.85
F1 score 0.67 0.68 0.84

Table 1: Model performance (mean)
6.2 Identified risks
Our prototype was designed to assess whether available rules could
be exploited. However, a number of risks and threats were identified.

i) Open source apps might not be the most relevant apps
to build a base of knowledge: Our approach relies on open-
source apps, which are not necessarily representative of all Android
apps. Not only do open-source apps are generally small but in
addition we cannot guarantee the quality of the rules used by these
apps even if we try to filter them. Obfuscation is not a major concern
for open-source developers, as we observe in our dataset. For now,
it is the only way to get the source code and rules associated with
them. We are currently investigating the possibility to infer some
rules from the bytecode of store apps, which could allow us to build
a better base of knowledge.

ii) Multiple library versions: The generated rules should not
only cover the last versions of libraries since apps may be compiled
with older versions. In our first dataset, we observed different ver-
sions of the same libraries, therefore it is possible to build a base

of knowledge covering this. However, some version might not be
covered but this risk is mitigated since we observed that the needed
rules rarely evolve between different version of the same library.

iii) Detecting reflection is hard: Our metrics for reflection
may be improved using static analysis. We do not think that one
approach can accurately detect all possible cases for the reasons
mentioned in section 3. However, we observed that some keywords
and import (related to libraries) could help us to predict if a class is
likely to be reflectively used. We therefore believe that the knowl-
edge we could get from our dataset could work when static analysis
is not suitable.

iv) Challenges to validate our approach: Ideally our ap-
proach should assess whether and app does not crash at runtime
due to the obfuscation. Although automatic solutions exist to test
apps at runtime, they are often unable to get past a login screen
or may miss some app functionalities. Therefore for the moment,
we should rely on a time consuming manual test. This test does
not guarantee a perfect coverage of the code, and therefore some
crashes might been missed.

v) The recall should be close to perfection: To ensure that
this approach could convince developers to enable obfuscation in
their apps, it is of the utmost importance that it is not seen as a
source of bugs. Even if the approach does not introduce bug in itself
(compare to a project with a basic proguard file), this could not be
enough from the developer point of a view. Every missed rule is a
potential bug. To achieve this, it is possible to lower precision while
maximizing recall, but we do not know the order of magnitude yet.

vi) Explaining the generated rules is a challenge: Ideally,
developers should knowwhy each rules has been generated for their
apps. This might be challenging for a fully-automated approach
which could be based on many criteria. Worse, the results could
be even confusing for developers when the approach fails, since
they will not necessarily be able to write the necessary extra rules
if they do not understand the generated ones.

7 NEXT STEPS
This paper presents the challenges encountered by developers will-
ing to use Android obfuscator’s. It proposes the vision of a crowd-
sourced approach to assist developers by automatically generating
keep rules, an essential configuration step of obfuscators. Our ap-
proach may complement a traditional static analysis in order to
alleviate Android developer’s burden with obfuscators. We briefly
presented the results of an inconclusive attempt with machine learn-
ing and the risks we identified from this experimentation. We plan
to improve this approach for app rules, by improving the detec-
tion of reflection and recall. Using our dataset and first results, we
also plan to implement heuristics to generate libraries related rules
(keep and dontwarn). It should allow us to fix some of app crashes
related to obfuscation we observed, and therefore generate success-
fully the rules of some apps. Finally, we are considering to infer
rules from the bytecode of non open-source apps, which would
allow us to expand our dataset and possibly increase its quality. We
also hope that the community will propose other approaches and
tools that will eventually convince developers to systematically use
obfuscation.

Acknowledgements: This work is supported by Proyecto FONDECYT
Postdoctorado N°3180561.

Vision: Alleviating Android Developer Burden on Obfuscation MOBILESoft ’20, October 5–6, 2020, Seoul, Republic of Korea

REFERENCES
[1] Michael Backes, Sven Bugiel, and Erik Derr. 2016. Reliable third-party library

detection in Android and its security applications. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security. ACM, 356–367.

[2] Vivek Balachandran, Darell JJ Tan, Vrizlynn LL Thing, et al. 2016. Control flow
obfuscation for Android applications. Computers & Security 61 (2016), 72–93.

[3] Kai Chen, Peng Liu, and Yingjun Zhang. 2014. Achieving accuracy and scalability
simultaneously in detecting application clones on android markets. In Proceedings
of the 36th International Conference on Software Engineering. ACM, 175–186.

[4] Shuaike Dong, Menghao Li, Wenrui Diao, Xiangyu Liu, Jian Liu, Zhou Li, Fenghao
Xu, Kai Chen, Xiaofeng Wang, and Kehuan Zhang. 2018. Understanding Android
obfuscation techniques: A large-scale investigation in the wild. In International
Conference on Security and Privacy in Communication Systems. Springer, 172–192.

[5] Felix C Freiling, Mykola Protsenko, and Yan Zhuang. 2014. An empirical evalua-
tion of software obfuscation techniques applied to Android APKs. In International
Conference on Security and Privacy in Communication Networks. Springer, 315–
328.

[6] Google. 2019. Support Library. https://developer.android.com/topic/libraries/
support-library. [Online; accessed 15 October-2019].

[7] Wojtek Kaliciński. 2018. Practical ProGuard rules examples. https://medium.com/
androiddevelopers/practical-proguard-rules-examples-5640a3907dc9. [Online;

accessed 15 Jan-2020].
[8] Aleksandrina Kovacheva. 2013. Efficient code obfuscation for Android. In Inter-

national Conference on Advances in Information Technology. Springer, 104–119.
[9] Proguard. 2019. Proguard : Kotlin Beta. https://www.guardsquare.com/en/

products/proguard/proguard-manual-kotlin-beta. [Online; accessed 15 Jan-
2020].

[10] Proguard. 2019. Proguard Manual. https://www.guardsquare.com/en/products/
proguard/manual/introduction. [Online; accessed 15 Jan-2020].

[11] Leo Sei. 2018. R8, the new code shrinker from Google, is available in Android
studio 3.3 beta. https://android-developers.googleblog.com/2018/11/r8-new-
code-shrinker-from-google-is.html. [Online; accessed 15 October-2019].

[12] Yan Wang and Atanas Rountev. 2017. Who changed you?: obfuscator identifi-
cation for Android. In Proceedings of the 4th International Conference on Mobile
Software Engineering and Systems. IEEE Press, 154–164.

[13] Dominik Wermke, Nicolas Huaman, Yasemin Acar, Bradley Reaves, Patrick
Traynor, and Sascha Fahl. 2018. A large scale investigation of obfuscation use in
Google Play. In Proceedings of the 34th Annual Computer Security Applications
Conference. ACM, 222–235.

[14] Dongpeng Xu, Jiang Ming, and Dinghao Wu. 2016. Generalized dynamic opaque
predicates: A new control flow obfuscation method. In International Conference
on Information Security. Springer, 323–342.

