
Toward Applying Fuzz Testing Techniques on the
SUCHAI Nanosatellites Flight Software

1st Tamara Gutierrez
Department of Computer Science

University of Chile
Santiago, Chile

tamara.gutierrez@ug.uchile.cl

2nd Alexandre Bergel
Department of Computer Science

University of Chile
Santiago, Chile

abergel@dcc.uchile.cl

3rd Carlos E. Gonzalez
Electrical Engineering Department

University of Chile
Santiago, Chile

carlgonz@uchile.cl

4th Camilo J. Rojas
Electrical Engineering Department

University of Chile
Santiago, Chile

camrojas@uchile.cl

5th Marcos A. Diaz
Electrical Engineering Department

University of Chile
Santiago, Chile

mdiazq@ing.uchile.cl

Abstract—The success of the CubeSat nanosatellites space
missions depends on all systems ability to perform properly in a
harsh environment. A key component in every space mission is
the flight software, which manages all the processes that must be
performed by the satellite on its onboard computer. Literature
shows that CubeSat missions suffer high infant mortality and
many spacecraft failures are related to flight software errors,
some of them resulting in a complete mission loss. Extensive
software testing is the primary tool used by flight software
developers, to ensure code quality and avoid such failures.
Nevertheless, CubeSat developers tend to use COTS or flight-
proven solutions which usually have low testing coverage. Nowa-
days, there is still some pending matter in the field of testing
nanosatellites flight software and some of the most used solutions
do not even report unit tests. To overcome the agile CubeSat
development versus delivering quality software trade-off, we
propose the use of fuzz testing techniques applied to the SUCHAI
series of nanosatellites, being developed at the University of Chile.
The successful application of this technique allowed us to find
and solve many bugs not covered by classic strategies, such as
unit testing and software in the loop simulation.

Index Terms—Software Testing, Fuzz Testing, Testing, Cube-
Sats, Nanosatellites, Flight Software

I. INTRODUCTION

Initially, nanosatellites were conceived with a mainly ed-
ucational purpose: the students can have the experience of
developing and operating a satellite by themselves in the
time frame of a college degree [1]. However, currently, the
nanosatellites developing area has been expanding and opening
to new scientific and technological challenges. Nanosatellites
increasingly require more attention to their quality attributes to
be successful in more complex missions. Specifically, the flight
software of nanosatellites is a critical factor in determining a
satellite’s quality because it controls most of the tasks that
must be executed while it is orbiting. If the software quality
of a mission fails, it is probably that the whole mission fails
too.

978-1-7281-5957-7/20/$31.00 2020 IEEE

In the space field, there are several testing techniques to
verify flight software quality. However, the most advanced
techniques are applied only to more complex systems, such
as large satellites, rovers, or interplanetary missions [2]. In
the state of the art, the most reported testing techniques
applied to nanosatellites flight software testing are hardware
in the loop simulation (HIL simulation) and software in the
loop simulation (SIL simulation) [3], [4]. HIL simulation and
SIL simulation methodologies can optimize the production
process’ overall costs in certain situations [5], [6]. However
these techniques can be difficult to implement and execute,
potentially dangerous to the hardware when executed in en-
gineering or flight models, and time-consuming to set the
environment up. Besides, the test cases must be predefined
because these techniques are difficult to automate [5].

Fuzz testing is an automated software testing technique that
consists of automatic random input generation to find software
vulnerabilities [7]. In need of looking for an automatable and
agile software testing technique applicable to nanosatellites,
in this work we will study the usage of fuzz testing in the
SUCHAI nanosatellite flight software [1].

II. RELATED WORK

The most common testing techniques for CubeSats found in
the literature are directly attached to hardware testing. Kiesbye
et al. (2019) [3] present and evaluate an environment for
HIL simulation and SIL simulation tests with the inclusion
of the electrical domain for low-cost satellite development.
The satellite tested was MOVE-II, developed at the Technical
University of Munich. The obtained results are related to the
verification of MOVE-IIs attitude determination and control
algorithms, the verification of the power budget, and the
training of the operator team with realistic simulated failures
before launch. Additionally, they present how the simulation
environment was used to analyze issues detected after launch
and verify the performance of the developed new software to

address the in-flight anomalies before software deployment.
The testing environment described in this work generates
results for both hardware and software components of MOVE-
II. According to the authors, the environment is potentially
suitable for inclusion in a continuous deployment workflow
where code changes trigger automatic tests on the hardware.
However, they do not report full automation for test case
generation.

Other software testing techniques found in the literature
usually imply an exhaustive definition of test cases based
on the requirements. Hishmeh et al. (2009) [8] show the
design, implementation, and testing of the flight software for
KySat-1, a picosatellite developed in the Kentucky Space
consortium and launched in 2009. The testing methods applied
to the software were strongly based on the requirements and
documentation. Thanks to the testing methodologies applied
to the flight software, most bugs were found in early stages
of the development process. This begins with a requirement
analysis. After this stage, the flight software team formulated
a test strategy and began the testing planning. After the test
cases generation, scripting, and execution, each bug found
was reported. Although the software development team faced
problems associated with time planning of students, it is
not proposed a new strategy for the development or testing
methodology itself, but a new organization strategy.

Johl et al. (2014) [9] present a reusable a command and
data handling (C&DH) system as part of a series of CubeSat
missions being built at the Austin Texas Spacecraft Laboratory
(TSL), University of Texas. The key idea of this system is
to support various system requirements, using a centralized
architecture with one main flight computer controlling the
actions and the state of the satellite. The flight software is
its central component. To validate it, white box and black
box testing techniques were planned and applied. The testing
technique applied to the C&DH system was unit testing.
Command execution testing and day-in-the-life testing were
proposed to be applied as future work. Day in-the-life testing
refers to verifying the functionality of the fully integrated
satellite while a sequence of operations are being executed.
We identify this type of testing as HIL simulation. They do
not mention the methodology to generate the test cases nor an
automated testing technique for the software verification.

Schoolcraft et al. (2016) [4] present a description and
analysis of MarCO mission development. MarCO is a twin
CubeSat mission developed by the NASA Jet Propulsion Lab-
oratory (JPL) to accompany the InSight (Interior Exploration
using Seismic Investigations, Geodesy and Heat Transport)
Mars mission lander. MarCO refined the approach of all
the development stages to solve the challenges of quickly
building low-budget spacecraft to fly to Mars, relying on
components reusability of previous missions. According to the
authors, the MarCO flight software development occurred in
a very tight loop focused on a hardware level since computer
resources optimization was considered a development require-
ment. Therefore, the testing techniques applied to the flight
software were mainly associated with HIL simulation.

The testing systems applied for the flight software of
CubeSats are barely described in the literature of this area.
The approaches found mention the use of unit testing, HIL
simulation techniques or software tools that facilitate the data
and command handling from the ground station, but they do
not consider automated testing techniques that could be useful
for time optimization, which is one of the most common
problems for the flight software development. In this work,
we propose and analyze the application of fuzz testing as
an automated testing technique that follows the required agile
development to execute space missions in the CubeSats field.

III. THE SUCHAI FLIGHT SOFTWARE

The SUCHAI flight software architecture is based on the
command design pattern adapted for implementation in the
C programming language. Thus, the flight software acts as
generic command executor and all functionalities are encapsu-
lated as commands. The commands are requested by the client
modules and derived to the invoker. The invoker enqueues the
commands and take decisions about its execution to finally
send the request to the receiver. The receiver executes the
function associated with the command in the order they were
enqueued [1]. The SUCHAI flight software architecture is
illustrated by a UML communication diagram in Figure 1.

Fig. 1. The SUCHAI flight software architecture. Adapted from ”An
Architecture-Tracking Approach to Evaluate a Modular and Extensible Flight
Software for CubeSat Nanosatellites,” by C. Gonzalez, C. Rojas, A. Bergel,
and M. Diaz, vol 7, pp. 126415, 2019.

Unit testing, integration testing, and HIL simulation are
the primary testing techniques applied to the SUCHAI flight
software development to improve and verify its quality. Unit
testing was implemented using CUnit. The current unit testing
system applied to the SUCHAI flight software is based on
testing the main modules interfaces, but it contains at most
four test functions for each module. The integration testing
system of the SUCHAI flight software is based on some of
the bugs that were found until present and consists of running
the flight software with a specific configuration, sending the
commands under test with fixed parameters, thus covering only
particular use cases. In the case of HIL simulation testing,
the software is being tested on the same onboard computer
that will be installed on the satellite or the satellite flight
model itself, which requires careful designing of the tests
cases and setting up the environment (software, hardware, and
facilities) previous to the execution of the tests in a controlled

environment. These tests have been included in a continuous
integration system build using the GitLab CI/CD tools.

IV. FUZZ TESTING

Fuzz testing is an automated software testing technique that
consists of feeding a random input into a program to uncover
system failures. Software failure is defined as an unexpected
software behavior that gives a different result from the ex-
pected one. There are three main types of software failures:
loss of service, incorrect service delivery, and system/data
corruption [10].

A. Fuzz Testing on SUCHAI
As we explained in Section I, the SUCHAI flight software

is considered a critical embedded system because it carries
out the whole system control procedures of the SUCHAI
nanosatellites. Therefore, we are interested in finding vulnera-
bilities associated with the system’s availability and reliability.
To study and analyze the robustness of the software, we
present the application of fuzz testing on the SUCHAI flight
software.

There are many ways to apply fuzz testing on the SUCHAI
flight software, such as sending random input on functions,
modules or commands. We chose to apply the fuzzing on
commands because we can exploit the SUCHAI flight software
architecture. As we explained above, the SUCHAI flight
software architecture is based on the command design pattern,
which means that all the functionalities are implemented and
executed as commands. Thanks to its design, the software
provides interfaces to receive commands as inputs through the
satellite communication system (that can be emulated in the
local loop), the serial console (or Linux terminal), the flight
plan, and autonomously generated commands. This interfaces
will be used to interact with a SUCHAI flight software running
instance during the tests. On each test, we will analyze the
result of sending a combination of random commands with
a random number of parameters and/or random values of
parameters. Thus, each test case should be composed by a
sequence of commands.

We used the fuzzing architecture proposed in The Fuzzing
Book (Zeller et al., 2019) [11], which provides a Runner and
Fuzzer classes. As described in Figure 2, the Runner executes
some object with a given input. A Fuzzer feeds data into
a consumer. The FSRunner class runs the SUCHAI flight
software and sends commands to it. The data fed by the Fuzzer
class is a sequence of random commands and their parameters.
We are using the communication system interface to interact
with the SUCHAI Flight Software. This interface uses the
CubeSat Space Protocol (CSP) which provides a GNU/Linux
and FreeRTOS implementation. The GNU/Linux implementa-
tion relies on the ZeroMQ library, so we commands can be
sent using ZeroMQ sockets and the local loop.

B. Strategies
The implementation of the fuzz testing on the SUCHAI

flight software is based on four strategies defined by the num-
ber of commands sent per sequence, the number of parameters

Fig. 2. Logic diagram of the fuzz testing implementation proposed and the
communication system with the SUCHAI flight software. RandomSequence-
Fuzzer generates the random sequence of commands to be sent to FsRunner.
FsRunner initializes the SUCHAI flight software and sends it the commands to
be executed. The SUCHAI flight software receives the commands through the
communications module and executes them following its architecture logic.

sent per command, and the randomness to produce commands
or parameters in a sequence:

Strategy 0: Random commands. Since the SUCHAI flight
software provides a checking system for wrong names of com-
mands, the key idea of this strategy is to prove the robustness
of the SUCHAI flight software with random and possibly
unknown commands. This can be achieved by providing
sequences of random commands names without parameters.
Thus, the implemented Fuzzer creates N random command
names. These random names are stored in a list, which is sent
to the implemented FSRunner class.

This strategy should not make the software to crash be-
cause there is command name checking system. Before the
communications module sends the command object to the
invoker, the program checks if the command exists in the
command repository, iterating over the list of all the registered
commands. If there is no matching name found for the
command sent by the FSRunner, the command is not sent
to the invoker for its execution.

Strategy 1: Random number of parameters. By providing
sequences of known commands with a random number of
parameters (including zero), this strategy searches for possible
implementation errors in commands that are not considering
the number of the passed parameters. Each parameter is a
random value of a fixed type. The types are defined in the
command implementation. These are int, long, unsigned int,
float, and string.

In this case and the following ones, the Fuzzer receives a
list of available commands in the SUCHAI flight software and
the number of commands per sequence. Commands are chosen
randomly from the list of available commands.

Strategy 2: Random values of parameters with randomly
chosen types of values. Provides known commands with the
exact number of parameters but random values. The types of
the values are chosen randomly too, therefore they may not
necessarily correspond with the expected types of values. The

goal is to find, mainly, errors on the implementations that may
cause a crash because they do not check the values or the range
of the variables in cases that it is required.

Strategy 3: Random values of parameters with defined types
of values. With this strategy, we were looking for errors on
implementations that have unchecked values characteristics,
such as length, when it is needed. To achieve that we provided
known commands with the exact number of parameters that
each command receives, where each parameter is a fixed value
of a defined type. Unlike the previous strategy, in this case the
types of the values must correspond with the expected types.

V. CURRENT RESULTS

The preliminary results obtained from the execution of the
strategy 0 and 1 mentioned in Section IV-B are analyzed in
terms of the exit code for every sequence. We define a test
case as the execution of a series of sequences with a fixed
number of commands per sequence. Then, for each strategy,
we executed 10, 100, 500, and 1000 sequences. For each test
case, we executed 5, 10, 50, and 100 commands per sequence.

For strategy 0, the results show that the percentage of failure
of sending random names of commands without parameters
is 0%. Then, the results agree with the hypothesis that says
the software is validating the command names before the
execution.

Fig. 3. Percentage of failed sequences of commands given a fixed number
of commands per sequence for strategy 1.

The percentages of failed sequences on each test case for
strategy 1 is shown as bar charts in Figure 3. The variable
in the x-axis is the number of commands per sequence. The
variable in the y-axis is the percentage of failed sequences
for each test case. The bar charts are grouped by the number
of sequences executed on a particular test case. For almost
all cases, except one, as the number of commands increases,
the percentage of failed sequences also increases. Since the
random generation of commands and parameters uses a uni-
form distribution, the probability of choosing a command that
could make the SUCHAI flight software to crash increases
as the number of commands per sequence increases, which
would explain the percentage raise. Increasing the number of

test executions, that is, the number of tested sequences, we
obtained less than 100% of failure, but still more than 90%.

VI. CONCLUSIONS AND FUTURE WORK

In this work we explored the usage of fuzz testing tech-
niques in the flight software of the SUCHAI series of
nanosatellites by running a set of strategies. We were able to
easily interact with the flight software and the fuzzer thanks
to the clear and well documented software architecture. The
test results showed that a large number of sequences failed
during the tests execution which is a sign of active software
bugs not found with previous testing techniques (unit-testing,
integration test and HIL simulation).

The next steps in this research include the identification
of the active bugs and the integration of the fuzz testing
strategies in the SUCHAI CI/CD system to provide agility and
automation. More advances strategies will be studied focusing
in the intelligent identification of failure paths.
The proposed fuzz testing strategies and implementation may
help current and future small and nanosatellite mission to
improve their quality and thus, reducing mission risk.

ACKNOWLEDGMENTS

We thanks Lam Research and the ANID FONDECYT
Regular 1200067 for partially sponsoring the work presented
in this paper. This work has been partially supported by the
grants Fondecyt 1151476, Anillo ACT1405, and CONICYT-
PCHA/Doctorado Nacional/2016-21161016.

REFERENCES

[1] C. E. Gonzalez, C. J. Rojas, A. Bergel, and M. A. Diaz, “An
Architecture-Tracking Approach to Evaluate a Modular and Extensible
Flight Software for CubeSat Nanosatellites,” IEEE Access, vol. 7, pp.
126 409–126 429, 2019.

[2] J. Finnigan, “A scripting framework for automated flight sw testing:
Van allen probes lessons learned,” in 2014 IEEE Aerospace Conference,
2014, pp. 1–10.

[3] J. Kiesbye, D. Messmann, M. Preisinger, G. Reina, D. Nagy, F. Schum-
mer, M. Mostad, T. Kale, and M. Langer, “Hardware-in-the-loop and
software-in-the-loop testing of the move-ii cubesat,” Aerospace, vol. 6,
no. 12, p. 130, 2019.

[4] J. Schoolcraft, A. Klesh, and T. Werne, “Marco: interplanetary mission
development on a cubesat scale,” in Space Operations: Contributions
from the Global Community. Springer, 2017, pp. 221–231.

[5] J. A. Ledin, “Hardware-in-the-loop simulation,” Embedded Systems
Programming, vol. 12, pp. 42–62, 1999.

[6] S. Jeong, Y. Kwak, and W. J. Lee, “Software-in-the-loop simulation
for early-stage testing of autosar software component,” in 2016 Eighth
International Conference on Ubiquitous and Future Networks (ICUFN).
IEEE, 2016, pp. 59–63.

[7] P. Godefroid, “Fuzzing: hack, art, and science,” Communications of
the ACM, vol. 63, no. 2, pp. 70–76, Jan. 2020. [Online]. Available:
https://dl.acm.org/doi/10.1145/3363824

[8] S. F. Hishmeh, T. J. Doering, and J. E. Lumpp, “Design of flight software
for the kysat cubesat bus,” in 2009 IEEE Aerospace conference. IEEE,
2009, pp. 1–15.

[9] S. Johl, E. G. Lightsey, S. M. Horton, and G. R. Anandayuvaraj, “A
reusable command and data handling system for university cubesat
missions,” in 2014 IEEE Aerospace Conference. IEEE, 2014, pp. 1–13.

[10] I. Sommerville, Software engineering 9th Edition, 2011, vol. 137035152.
[11] A. Zeller, R. Gopinath, M. Böhme, G. Fraser, and C. Holler,

“The fuzzing book,” in The Fuzzing Book. Saarland University,
2019, retrieved 2019-09-09 16:42:54+02:00. [Online]. Available:
https://www.fuzzingbook.org

