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ABSTRACT The success of CubeSat space missions depends on the ability to perform properly in a
harsh environment. A key component in space missions is the flight software, which manages all of the
processes executed by the satellite on its onboard computer. Literature shows that CubeSat missions suffer
high infant mortality, and many spacecraft failures are related to flight software errors, some of them resulting
in complete mission loss. Extensive operation testing is the primary technique used by CubeSats developers
to ensure flight software quality and avoid such failures. The “New Space” requirements pressure to add
“agility” to the software development, which could limit the capacity to test. While advanced and beneficial
software testing techniques are found in the software engineering field, CubeSat software solutions mostly
rely on unit testing, software in the loop simulation, and hardware in the loop simulation. In this work, fuzz
testing techniques were developed, implemented, and evaluated as a manner to expedite operational testing
of CubeSats while maintaining their completeness. The impact of the tools was evaluated by using the three
new 3U CubeSats under development at the University of Chile. We identified twelve bugs not covered by
classic testing strategies in less than three days. These failures were reported, fixed, and characterized by the
developers in eight sprint sessions. Our results indicate that fuzz testing improved the completeness of flight
software testing through automation and with almost no development interruption. Although our approach
has been tested on the SUCHAI flight software, it applies to systems that follow a similar architecture.

INDEX TERMS CubeSat, embedded software, flight software, nanosatellites, testing, fuzz testing, software
quality, open source

I. INTRODUCTION
The first conception of a CubeSat nanosatellite prototype came
up only 20 years ago approximately. Initially, nanosatellites
were conceived with a mainly educational purpose in which
students are able to experience the development and operation
of a satellite in the time frame of a college degree [1].
Nowadays, nanosatellites have opened several opportunities
but still need to overcome multiple challenges to reach
their full potential [2]. Nanosatellites increasingly require
more attention to their quality attributes to be successful in
more complex missions. Specifically, the flight software of
nanosatellites is a critical factor in determining a satellite’s
quality because it controls most of the tasks that must be

executed once in space. The success rate of a space mission is
highly dependent on the quality of its flight software [3].

In the space field, several testing techniques are used to
assess flight software quality. However, the most advanced
techniques are only suitable for larger missions or systems,
in terms of time and budget, such as large satellites, rovers,
or interplanetary missions [4]. In the state of the art, the
most reported testing techniques applied to nanosatellites
flight software testing are hardware in the loop simulation
(HILS) and software in the loop simulation (SILS) [5], [6].
HILS and SILS methodologies can optimize the production
process’ overall costs in certain situations [7], [8]. However,
these techniques can be difficult to implement and execute,
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potentially dangerous to the hardware when executed in
engineering or flight models, and time-consuming to set up
the environment. Besides, the test cases must be predefined
because these techniques are difficult to automate [7].

In a recent review of some relevant nanosatellite flight soft-
ware frameworks, only three out of six candidates exhibit the
reliability attribute, which refers to the existence of unit testing
with significant code coverage [9]. The ability to implement
different testing techniques also relies on the flight software
design. Satellite command and data handling (C&DH) sys-
tems are usually designed to receive telecommands, execute
necessary actions, and answer with data obtained from teleme-
try. Some novel flight software designs exploit this concept to
implement a command-based software architecture [10], [11].
Such a clear design and well-documented interfaces may help
implement testing strategies that treat the flight software as a
black-box instead of intervening the code with unit testing or
instrumentation.

Currently, the high expectations of CubeSats are based
on the possibility of developing a large number of satellites
(mega-constellations) in a cost-effective manner [12], [13].
The cost-effectiveness requires that these constellations can
be developed by small inexperienced groups (e.g., startups) in
short development cycles. This commercial hardware usually
has more computing power with less power consumption,
is more miniaturized and up-to-date regarding technological
needs. However, this hardware and the software that controls
it has almost no flight heritage, making them risky to use in
space. Testing automation arises as to the most cost-effective
manner of keeping agile development while ensuring the
required quality and robustness for the spacecraft.

Fuzz testing is an automated software testing technique
that consists in automatically generating random input to
find software vulnerabilities [14]. In need of looking for an
automatable and agile software testing technique applicable
to nanosatellites, we study the usage of fuzz testing in the
SUCHAI nanosatellite flight software [10]. Thanks to its de-
sign, the software can be intervened by sending commands and
observing its behavior. Therefore, fuzz testing is implemented
by generating a set of random commands and parameters.
The randomness of the number of commands, the number of
parameters, the composition of commands’ characters, and
the composition of parameters’ characters give rise to four
proposed strategies defined in Section IV.
Contributions and results. This article presents the impact of
using fuzz testing to verify the proper flight software operation
of nanosatellites. The evaluation was performed in a series
of 3 nanosatellites being developed at the University of Chile
(SUCHAI-II, SUCHAI-III, and PlantSat). The contributions
made by this article are:

• Presents a methodology we have developed to apply fuzz
testing to nanosatellites’ flight software as part of an
agile CubeSat flight software methodology;

• Highlights and discusses the challenges we faced and
describes the main requirements to implement this
technique in similar projects;

• Presents a compelling case study of applying modern
testing techniques to a critical embedded software which,
we believe, opens a niche in the field of nanosatellite
flight software testing.

As a result, fuzz testing has proven to be very valuable in
our situation as we discovered: (i) various potential software
failures, whose severity ranged from middle to severe, (ii)
identified a sequence of commands to trigger and reproduce
these failures, and (iii) addressed these software failures. We
provided the necessary detail of our approach, hoping other
researchers in the field of flight software development will
benefit from our effort and results.
Scientific scope. This article is essentially based on the expe-
rience we have gained by developing the flight software of a
series of nanosatellites (SUCHAI-I, SUCHAI-II, SUCHAI-III,
and PlantSat) and its subsystems/payloads. This experience
indicates to us that preparing the flight software for larger
assembly lines may be challenging and requires agility and
automation regarding testing to achieve the desired robustness.
However, testing flight software is still an incipient field.
Currently, only sporadic experiences have been reported, and
no dedicated low-cost testing practices have been proposed
thus far. Flight software is a highly valuable component, and
techniques to improve its robustness deserve to be carefully
studied and disseminated.

Whereas the area of software engineering has produced
many techniques, including fuzz testing, there is no public
report of its utilization on CubeSats’ flight software. Our
contributions improve the testing practices of flight software,
which currently appear to be conducted in a non-automatic
way. Our observations from different research agencies de-
veloping flight software highlight a gap between the way
flight software is developed and the techniques proposed
by the software engineering community. We expect that our
experience and proposed methodology could contribute to
reducing this gap.
Outline. This article is organized as follows: Section II
presents the work related to our effort; Section III gives the
context of this article by describing the SUCHAI flight soft-
ware; Section IV details the methodology we have developed
to apply fuzz testing to the SUCHAI flight software; Section V
presents the results of our methodology; Section VI lists the
threats to the validity of our experiment and analyzes its
applicability to other flight software; Section VII presents
the main conclusions of this work and highlights open issues
to address in future works.

II. RELATED WORK
The most common testing techniques for CubeSats found
in the literature are directly attached to hardware testing.
Kiesbye et al. (2019) [5] present and evaluate an environment
for HILS and SILS tests with the inclusion of the electrical
domain for low-cost satellite development. The tested satellite
was MOVE-II, developed at the Technical University of
Munich. The results obtained are related to the verification
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of MOVE-II’s attitude determination and control algorithms,
the verification of the power budget, and the training of the
operator team with realistic simulated failures before launch.
Additionally, they present how the simulation environment
was used to analyze detected issues after launch and verify
the performance of new software developed to address the
in-flight anomalies before software deployment. The testing
environment described in this work generates results for both
hardware and software components of MOVE-II. According
to the authors, the environment is potentially suitable for
inclusion in a continuous deployment workflow where code
changes trigger automatic tests on the hardware. However,
they do not report full automation for test cases generation.

Other software testing techniques found in the literature
usually imply an exhaustive definition of test cases based on
the requirements. Hishmeh et al. (2009) [15] show the design,
implementation, and testing of the flight software for KySat-1,
a picosatellite developed in the Kentucky Space consortium
and launched in 2009. The testing methods that were applied
to the software were strongly based on the requirements
and documentation. Thanks to the application of testing
methodologies to the flight software, most bugs were found
in the early stages of the development process. This begins
with requirement analysis. After this stage, the flight software
team formulated a test strategy and began the test planning.
After the test cases generation, scripting, and execution, each
bug found was reported. Although the software development
team faced problems associated with the time planning of
students, they did not propose a new development or testing
methodology strategy but a new organization strategy. This
is an example of how arduous testing is for small groups
developing CubeSats in an academic environment. The need
for time planning and agility in the process of software
development and testing is crucial to produce a reliable system,
especially in groups with those attributes.

Johl et al. (2014) [16] present a reusable command and
data handling (C&DH) system as part of a series of CubeSat
missions being built at Austin Texas Spacecraft Laboratory
(TSL), University of Texas. The key idea of this system is
to support various system requirements, using a centralized
architecture with one main flight computer controlling the
actions and the state of the satellite. The authors of this work
affirm that flight software testing is an integral step in the
development process. Therefore, to validate it, white-box
and black-box testing techniques were planned and applied.
The testing technique applied to the C&DH system was unit
testing. Command execution testing and day-in-the-life testing
were proposed to be applied as future work [16]. Day in-the-
life testing refers to verifying the functionality of the fully
integrated satellite while a sequence of operations is being
executed. We identify this type of testing as HILS. Also, a
graphical user interface for the ground station was developed
to minimize the required effort for the ground station operator
to interact with the satellite during the testing phase and for
flight. They do not mention the methodology to generate the
test cases nor an automated testing technique for the software

verification.
Schoolcraft et al. (2016) [6] present a description and

analysis of MarCO mission development. MarCO is a twin
CubeSat mission developed by the NASA Jet Propulsion Lab-
oratory (JPL) to accompany the InSight (Interior Exploration
using Seismic Investigations, Geodesy and Heat Transport)
Mars mission lander. MarCO refined the approach of all
the development stages to solve the challenges of quickly
building low-budget spacecraft to fly to Mars, relying on
components reusability of previous missions. According to
the authors, the MarCO flight software development occurred
in a very tight loop. They focused on a hardware level
since computer resources optimization was considered a
development requirement. Therefore, the testing techniques
applied to the flight software were mainly associated with
HILS.

Zaidi et al. (2019) [17] present a testing, and a verification
and validation (V&V) automated platform to identify anoma-
lies, to characterize their impact, and to reduce costs of system
development for CubeSat missions. The platform, which
is part of the Model-Based Systems Engineering (MBSE),
bridges the gap between after design and before qualifica-
tions phases by first taking information from the concept
exploration, definition, and design phases as the input to be
processed. Moreover, a software called Missurance controls
the test and V&V equipment and receives data when tests are
performed. Therefore, the software can notify whether the
results meet the functional and design requirements and the
test specification. The platform was also used for functional
verification and thermal validation of a transmitter. Since the
work focused on the interaction of both physical and virtual
parts of the system, the mentioned types of testing are mainly
HIL and SILS.

Other concepts like software portability and rigorous
software design are also present in the current related work
and have been a topic of discussion because of the recent rise
of CubeSat deployments. Coelho et al. (2016) [18], Coelho
(2017) [19], Ivanov & Bliudze (2020) [20], Gonzalez et al.
(2016) [21] and Araguz et al. (2018) [22] have also contributed
to this line.

Coelho et al. (2016) [18] and Coelho (2017) [19] present
the NANOSat MO Framework, which is a standard onboard
software framework for nanosatellites that has been imple-
mented in ESA’s OPS-SAT mission. This work is based on
the CCSDS MO framework and relies on the concept of
portability to maximize reuse and customizations between
different missions and user needs, with a modular and flexible
design. This is achieved by turning the onboard software
into apps. In this context, an app is defined as an onboard
software application that can access the peripherals and can be
started, monitored, stopped, killed, installed, uninstalled, and
updated from ground. The architecture chosen for the software
implementation depends on the number of the running apps,
but the swap between architectures is not complex since the
interface towards the app developer remains the same. The
framework also comes with a software bundle. This work
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introduces the concept of portable apps in the space field,
differing from the cFS contribution in systems’ capabilities
from the resources point of view.

Ivanov and Bliudze (2020) [20] propose a rigorous and
robust way to design software. They present the BIP frame-
work, a component-based language that can be used to
develop correct-by-construction applications. BIP allows to
formally model complex systems and provides a toolset for
their verification and validation, and code generation. This
framework was used in the CubETH CubeSat to design the
logic for the satellite’s operation and compile it into machine
code, which is later executed on the onboard computer. Their
approach ensures the reliability, modularity, and portability
of the overall system. The CubETH mission is based on four
main scientific objectives and used a miniaturized low-power
command and data handling system and COTS components.
Because of the memory limitations of the microcontroller used
for the control and data management subsystem, Cortex-M3,
the authors had to reduce the model created with BIP. Despite
the restrictions, the demonstration of this reduced model on
the CubeSat board was considered successful.

Gonzalez et al. (2016) [21] propose a hybrid framework
to guide software development modeling of nanosatellite
missions in an academic environment. The authors highlight
that due to the lack of experience that growing countries
have in the research and development of satellite technol-
ogy, there is a shortage of specialized software engineers
to work on these types of missions. The proposed model,
named Hybrid-Academic-Aerospace Model for Software
Development (H4ASD), is based on the ECSS-E-ST-40C
documentation and processes, and the disciplines workflow
and artifacts of the Rational Unified Process (RUP) to facilitate
the assimilation by traditional software engineers with an
incipient knowledge in the aerospace field. H4ASD was
validated through the design of the control and monitoring
software of the Libertad-2 3U CubeSat, developed in Univer-
sidad Sergio Arboleda, in Colombia. H4ASD uses an iterative
and incremental method, following a sequential lifeline, and
takes complementary approaches from conventional software
engineering concepts and the operating constraints of the
space context.

Araguz et al. (2018) [22] present three generic design
guidelines to improve the system robustness, modularity,
and autonomy quality attributes of nanosatellite software
architectures. These guidelines were applied to the onboard
software architecture for the Cat-1 CubeSat, developed at the
Technical University of Catalonia. The authors propose three
critical and generic quality attributes to avoid ambiguities as
far as possible since assessing them qualitatively is, mostly, a
subjective task. The proposed guidelines to improve them
consist of encapsulation and goal-oriented decomposition
of functionalities, modularization, and the provision of au-
tonomous mission planning capabilities. The application of
these recommendations on Cat-1 resulted in a hierarchical
ordering of software components, a payload-oriented modu-
larization, and a secure and reliable communication interface

that connects low-level modules with the autonomous system.
The core Flight System (cFS) is an open source flight

software solution being developed at NASA. The aim of
the project includes reducing time to deploy high-quality
flight software, reducing project schedule, and reducing cost
uncertainty by facilitating formalized software reuse [23]. The
cFS has a solid flight inheritance from NASA projects, and
it has also been used in nanosatellites. The cFS provides a
unit test suit, but the community has provided SILS interfaces
using Simulink and the NOS3 spacecraft simulator [23], [24].

Researchers of the Intelligent Space Systems Labora-
tory (ISSL) at the University of Tokyo have developed
the Command-Centric Architecture (C2A), a flight software
solution focused on reusability and flexible on-orbit reconfigu-
ration capability [11]. Authors report having used the software
on the Hodoyoshi-3 and 4, the PROCYON, and EQUULEUS
satellites. They also report the advantages of the command
architecture to implement SILS and HILS and the availability
to test the same software with both techniques with minimal
source code modification.

The testing systems applied for the flight software of
CubeSats are not deeply discussed in the literature of this
area. In general, the approaches that were found in the
related work mention the use of unit testing, HILS and SILS
methodologies, or software tools that facilitate the data and
command handling from the ground station, but in no case
consider automated testing techniques that could be useful for
time optimization, which is one of the most common problems
for the flight software development. In this work, we propose
and analyze the application of fuzz testing as an automated
testing technique that follows the agile development required
to perform CubeSat space missions. However, it is possible to
find advanced fuzz testing techniques in other areas.

Babić and Bucur et al. (2019) [25] propose a system for
an automated fuzz driver generation: Fudge. This system
operates with an already developed fuzzer, which has found
several security and robustness bugs at Google projects. Fudge
generates fuzz driver candidates for libraries based on existing
client code. A fuzz driver is a test harness, which in this case,
exercises the library code. This accelerates the current fuzz
system, enabling fuzz testing more C and C++ codebases.
The Fudge high-level overview consists of a backend pipeline,
where the candidates are generated, and a user interface where
developers can track the results. The backend pipeline has
three main modules. At first, code snippets are extracted from
the library usages. Then, these code snippets are mutated and
transformed into fuzz targets. The last module builds and runs
the candidate fuzz targets. There is still a manual selection
after the candidates are generated to assure consistency on
tests. Three different case studies are shown in that work, with
the objective to evidence the system’s effectiveness. Fudge has
found over 150 bugs, which have already been fixed, including
eliminating various exploitable security vulnerabilities. This
is an example of what advanced fuzz testing techniques
can achieve in other contexts and serves as a guide to
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lead advanced testing processes for flight software in the
nanosatellites’ area.

III. THE SUCHAI FLIGHT SOFTWARE

SUCHAI CubeSats. SUCHAI is a CubeSat based space
program that includes the SUCHAI I, II, III, and PlantSat
nanosatellites. These satellites are developed by students,
engineers, and researchers from different areas in the Space
and Planetary Exploration Laboratory (SPEL) of the Uni-
versity of Chile. SUCHAI I is the first CubeSat created in
Chile, launched in June 23th, 2017 from the Satish Dhawan
Space Centre [26], [27]. The following versions, SUCHAI
II, III, and PlantSat, continue developing and updating their
functionalities, and they are expected to be launched be-
tween 2021 and 2022. These satellites use the SUCHAI
flight software, a software solution developed for CubeSat
nanosatellites designed to be highly modular and extensible.
This flight software is based on the ability to execute generic
commands. These commands can be executed automatically
from certain modules of the software itself, or they can be sent
from the ground station as described in Figure 1. In previous
work, Gonzalez et al. (2019) [10] document the design and
implementation of the SUCHAI flight software. In this section,
we will describe and explain the most relevant parts of this
work.
SUCHAI flight software architecture advantages. The
SUCHAI flight software architecture is based on the com-
mand design pattern adapted for implementation in the C
programming language. Figure 2 illustrates the application
layer architecture. The flight software acts as a generic com-
mand executor, and all of its functionalities are encapsulated
as commands. The commands are requested by the client
modules and derived to the invoker. The invoker enqueues
the commands and makes decisions about their executions to

FIGURE 1: Example of satellite operations. Adapted from "An
Architecture-Tracking Approach to Evaluate a Modular and Extensi-
ble Flight Software for CubeSat Nanosatellites" by C. Gonzalez, C.
Rojas, A. Bergel, and M. Diaz, vol 7, pp. 126409-126429, 2019.

finally send the requests to the receiver. The receiver executes

the function associated with the command in the same order
they were enqueued [10].

We can remark two advantages of the command pattern
architecture. First, the operational requirements are mapped
to commands, and commands are mapped to functions. Thus,
by testing commands execution, we can examine the software
robustness and track the associated high-level mission require-
ments. And second, the command execution follows a single
path, independently of the software interaction method. If we
decide to interact using the serial console, the communications
interface, or a new dedicate client, we are testing the complete
command execution mechanism, which benefits the test
coverage. Therefore, thanks to the implemented architecture,
we can integrate different testing techniques into the SUCHAI
flight software with minimal code instrumentation.

FIGURE 2: The SUCHAI flight software architecture. Adapted
from "An Architecture-Tracking Approach to Evaluate a Modular
and Extensible Flight Software for CubeSat Nanosatellites" by C.
Gonzalez, C. Rojas, A. Bergel, and M. Diaz, vol 7, pp. 126415, 2019.

Current testing practices. Unit testing, integration testing,
and HILS are the primary testing techniques applied to the
SUCHAI flight software during its development to improve
and verify particular aspects of its quality. Unit testing was
implemented using CUnit. The current unit testing system is
based on testing the interfaces of the main modules, but it
contains at most four test functions for each module. The inte-
gration testing system of the SUCHAI flight software consists
of running the flight software with a specific configuration,
sending the commands under test with fixed parameters, thus
covering only particular use cases. In the case of HILS testing,
the software is being tested on the same onboard computer
that will be installed on the satellite or the satellite flight
model itself, which requires a careful test cases design and
environment preparation (software, hardware, and facilities),
prior to tests execution in a controlled environment.

Software engineering tools are used on the validation
methodology of the SUCHAI flight software architecture.
Specifically, a visual architecture evaluation tool tracks the
flight software’s quality attributes, generating visualizations
that measure the software components’ modularity. This
tool is complemented with automatic cross-compilation and
automated testing to evaluate the software’s portability and re-
liability [10]. In addition, unit testing, integration testing, and
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FIGURE 3: Logic diagram of the proposed fuzz testing imple-
mentation and the communication system with the SUCHAI flight
software. RandomSequenceFuzzer is the system to generate the
random sequence of commands to be sent to FsRunner. FsRunner
interacts with the SUCHAI flight software running process. It sends
the sequence commands to the running process. The SUCHAI
flight software receives the commands through the communications
module and executes them following the logic of its architecture.

visualization generation have been included in a continuous
integration system build using the GitLab CI/CD tools.

IV. FUZZ TESTING
Fuzz testing is an automated software testing technique that
consists in feeding a random input into a program to uncover
system failures. Software failure is defined as an unexpected
software behavior that gives a different result from the
expected one. There are three main types of software failures:
loss of service, incorrect service delivery, and system/data
corruption [28].

Section IV-A describes how fuzzing was applied to find
unexpected failures on the SUCHAI flight software. The
complexity of this application is determined by the SUCHAI
flight software architecture. However, it must be emphasized
that nothing prevents our approach from being applied to
different flight software, as we explain later. Section IV-B
lists the different strategies we have employed. Section IV-C
presents some aspects when we ran our experiment.

A. FUZZ TESTING ON SUCHAI
As we explained in Section I, the SUCHAI flight software
is considered a critical embedded system because it carries
out the whole system control procedures of the nanosatel-
lite. Therefore, we are interested in finding vulnerabilities
associated with the system’s availability and reliability.

There are many ways to apply fuzz testing on the SUCHAI
flight software, such as sending random input to functions,
modules, or commands. We chose to use this technique with
commands because we can take advantage of the software
architecture. As we explained above, the SUCHAI flight
software architecture is based on the command design pattern,
which means that all the functionalities are implemented and
executed as commands. Thanks to its design, the software
provides interfaces to receive commands as inputs through

the satellite communication system (that can be emulated in
the local loop), the serial console (or Linux terminal), the
flight plan, or another specific task of the application. These
interfaces will be used to interact with the SUCHAI flight
software running process during the execution of the tests. On
each test, we will analyze the result of sending a combination
of random commands with a random number of parameters
and/or random values of parameters. Thus, each test case
should be composed of a sequence of commands.

We used the fuzzing architecture proposed in The Fuzzing
Book (Zeller et al., 2019) [29], which provides a Runner
and Fuzzer classes. As described in Figure 3, the Runner
represents the process to be executed with the randomly
generated data, and the Fuzzer represents the system that
generates and feeds this data into a consumer. In this context,
FSRunner is a class that inherits from Runner and interacts
with the SUCHAI flight software. FSRunner has methods that
run this process with the fuzzed commands and parameters.
The RandomSequenceFuzzer class inherits from Fuzzer and
has methods to generate a sequence of random commands and
parameters. We are using the communication system interface
to interact with the SUCHAI Flight Software. This interface
uses the CubeSat Space Protocol (CSP), which provides a
GNU/Linux and FreeRTOS implementation. The GNU/Linux
implementation relies on the ZeroMQ library, so we can send
commands using ZeroMQ sockets and the local loop.

B. STRATEGIES
The implementation of fuzz testing for the SUCHAI flight
software is based on four strategies defined by the number of
commands sent per sequence, the number of parameters sent
per command, and the randomness to produce commands or
parameters in a sequence:
Strategy 0: Random commands. Since the SUCHAI flight
software provides a check system for wrong names of com-
mands, this strategy’s key idea is to prove the robustness of the
SUCHAI flight software with random and possibly unknown
commands. This can be achieved by providing sequences of
random names of commands without parameters. Thus, the
implemented Fuzzer creates N random names of commands.
These random names are stored in a list, which is sent to the
implemented FSRunner class.

This strategy should not make the software crash because
of the check system mentioned above. Before the commu-
nications module sends the command object to the invoker,
it checks if the command exists in the command repository,
iterating over the list of all the registered commands. If there
is not a name in that list that matches with the name of the
sent command, the command is not directed to the invoker for
its execution.
Strategy 1: Random number of parameters. By providing
sequences of known commands with a random number of
parameters, including zero, this strategy mainly searches for
possible errors in the implementations of commands that are
not considering the number of the passed parameters. Each
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parameter is a random value of a fixed type. The types are
defined in the command implementation. These are int,
long, unsigned int, float, and string.

In this case and the following ones, the Fuzzer receives
a list of available commands implemented in the SUCHAI
flight software and the number of commands per sequence.
Commands are randomly chosen from the list of available
commands. To date, more than 90 commands have been
implemented.
Strategy 2: Random parameter values with randomly chosen
types of values. This strategy provides known commands with
the exact number of expected parameters, but the values and
types of these parameters are random. The types of the values
are randomly chosen, too; therefore, they may not necessarily
correspond with the expected types of values. The goal is to
mainly find errors in the implementations of commands that
may cause a crash because they do not check for the values,
the values type, or the variables range.
Strategy 3: Random parameter values with defined types
of values. With this strategy, we look for errors in imple-
mentations of commands that have unchecked properties of
values, such as the length of each parameter. To achieve
that objective, we provide known commands with the exact
number of parameters that each commands receives, where
each parameter is a fixed value of a defined type. Unlike the
previous strategy, in this case, the types of the values must
correspond with the expected types.

C. EXECUTION
The different strategies were executed by sending sequences
of 5, 10, 50, and 100 commands. Each of these sequences with
a predefined size was generated 1,610 times for each strategy
to find useful test cases. Therefore, in total, there were 25,760
sequences executed on the SUCHAI flight software. Initially,
the execution of the 25,760 sequences lasted around 3 days. In
a replication of the experiment with the same sequences, the
execution lasted 175,872 seconds. This translates into 2 days
and 53 minutes of total execution time. The replication of the
experiment was carried out to analyze time execution on a
different computer system with more processing and storage
capacity.

V. RESULTS
The results obtained from the execution of the strategies
mentioned in Section IV-B are analyzed in terms of the exit
code, execution time, and memory consumption for every
sequence. For each strategy, we executed 6,440 sequences.
These sequences were equally distributed in four sets based
on the contained number of commands: 5, 10, 50, and 100
commands per sequence.

A. EXPERIMENT EXECUTION RESULTS
Initially, we executed the experiment under the operating
system Ubuntu version 18.04. In terms of hardware, we used
an Intel(R) Core(TM) i5-6200U processor @2.3 GHz and 12
gigabytes of RAM.

For strategy 0, the results show that the failure rate by
sending random names of commands without parameters is
0%. Then, the results are consistent with the hypothesis that
the software validates the names of the commands before they
are sent for their execution.

The percentages of the failed sequences on each set for
strategies 1, 2, and 3 are shown as bar charts in Figure 4,
Figure 5, and Figure 6, respectively. The variable in the x-axis
is the number of commands per sequence. The variable in the
y-axis is the percentage of failed sequences compared to the
total number of sent sequences per strategy.
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Strategy 1: Percentage of failed sequences

FIGURE 4: Percentage of failed sequences of commands given a
fixed number of commands per sequence for strategy 1.
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FIGURE 5: Percentage of failed sequences of commands given a
fixed number of commands per sequence for strategy 2.

For each of the above figures, there is an increase in
the failure percentage between the sets. Since the random
generation of commands and parameters uses a uniform
distribution, the probabilities of choosing parameters that
make a command execution crash the SUCHAI flight software
process increases as the number of commands contained in a
sequence is greater.
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FIGURE 6: Percentage of failed sequences of commands given a
fixed number of commands per sequence for strategy 3.

The maximum time that a sequence took to execute was
approximately 6,463 seconds. Ten sequences lasted longer
than 200 seconds to execute, which in total makes up only
0.15% of the sequences. This behavior only appeared in
the first execution of the experiment; therefore, it is not
particularly related to the experiment performance itself but
other factors we will discuss in Section V-B.

The memory consumption of the sequences varies from
10,268 to 11,100 kilobytes. There is not a significant variation
between strategies. In all cases, the maximum memory
consumption of a sequence is in the order of 10,000 kilobytes.

Figure 7 shows the commands’ occurrence frequency on
sequences that made the SUCHAI flight software crash,
classified by module. Each color represents a module. The
red color on a command name of the x-axis labels indicates
an identified failure in the SUCHAI flight software produced
by the command. The number of times a command appeared
in the same sequence was not considered in the counting for
a clearer analysis. In total, ten commands were identified
as a cause of a SUCHAI flight software crashing. Seven of
them appeared more frequently in the sequences that made the
SUCHAI flight software fail. The module that has the majority
of the ten identified commands is the flight plan (fp).

By looking at Figure 7 one can identify the commands
that made the SUCHAI flight software crash. In fact, the
developers identified the first seven commands (from right
to left) that appear more frequently in the sequences as a
cause of failure in the SUCHAI flight software at least once.
This identification process will be explained more in detail on
Section V-C.

We have found sequences that made the SUCHAI flight
software crash. From these sequences, ten failing com-
mands have been particularly identified by the software
development team. Also, we found anomalies in the exe-
cution time of the sequences, which will be analyzed and
discussed on Section V-B.

B. EXPERIMENT REPLICATIONS RESULTS
As we mentioned at the beginning of Section V, three
experiment replications were carried out to measure the
execution time under other conditions with better hardware
resources. We used an Intel(R) Core(TM) i7-990X @3.47GHz,
and 24 gigabytes of RAM. The objective of replicating the
experiment on a different hardware is to verify whether
the findings mentioned in Section V-A are not tied to the
employed hardware. In terms of software, we performed these
replications under the operating system Ubuntu version 20.04.
The results related to memory consumption and exit code
were also measured again in order to be consistent.

In contrast to the first execution of the experiment, we
did not observe large differences in the execution time of
the sequences. In fact, none of the sequences lasted longer
than 200 seconds to execute. The differences between the
experiments are associated with the help of better resources
to replicate the experiment. However, more experiments are
necessary to associate a definite cause to this effect and
achieve more confidence about the obtained results to make
statistical conclusions. This threat is discussed in detail in
Section VI-A.

Strategy 0 does not present any sequence with execution
time longer than 10 seconds, which is the expected behavior
since a random command name should not be recognized as
valid input in the first place. This kind of inputs does not cover
any more code than the necessary statements to validate them.

As in the first execution of the experiment, we have not
found a significant variation of the memory consumption
between the sequences. The variation ranges from 11,655
to 12,279 kilobytes.

We found differences between the original experiment
execution and its replications in the number of failures, with
more failures in the first experiment execution. In addition,
some values of the memory consumption measurements are
equivalent to 0 kilobytes in the experiment replication. These
findings could be associated with the conditions under which
the replications were executed. We will discuss this further in
Section VI-A.

We conclude that differences in execution time, number
of failures, and wrong values in the measurements of
memory consumption are not related to an experiment
performance issue. This will be further discussed on
Section VI-A.

C. FAILURES FIXING AND CHARACTERIZATION
Once the sequences were sent to the SUCHAI flight software,
and the relevant results from their execution were identified,
we reported the findings to the software development team.
Eight sprint sessions were organized to identify bugs, fix them,
and characterize them for a detailed analysis.
Sprints. At the beginning of each sprint session, the reports
made for the software development team were analyzed.
This consisted of searching for the sequences that made
the SUCHAI flight software crash and reproducing them
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Commands

FIGURE 7: Commands appearance frequency on the failed sequences, classified by command type (module). The commands that made the
SUCHAI flight software crash are red-colored in the x-axis labels (identified command failure).

manually, sending the specific commands that make up each
sequence to the SUCHAI flight software, one by one. In
parallel, each member of the software team tried to identify
a failed sequence. When a sequence was found, the issue
was reported in the version control system used to track
the SUCHAI flight software code changes. The information
attached to the issue report was the number of commands in
the sequence, the exit code returned by the execution of the
sequence on the SUCHAI flight software, and the commands
of the sequence with their respective values of parameters1.

The changes made in the code to fix the issues found were
attached to the bug reports on the version control system.
This process made it possible to keep track of the error type,
architecture level affected, modules affected, the number of
code lines changed, and the number of modified functions.

Once the issue associated to a failed sequence was identified
and fixed, three questions were asked to the software team
members to better understand the failure and the complexity
of its solution. The possible answers to these questions are
represented as a number scale from 1 to 5, ranging from “very
unimportant/very easy” to “very important/very difficult”.
We considered the following questions:

• How important is the failure?
• How difficult is the failure to find?
• How difficult is the failure to fix?

1https://github.com/spel-uchile/SUCHAI-Flight-Software/issues?q=is:
issue+label:Fuzz-Testing

Results. In total, 12 failed sequences were identified and fixed
by the developers during the sprint sessions. Each of these
sequences failed because of the crashing on the execution
of one particular command. Ten commands had identified
errors. From the questions asked during the sprint sessions,
and thanks to the tracking of the code changes, the failures
were also characterized, as shown in Table 1. This description
includes the ID of the issues reported in the version control
system and the command directly associated with the failure.
The exit code refers to the values of the POSIX signals
that were sent to the process to terminate its execution. The
error type is the main part of the error message associated
with the process exit code. Errors are reported in the table
with particular acronyms: SS is a stack smashing, SF is a
segmentation fault, NP is a null pointer and FA is a failed
assertion. “Where is it being executed?”, “Criticality”, “Ease
of finding”, “Ease of fixing”, and “Architecture level” attributes
were part of the discussion with the software development
team during the sprint sessions. Therefore these answers
represent the developers’ opinion from 1 to 5, where 1 means
that the bug under study is irrelevant for the mission/not
difficult to find/not difficult to fix and 5 means that it is critical
for the mission/very difficult to find/very difficult to fix. In the
table, the acronyms shown below the previously mentioned
question represent the places where a certain command is
being executed: SAT is the onboard satellite, GND is the
ground station, and SIM is the simulator. The architecture
level from where the failure originates (ORG), expressed
(EXP) and fixed (FIX) could be the drivers layer (D) or the
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ID Command name Exit Code Error type Where is it being executed? Criticality Ease of finding Ease of fixing Architecture level Affected modules #LOC* #Funcs.**

SAT GND SIM ORG EXP FIX + -

#4 fp_del_cmd_unix -6 SS 4 3 4 D A D

data_storage.c
data_storage.h
cmdFP.c
repoData.c

256 119 10

#5 tm_send_status -6 FA 5 2 3 A A A

cmdCOM.c
cmdCOM.h
cmdTM.c
taskCommunications.c

72 36 3

#6 obc_set_tle -11 SF 4 3 1 A A A cmdOBC.c 1 1 1
#7 drp_set_deployed -11 NP 4 2 1 A A A cmdDRP.c 5 8 1
#8 com_send_tc -6 SS 3 5 5 A A A cmdCOM.c 1 1 1
#9 fp_del_cmd -11 NP 5 2 1 A A A cmdFP.c 16 18 1
#10 fp_del_cmd_unix -11 NP 4 1 1 A A A cmdFP.c 9 11 1

#11 fp_set_cmd_dt -6 SS 4 3 3 D A D
data_storage.c
globals.h 4 3 1

#12 fp_test_params -11 SF 1 2 1 A A A cmdFP.c 5 7 1
#13 fp_set_cmd_unix -11 SF 4 2 1 A A A cmdFP.c 10 11 1
#14 fp_set_cmd_dt -11 SF 4 2 1 A A A cmdFP.c 10 12 1
#15 fp_set_cmd -11 SF 4 1 1 A A A cmdFP.c 18 20 1
(*) # of code lines to fix de bugs
(**) # of modified functions to fix the bug

TABLE 1: Characterization of the failures found in the SUCHAI flight software.

application layer (A). The affected modules, number of added
(+) or extracted (-) code lines to fix the bug, and the number
of modified functions to fix the bug were extracted from the
version control system after the bug was fixed.

As discussed in Section V, the majority of the software
failures we found are related to the flight plan module.
The flight plan module contains almost all of the error
types, except one: a failed assertion. Besides, four of the
eight commands associated with the flight plan are executed
onboard the satellite. “fp_del_cmd_unix” is executed on the
ground station and the simulator. “fp_test_params” is just a
testing command; therefore, it is not executed in any of the
shown modules. It is important to note that “fp_set_cmd_dt”
and “fp_del_cmd_unix” appear twice on the table because
there were different failures found on each of these commands.

The criticality is strongly associated with the place where
the command is being executed. Eight out of the ten presented
commands are considered critical since they are being exe-
cuted onboard the satellite, while “com_send_tc” was rated as
3 in criticality level because it is executed only on the ground
station and the simulator. “fp_test_params” was rated as 1
since it is not executed in any of the mentioned parts.
Fixing the issues. The bug related to the command

“com_send_tc” is considered the most difficult to find. The
developers tried to identify the cause of failure only by using
the debugger but also through trial-and-error, making direct
changes to the code until the software did not crash anymore.
The rest of the bugs were rated in the range from 1 to 3
regarding the “Ease of finding” category. Eight out of twelve
bugs were found by sending commands with no parameters.
The first bug associated with the command “fp_del_cmd_unix”
was rated as 3 because it was necessary to find the precise
configuration of the database system to reproduce it. The
failure related to the command “tm_send_status” is a failed
assertion independent of the values of each parameter, though
it is relatively easy to find. The first bug associated with the
command “fp_set_cmd_dt” is a stack smashing type of failure,

where a string without its null character is saved in a buffer.
Though the bug is not difficult to find, it required time to
understand the cause of failure.

Four out of twelve bugs were rated with a value higher
than 1 (“very easy”) on the attribute ease of fixing. Eight bugs
were rated as 1 because of a wrong parameter validation when
sending commands with no parameters, which are considered
easy to fix. The bug related to the command “com_send_tc”
is considered the most difficult to fix since, as we mentioned
above, the process to fix it was not direct. The first bug
associated with the command “fp_del_cmd_unix” was caused
by a missing implementation of the functionalities of a certain
database system. Thus, the complexity for fixing this bug
lies in the number of functionalities, and therefore code lines,
that must be implemented to execute this command correctly
under the required configuration for that database system.
According to the developers, the bug associated with the
command “tm_send_status”, and the first bug related to the
command “fp_set_cmd_dt” are not very hard to find, but a
certain level of knowledge is required to solve them.

The first bug associated with the command “fp_del_cmd_unix”
has the largest numbers of modified lines of code and modified
functions to fix the bug, which are 375 and 10, respectively.
This affects its complexity, which was mentioned by the
developers beforehand. The bug associated with the command

“tm_send_status” has 108 modified code lines and 3 modified
functions. The rest of the bugs do not present a value higher
than 20 and 1 on the attributes # of code lines to fix the bug
and # of modified functions to fix the bug, respectively.
Impact on the architecture. All of the bugs were expressed
in the application layer of the software architecture. Ten out
of twelve bugs were originated from and were fixed on the
application layer. Only two bugs were originated from and
were fixed on the drivers layer. Both of them are considered
critical and are related to the flight plan module. The driver to
interact with the different database systems is implemented on
the data_storage.c file. Since the last-mentioned bugs
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are originated from the drivers layer, data_storage.c is
an affected module.

VI. DISCUSSION
A. THREATS TO VALIDITY
We analyze the threats to the validity for this work as described
in Quasi-experimentation: Design & Analysis Issues for Field
Settings (Cook et al., 2019) [30].
Conclusion validity. The experiment, defined as sending
specific sequences that were initially randomly generated, was
reproduced three more times in order to capture more accurate
results mainly associated with time and memory consumption.
These replications were executed under different conditions
that were as similar as possible to the original execution.
However, the experiment is considered to have low statistical
validity because of the low number of executions and the
different conditions related to hardware and software charac-
teristics. To mitigate this threat, a higher number of executions
is required. Also, the conditions under which the experiment
will be reproduced must be defined beforehand. Furthermore,
this experiment is considered to have random heterogeneity
since 1,610 random sequences for each predefined number of
commands per sequence were sent on a particular strategy.
Internal validity. We found very few variations when replicat-
ing our experiment. External elements could have affected
the executions, possibly attached to the operating system
and hardware. In the case of memory consumption and
execution time, these results were expected. However, the
number of failures also varied: we found fewer failures on
each replication than the original execution.
Construct validity. The SUCHAI flight software has a con-
figuration module, which has several variables to configure
the execution of the software conditions, such as tasks to
be reproduced, database system to be set up, communica-
tion system settings, among others. For the executions of
the experiment, we set up only one standard configuration,
considering we were purely testing software. Combinations
of values for configuration module variables were not tested.
However, several strategies were developed in order to analyze
different types of scenarios. Besides, the results considered
not only the number of failures but the memory consumption
and execution time.
External validity. The implementation for this work applies
only to the SUCHAI flight software context. However, it is
possible to generalize it to flight software with similar soft-
ware architecture, although changes to the source code might
be necessary. The experiment was performed in a specific
version of the software to help the developers implement an
improved version of it. After the developers fixed the bugs
found with this technique, the experiment was run again to
find new failures. No new bugs were found.

B. APPLICABILITY TO OTHER MISSIONS
Fuzz testing covers a wide range of strategies, including black-
box, white-box, or grey-box testing methods. Particularly, in

our work, we implemented fuzzing as a black-box testing
method. Then, from our experience in implementing it for
the SUCHAI flight software, we describe the basic character-
istics of a flight software architecture that may facilitate the
application of the black-box fuzzing strategies:

• Interoperability: The system should have a clear and
well-defined interface to interact with the fuzz testing
application.

• Understandability: The software architecture should be
easy to understand and have a clear structure in order to
know how to manage the fuzz testing application.

• Testability: The requirements of the mission should be
consistent and testable. There must be documentation
of the public API in order to apply black-box testing.
Besides, the system should have the capacity to capture
the test results.

• Performability: The system should be fast enough to
perform each action in a reasonable amount of time,
taking into account how many inputs will be sent.

From the reviewed software architectures by Gonzalez et al.
(2019) [10], the core Flight System [23] and the Command
Centric Architecture [11] present a well-documented archi-
tecture that fulfills the characteristics previously highlighted.
This makes it possible to define a clear way to fuzz both flight
software as a black-box testing method.

The core Flight System (cFS) is an open source flight
software solution developed by NASA [23]. This software
exhibits a layered architecture that hides the hardware and
OS specifics while providing a core and application layer
with general and mission-specific services. The cFS provides
an interface to integrate a new application using a publish-
and-subscribe architectural style with a software message
bus, allowing interoperability. Thanks to its clear software
architecture, it would be possible to create a new fuzz
testing application to interact with the rest of the system
using the software bus. Messages have a well-defined format
(CCSDS), so the list of supported messages and parameters
can be randomized by the fuzzer. All of the applications
are connected to the software bus so the fuzzer can interact
with the system by sending request messages and observing
response messages. Figure 8 explain this proposal.

The Command Centric Architecture (C2A) is the flight
software developed by ISSL researchers at the University of
Tokyo with a focus on reconfiguration capability. A major
feature of C2A is to describe the behavior of the spacecraft
by commands and to present a clear software architecture to
register and execute both single and block commands [11].
Following the C2A concepts, it would be possible to develop
a fuzz testing essential function to send commands and
randomize parameters and the execution order as described
in Figure 9. The block commands concept in C2A matches
with the idea of command sequences. The new essential
function requires a definition table that aggregates all other
existing command definition tables. By fuzzing application-
specific block commands in the C2A, it would be possible
to explore the effect of uncertainty in the execution of
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FIGURE 8: cFS top level architecture modified to integrate a
fuzz testing application. Adapted from “core Flight System (cFS)
Background and Overview”, NASA, 2014, https://cfs.gsfc.nasa.gov/
cFS-OviewBGSlideDeck-ExportControl-Final.pdf (accessed 2021
June 23)

the individual commands sequences or test the spacecraft
robustness to deviations in the expected operations.

FIGURE 9: C2A software architecture modified to integrate a
fuzz testing essential function. Adapted from “Command-centric
architecture (C2A): Satellite software architecture with a flexible
reconfiguration capability”, by Nakajima et al., Acta Astronautica,
vol 171, pp. 208-214, 2020.

VII. CONCLUSIONS AND FUTURE WORK
In this work, we reviewed the flight software testing strategies
used in several CubeSat projects and discovered that unit
testing, SILS, and HILS are the most common techniques.
However, to the best of our knowledge, not all flight software
frameworks nor CubeSat missions document the testing
procedures used to ensure software quality and robustness.
Moreover, in our search of agile testing solutions, we did not
find any reported use of more advanced software testing tech-
niques, such as fuzz testing, to CubeSat missions. Fuzz testing
techniques have demonstrated in other areas their usefulness
by providing automation to the testing procedures, improving
software robustness. For this reason, we proposed their use in
a context of agile and low-cost CubeSat development, which,
to the best of our knowledge, has not been introduced before.

In this work, we explored the usage of fuzz testing
techniques in the flight software of the SUCHAI series of

nanosatellites by running a set of strategies. We found out
that the command-based architecture of the SUCHAI flight
software facilitates the interaction with the fuzzer. Moreover,
testing through commands facilitates the use of these strategies
both in early development stages (development machines
or continuous integration systems) and qualification/formal
functional testing campaigns (protoflight or flight models).

The test results showed that 42.8% of the total sequences
failed during the execution of the tests, which is a sign of
active software bugs not found with previous testing tech-
niques (unit testing, integration test, and HILS). After three
days of doing more than 1,000,000 commands executions in
an unattended manner, we found twelve bugs in total. These
results were appropriately reported to the SUCHAI software
team, and these twelve bugs were fixed through eight sprint
sessions, identifying their relevant characteristics.

The next steps in this research include studying more ad-
vanced strategies with a focus on the intelligent identification
of failure paths led by code coverage. The proposed fuzz
testing application can be extended to other flight software
as well. This work may help current and future small and
nanosatellite missions to improve their quality and thus,
reducing the mission risk. The automation possibilities and
the unattended execution are key to achieving the repetition
and agility required to test hundreds to thousands of satellites
in the context of mega-constellations.
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