
Nanosatellite constellation control framework using
evolutionary contact plan design

1st Carlos E. Gonzalez
Electrical Engineering Department

University of Chile
Santiago, Chile

carlgonz@uchile.cl

2nd Alexandre Bergel
Department of Computer Science

University of Chile
Santiago, Chile

abergel@dcc.uchile.cl

3rd Marcos A. Diaz
Electrical Engineering Department

University of Chile
Santiago, Chile

mdiazq@ing.uchile.cl

Abstract—Space agencies, educational institutions, and private
companies have adopted CubeSat nanosatellites to do scientific
research, training, technology demonstration, and space-based
industries in the New Space era. The next step in this changing
space sector corresponds to the assembly and operation of large
satellite constellations consisting of hundreds or thousands of
small- or nano-satellites. This context adds new requirements and
challenges to the production and operation lines of these space
projects. This work focuses on the agile operation of a large
nanosatellite constellation with inter-satellite communications.
We propose using the constellation contact topology to design
contact plans using evolutionary algorithms and use the contact
plan information to control the constellation operations. The
contact plan is then used to create a Global Flight Plan table
that summarizes all the operations required to execute a proposed
task. Thus, satellites and ground station nodes only need a flight
software capable of queuing, executing, and transferring Flight
Plan commands. The evolutionary contact plan design approach
shows promising scalability results opening the possibility of
controlling satellite mega constellation of hundreds or thousands
of nanosatellites.

Index Terms—CubeSat, constellation, contact plan design,
evolutionary algorithm

I. INTRODUCTION

CubeSat nanosatellites [1] have demonstrated that a cost-
and time-effective access to space is possible. Space agencies,
educational institutions, and private companies have adopted
this technology to do scientific research, training, technology
demonstration, and space-based industries in the New Space
context [2]. In general, satellites can operate independently
or in formation flying, i.e., several vehicles are used to ac-
complish a mission cooperatively. The most common satellite
formations flying are trailing, cluster, and constellation [3]
using Walker-delta or Walker-star geometries [4]. However,
it is unlikely that a large or mega CubeSat constellation can
be deployed with a specific geometry. Instead, Ad-hoc config-
urations resulting from several secondary payload launching
opportunities have been used more frequently [5], [6].

Today, the trend in this changing space sector is the assem-
bly and operation of large satellite constellations consisting
of hundreds or thousands of small or nanosatellites [7]–[9].
Such a number of satellites have no precedents and propose
new challenges. Currently, satellite operations largely depend
on human operators, statically assigned ground capabilities,

or homogeneous satellite networks. Constellations with inter-
satellite capabilities, except for a few companies, are not
widely deployed yet. Small and nanosatellites add numerous
challenges to this problem: heavy restrictions in space, power,
and communications capabilities, plus different configurations,
short life cycle, and rapid technological evolution. These
challenges may stress satellites’ production lines [10].

Radhakrishnan et al. (2016) [3] review the challenges of
constellations missions with small satellites from Physical to
Network layers of the OSI model. However, the assembly
and operation of these space systems also present many
challenges in the Application Layer, i.e., the flight software to
control a large nanosatellite constellation. Table I summarizes
the different efforts and challenges from the Physical to the
Application layers.

From the application layer point of view, a high level of
automation is required to optimize small satellite constella-
tion capabilities. Translation from high-level requirements to
the actual constellations capabilities is required to facilitate
the operation of these systems. Assigning earth and space
resources, distributing goals, or propagating changes in the
constellation system are complex problems that require intelli-
gent algorithms and heuristics to be solved [17], [18]. Also, the
deployment, maintenance, data acquisition, routing, and opti-
mization of constellation operations are complex scheduling
problems [13]. Even the simplest versions of these scheduling
problems are Mixed Integer Linear Programming (MILP) and
hence NP-hard class [19]. Therefore exact solution algorithms
can be impractical for large constellations of thousands of
nodes. On the other hand, heuristics approaches such as Evolu-
tionary Algorithms algorithms have been used with promising
results.

From the Network and Transport layers perspective, tra-
ditional TCP/IP protocols are not well suited for a satellite
constellation due to long-delay and low reliable communica-
tion links. CCSDS protocols are more widely used in space
applications but with limited use cases in large constellations.
The family of DTN routing protocols is better suited in LEO
constellations with ISL. In contrast with TCP/IP stack proto-
col, Delay or Disruption Tolerant Network (DTN) protocols
assume that contacts among nodes are sporadic, so nodes
require a buffer to store and carry messages until a link is

TABLE I
SMALL- AND NANOSATELLITE CONSTELLATION CHALLENGES SUMMARY

OSI model Challenges

Application
Presentation
Session

Flight software architectures capable of scaling to assembly hundreds or thousands of small or nanosatellites in an agile
fashion [11]. Support an autonomous operation of the constellation. Optimize the usage of the constellation resources
(computational, energy, lifetime, etc.) [12], [13]

Transport
Network

Network protocols that support long delays and/or interrupted communication links [14]. Protocols aware of
computational resources, energy, and link capacity limitations [15].

Data-link
Physical

Inter-satellite communication links for small or nanosatellites with energy, pointing, and space limitations [3]. MAC
protocols for large wireless network [16].

available. Despite the time-evolving nature of the connections
in a Low Earth Orbit (LEO) satellite network, the contact
opportunities can be predictable due to orbital mechanics [14].
Therefore, the contact information can be used to design
contact plans with different goals [14], [15], [20].

All the operations mentioned above must be supported
in the satellite flight software as well as the ground con-
trol nodes [12], [13]. Previous works have remarked that
modular, extensible, and reliable flight software architectures
are required to deliver quality software in less time and
with less effort [21], [22]. In previous work, we describe a
nanosatellite flight software solution focused on the extensi-
bility, modularity, reusability, and scalability to constellations
called SUCHAI Flight software [23]. This software is capable
of executing remote commands and also implements a Flight
Plan to execute scheduled commands.

Despite the incipient deployment of small- and nano-
satellite mega-constellations, the studies in task scheduling,
and advances in flight software development, there is a gap in
solutions that integrate those concepts to scale the production
and operation of nanosatellites constellations from tens to
hundreds or thousands of nodes. Thus, in this work, we present
a nanosatellite constellation control framework (See section II)
that uses the contact topology information to design a global
flight plan. Satellites have to execute the flight plan to solve a
particular task cooperatively. This global flight plan is created
using a contact plan, just as in DTN routing protocols. An
evolutionary algorithm is used to design this contact plan,
considering scaling to a large number of nodes. Based on typ-
ical CubeSats’ hardware and software capabilities, we decided
to delegate the scheduling problem to the ground nodes and
deliver a global flight plan to satellites. Initial validation of
these ideas is shown in Section III through a case study.

II. SATELLITE CONSTELLATION CONTROL FRAMEWORK

Figure 1 shows a scenario with three nanosatellites and
two ground stations. Satellites are equipped with some earth
observing payload and inter-satellite links (ISL). Let consider
that the satellites and ground stations software supports the
execution of commands scheduled in the flight plan table as
described in the previous section. Also, let define a simple
task as taking an instrument’s data over a certain location

and download that data in the designated ground station in a
shorter period. Two key variables must be considered to solve
this problem: commands and contact opportunities. Commands
are satellites and ground stations’ actions, including sending
data to nodes and taking data from instruments. Contact
opportunities may refer to two ideas: the instants where nodes
can establish radio links or when targets are visible to nodes.
These two variables can be expressed in a global flight plan
that includes the time, node, and command to be executed
to accomplish a task. This flight plan must be distributed
to all nodes using the inter-satellite links. LEO nanosatellite
constellations with ISL can be considered a DTN, so it is
possible to use the contact information to schedule which
nodes are used in a task. In a DTN, for a given Contact List
(CL), there are many possible paths to visit the targets defined
in a task. Finding a Contact Plan (CP) that satisfies a set of
restrictions is called Contact Plan Design (CPD) [14].

Thus, the constellation control framework aims to generate
a global flight plan that solves a specific task for a cer-
tain scenario. Generating a valid flight plan is a scheduling
problem. Variables such as delivery time, starting time, or
resource usages are optimized under contact feasibility and
node capabilities restrictions. In this work, an evolutionary
contact plan design approach is used to solve the scheduling
problem and generate a valid flight plan. The framework
consists of three main modules: a contact list generator, the
contact plan design, and the flight plan generator. The contact
list generator module uses the scenario definition to determine
future satellite to satellite, satellite to ground stations, and
satellite to targets contacts; satellite capabilities such as com-
munication system and payload instruments parameters are
used to define a feasible contact. According to the restrictions
defined in the task, the contact plan design module searches
for a valid solution in the space of all contact opportunities.
Finally, the selected contact plan is translated into a flight plan
containing the commands that nodes must execute to complete
the proposed task.

Using the CL Finite State Machine (FSM) representation
(see Fig 2), the CPD consists on selecting a sequence of nodes
S = [S1, ..., SL] at states K = [k1, ..., kL] that visits the nodes
defined in the task. For example, let defined the following task:
execute the command get_data data1 over the South

T2
Feasible link

Satellite

Node 1

Satellite

Node 2

Command
executor

Satellite

Node 3

Command
executor

Ground station

Node 4

Command
executor

Ground station

Node 5

Command
executor

Command
executor

t N CMD
1 4 CMD

2 1 CMD

3 2 CMD

4 2 CMD

5 3 CMD

Flight plan

t N CMD
2 1 CMD

3 2 CMD

4 2 CMD

5 3 CMD

Flight plan
t N CMD
3 2 CMD

4 2 CMD

5 3 CMD

Flight plan
t N CMD
5 3 CMD

Flight plan

t N CMD

Flight plan

T1
Feasible link

T3
Target visible

T4
Feasible link

T5
Feasible link

Target

Node 6

Fig. 1. Constellation working scheme

Satellite to ground

station contact

Satellite to

target contact

Satellite to

satellite contact

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

C) Encoding of the proposed solution

S = [4, 1, 2, 6, 2, 1, 5]

K = [k1, k3, k4, k4, k7, k9]

V = 0

D = T10-T1

B) Contact plan FSM representation

A) Network of 3 LEO satellites

Satellite to ground

station contact

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 Time

Rule

R5

 k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10

Rule

R1

Rule

R5

Rules

R3, R4

Rule

R5

Rule

R2

State

Fig. 2. A) A LEO constellation with 3 satellites with ISL and two targets. B) Contact List an Contact Plan FSM representation; also, CPD Design rules. C)
Encoding of an example Contact Plan solution

Atlantic Anomaly (SAA) (node 6) and download this data on
Tokyo ground station (node 5) starting from Santiago ground
station (node 4). The Fig. 2 show a valid CP that selects the
contacts of the sequence of nodes S1 = [4, 1, 2, 6, 2, 1, 5] at
states KS1 = [k1, k3, k4, k7, k9]. Note that this is not the only
valid sequence, and that in real scenarios the solution space
grows significantly.

Using this example CP, it is possible to define the delivery
time of the task as DS1 = T10 − T1, the sequence length
L = 7 and the validity of the solution V = 0. These variables
are described below:

1) Validity (V): Because this work includes the targets
and ground stations in the CL, not all sequences of
contacts are valid and some rules are added to the CPD
to determine if a given CP is valid or not:

R1. The CP must start in the ground station defined by the
task.

R2. The CP must end in the ground station defined by the
task.

R3. The CP must visit all targets defined in the task.
R4. Targets are not data relays. That is, if a contact from

satellite A to target T occurs, the next contact must
start from the same satellite A

R5. Satellites are data relays. That is, if contact between
satellite A to satellite B occurs, the next contact must
start from the satellite B.

If one or more of these rules are not satisfied in a CP,
we define it as invalid. Thus, validity is defined as the
sum of contact rules not satisfied per state k of the CP:
Vk = 0 if R1. to R5. are meet, else Vk = 1. So, the sum
of contacts validity V =

∑n
k=1 Vk must be zero to define

a sequence as valid.
2) Delivery time (D): Delivery time is defined as the total

time the task takes to execute. If the sequence start at

state k and ends at state l, then it the time between the
state k start time (T start

k) and the state l end time (T end
l):

D = T end
l − T start

k .
3) Number of contacts (L): The length of the solution or

the number of contacts used in the contact plan L =
length(S).

Thus, the CPD is an optimization problem, primarily over
the delivery time variable, subject to the validity of the
solution:

minimize :D = T f
l − T i

k (1)

subject to :V =

L∑
k=1

Vk = 0 (2)

0 < D ≤ T f
n − T i

0 (3)
0 < L ≤ n (4)

(5)

Different approaches can be used to solve the CPD problem;
however, as the number of nodes increases, classical optimiza-
tion techniques are no practical, and evolutionary algorithms
have been proposed in the literature [24]. In this work, a
genetic algorithm is used to find a CP.

1) Genetic algorithm: The proposed GA for the Con-
stellation Control Framework CPD is designed to generate
multiple CP candidates and evaluate its validity and optimize
the delivery time function. First, the algorithm is designed
to find valid contact paths evolutionarily, a problem similar
to find the escape route in a labyrinth. Then, the algorithm
focuses on minimizing the cost of this path.

The algorithm requires the scenario and task definitions as
inputs because this information will be used to generate the
initial population according to the encoding and validity rules
(See Sections II-2 and II-4. The CL is used to evaluate the
individual’s fitness function because a proposed CP sequence
has to be contrasted with actual contact opportunities; thus,
infeasible or low-quality solutions will be discarded in the
evolution (See section II-3). Other parameter are: L, the se-
quence length; Psize, the population size; Iter, the maximum
number of iterations; pmut, the mutation probability; and pcr,
the crossover probability. Individuals are generated as random
sequences, but they are fixed using the task information, so
individuals always contain the start, target, and end node as
described in Section II-4. Then, a population is evaluated
obtained the V alidity and Fitness values. As described in
Section II-3, Validity represents how feasible is the solution
and Fitness evaluates the delivery time. During the tournament,
individuals are sorted first by V alidity and then by Fitness;
thus, the algorithm first finds feasible solutions and then
optimizes the delivery time. In each iteration, variability is
generated by replacing the old population with the best indi-
viduals, new individuals product of the crossover operation,
or a mutation according to the probabilities and operator
described in Section II-6 and II-5. Finally, after Iter iterations

or if the stop condition described in Section II-4 the algorithm
returns the best individual.

2) Encoding: In this work, individuals are encoded using a
list of integers. Thus, the sequence S = [s1, ..., sL] represents
a list of nodes si to visit to execute the CP or FP associated
with a task definition. This work’s approach is to use the
information of the task and the validity rules to encode valid
individuals (but not necessarily feasible) from the beginning.
Consider the situation described in Figure 2, where the task
is taking a data sample from node 6 (Target), starting from
node 4 (Start), and finishing in node 5 (End). The following
diagram describes the situation.

START TARGET END

Of course, at this point, we do not know how to travel to
these nodes. Let say we can move through Start, Target and
End nodes, using the nodes (satellites) {A,B,C} which en-
codes to the sequence S = [Start, A,B, Target, B,C,End]
(L = 7). This genotype S is expressed as a phenotype
K = [k1, ..., k6], which is the sequence of states ki where
the contacts are feasible according to the CL. This situation
is described in the following diagram.

START TARGET END

CA B

k1

k2

k3 k4

k5

k6

In the sequence S = [Start, A,B, Target, B,C,End],
the Start, Target, and End nodes are known (fixed in the
task definition). Thus, the algorithm has to find the values
A,B, and C. These values are generated randomly, and the
genotype K is obtained during the fitness function evaluation
by searching sequentially in the CL for states that makes the
sequence S feasible. If there are less than L− 1 states for the
sequence S, it is an unfeasible or invalid solution. Since L is
a parameter, it can be set arbitrarily large because redundant
contacts are allowed. Figure 2 shows the encoding of a
possible solution to the example scenario and task definition.

3) Constraints and fitness function: The fitness function is
the objective function in Eq. 2, i.e.,, the delivery time (also
mentioned as sequence duration, or simply duration). However,
in this problem, the validity restrictions (See rules R1. to R5.)
are absolutely relevant to evaluate a solution. Therefore, valid-
ity is also considered in the fitness function, creating a multi-
objective optimization problem. Thus, the following fitness
function is used.

fitness : Fi = (Vi, Di) (6)
0 ≤ Vi ≤ L (7)
Di > 0 (8)

(9)

Where Vi is the validity of the sequence Si and is calculated
as the sum of invalid contacts. Let define Vk as 1 if the contact
at state k breaks any rule R1. to R5. or 0 if not. If a sequence
of Si = {s1, ..., sL} of length L contains only valid contacts
then Vi = 0:

Vi =

L∑
k=1

Vk (10)

Delivery time Di is calculated as the time difference be-
tween first and last contact in sequence Si:

Di = (T end
kL−1

− T start
k0

) (11)

4) Initialization and stopping criteria: Individuals are cre-
ated from three parameters: the task, the maximum number of
nodes allowed (L), and the target’s position in the sequence
(I). The start, target and end node numbers are obtained from
the task definition. The maximum number of nodes is a param-
eter defined by the user, which limits the sequence length. This
number can be arbitrarily large because redundant contacts are
allowed, and the final sequence can be simplified to a short
version without repeated contacts. The position of the target
nodes is an index randomly chosen, so I ∈ [2, L − 2] and
an individual tracks this value to maintain its validity during
the genetic operations. A couple of examples of individuals
are shown in Figure 3. This idea can be extended to arbitrary
large sequences and an arbitrary number of targets.

S A B T C EB

S A T A C EB

Start
Target

I = Target index
End

L = 7 Sequence lenght

L-1 = 6 Number of contacts

Individual 1

Individual 2

0 1 2 3 5 64

Fig. 3. Individuals initialization. S, T, and E are the node number for the
Start, Target, and End nodes, respectively. These values are known from the
task definition. The index I of node T is particular to an individual. A, B,
and C are unknown and so generated randomly for each individual

Thus, a population of N individuals of length L is created.
The target index I and the nodes (other than the start, target
and end) are chosen randomly. After the evaluation, each
individual keeps track of the sequence of valid contacts K
reached by its sequence.

This sequence is a valid contact plan if an individual of
length L reaches L − 1 valid contacts, i.e., V = 0. The

delivery time or sequence duration D is also evaluated using
the information of the CL.

Suppose individuals reached the validity condition (V = 0),
and there is no noticeable improvement of the delivery time
D of the best individual during five consecutive generations.
In that case, GA is assumed to have reached convergence, and
the stop condition is satisfied.

5) Mutation operation: The mutation operation starts se-
lecting an index i of the sequence to mutate. Depending on
the value of i there are several cases:

• i ∈ {0, I, L−1}: If the mutation index i points to the start,
end or target position do nothing. These values cannot be
changed.

• i ∈ {I − 1, I + 1}: In any case, replace both I − 1 and
I + 1 with a new random value. This operation respects
the validity rule R4..

• Otherwise: replace the node at index i with a new random
value.

Figure 4 graphically describes the mutation operation. Note
that this operation always generates a valid sequence.

S A B T C EB

Mutate

Case B

S A B T D EB

S A T A C EB

S D T D C EB
0 1 2 3 5 64 0 1 2 3 5 64

Mutate

Case A

i=3
I=2
L=7

i=5
I=3
L=7

Fig. 4. Mutation operation. Left, case A: i ∈ {I−1, I+1}, so both indexes
1 and 3 are mutated. Right, case B: i /∈ {0, I−1, I, , I+1, L−1} so mutate
node at index 5.

6) Cross-over operation: To do the crossover between two
individuals, a cut point j is selected. The cut point is always
the index next to the target index to maintain the sequences
valid, i.e., j = I + 1. However, the sequence to cut is
chosen randomly. Thus, as described in Figure ?? the crossover
operation consists of mixing section SA[0 : j] of the first
individual with section SB [j : L−1] of the second individual,
or vice versa.

A B T B

S A B T C EB

CB

Case B

S E

S D T D G EF

D T D

Case A

S A B T C EB

S E

S D T D G EF

G

Parent A

Child

Parent B

0 1 2 3 5 64 0 1 2 3 5 64

Fig. 5. Cross-over operation. Left, case A: the cut point is chosen from parent
A so j = IA + 1 = 4 and the first section comes from parent A while the
second section comes from parent B. Right, case B: in this case the cut point
is chosen from parent B so so j = IB + 1 = 3 and the first section also
comes from parent B

A. Flight plan design

This module has to find the Flight Plan (FP) that is a valid
solution to execute a task using the constellation’s capabilities.
Figure 6 describes how the Contact Plan (CP) is related to
the FP to solve the problem. The CP defines the instants and
operations required to visit the nodes involved in the solution,
and the FP defines the commands to execute in each node.
Commands depend on the contact type and the task definition.
Four different commands should be implemented in the nodes’
software:

• set_fp <time> <command>: This command will
be used to set a FP entry. It can be used to queue
commands that will be executed in future contact.

• send_fp <node>: This command can be used to
transfer FP entries to another node during a contact.

• get_data <data_id>: Satellites must implement
specific commands to operate its payloads and get data
from targets.

• send_data <node> <data_id>: This command
can be used to transfer payload data back to the ground
stations or between satellites. In combination with the
set_fp command it is possible to automate data trans-
fers.

The FP contains all the information required to execute the
task. This information is sent to the first node, a ground station,
to start the task’s automated execution. The execution of this
global FP can be simulated to validate the solution’s feasibility
or detect any problem. The remaining question is how to build
a constellation capable of executing this kind of FP, i.e.,, a
homogeneous FS solution (capable of running commands in
the satellites and ground station nodes) is required.

III. CASE STUDY

We used a case study to evaluate the performance of the
genetic algorithm generating contact plans. This case study
is also used to tune the algorithm’s hyper-parameters: mu-
tation rate and population size. The scenario consists of a
constellation with 10 satellites in an Ad-hoc configuration, two
ground stations, and one target. In the Ad-hoc configuration,
the orbital parameters are chosen randomly with an altitude
between 500 km. and 600 km. We simulate the constellation
operation up to 14400 seconds, with a resolution of 300
seconds to calculate the contact opportunities, resulting in 346
contacts. The complete details of this configuration are shown
in Table II.

1) Task 1: The first task to test was a storage and forward
mission. The goal is to execute the command take_data
data1 over the SAA, starting in Santiago ground station
to download the result data1 in Tokyo ground station. The
scenario and task definition were loaded into the constella-
tion controller framework to obtain the case’s contact plan
and flight plan. The hyper-parameters evaluation included 4
population sizes (50, 100, 150, and 200), 4 mutation rates
(0.2, 0.4, 0.6, and 0.8). Because of GA’s stochastic nature,
100 independent runs of the algorithm for each combination

TABLE II
SCENARIO DESCRIPTION

Simulation time
Start time: 2020-09-30T00:00:00 UTC (1601424000 Unix time)
Simulation time: 14400 seconds (∼2.67 orbits)
Simulation resolution: 30 seconds
Contact list resolution: 300 seconds
Number of contacts: 346

Satellites
Node Period (min) Incl Mean anom. R. ascension
0 95.58 99.0° 24.0° 136.0°
1 95.36 89.0° 146.0° 78.0°
2 95.53 96.0° 66.0° 161.0°
3 95.45 97.0° 80.0° 178.0°
4 96.21 98.0° 126.0° 177.0°
5 94.97 83.0° 52.0° 59.0°
6 94.71 91.0° 150.0° 73.0°
7 95.37 92.0° 171.0° 84.0°
8 96.18 95.0° 61.0° 20.0°
9 95.81 82.0° 121.0° 14.0°

Ground stations and targets
Node Lat. Lon. Alt. Reference
14 -33.3833° -70.7833° 476 m Santiago, Chile
16 35.6830° 139.7670° 5 m Tokyo, Japan
18 -15.0° -15.0° 500 km S. Atlantic Anomaly

were executed, each run with a different random seed. A
summary of the results is shown in Figure 7. Results indicate
a convergence of the algorithm when the population size is
larger than 150 individuals or the mutation rate is larger than
0.4. The algorithm converges to the fitness value (duration or
delivery time) of 5100 seconds. The complete contact list and
contact plan for this solution is detailed in Table III.

TABLE III
TASK 1 EXAMPLE CONTACT PLAN AND FLIGHT PLAN SOLUTION.

Contact plan
from to start end

2 14 1601431200 1601431500
2 8 1601432400 1601432700
8 18 1601433600 1601433900
8 16 1601436000 1601436300

Flight plan
Time Node Command

1601431200 14 fp send 2
1601432400 2 fp send 8
1601433600 8 get data data1
1601436000 8 send data 16 data1

2) Task 2: A second task was analyzed, consisting of a
store and forward operation over two targets. The idea is
to execute the command take_data data1 over STGO,
and the command take_data data2 over SAA starting in
Tokyo ground station to download both data1 and data2
in the same ground station. Like the previous section, task 2
was solved with the framework, and the GA’s performance
was evaluated by hyper-parameters analysis. The results for
this scenario and task combination are shown in Figure 8
and exhibits convergence for a population size of 100 or

From To Start End

4 1 T1 T2

1 2 T2 T3

2 6 T3 T4

2 3 T4 T5

3 5 T5 T6

Time Node Command

T1 4 fp_send 1

T2 1 fp_send 2

T3 2 get_data 55a1

T4 2 fp_send 3

T5 3 send_data 5 55a1

T4 2 send_data 3 55a1

Ground station to satellite
or satellite to satellite contact:

transfer flight plan

Satellite to target contact:
get data from target

Ground station to satellite
or satellite to satellite contact:

return data and transfer flight plan

Contact plan Flight plan

Fig. 6. Relation between Contact Plan (CP) and Flight Plan (FP)

A) Task 1 hyper-parameters tuning.

B) Task 1 example contact plan.

Fig. 7. A: Task 1 hyper-parameters tuning with maximum 8 hops the box
plot shows the fitness value. B: Example contact plan FSM representation.

greater. The algorithm converges to the value of 7800 seconds
(delivery time), solving the problem in 153 seconds. A graphic
representation of an example Contact Plan (CP) is also shown
in Figure 8 and the details of the contact plan and flight plan
corresponding to this solution are found in Table IV

IV. CONCLUSIONS

LEO constellations of CubeSat nanosatellites present re-
strictions in the logistics associated with the deployment of

A) Task 2 hyper-parameters tuning.

B) Task 2 example contact plan.

Fig. 8. A: Task 2 hyper-parameters tuning with maximum 8 hops the box
plot shows the fitness value. B: Example contact plan FSM representation.

a large constellation. It is impossible to assume that CubeSat
constellations will be deployed in particular geometries such
as Walker Star or Walker Delta, but in an Ad hoc configuration
due to several secondary payload launches. Also, the constella-
tion control problem’s complexity suggests using metaheuristic
algorithms and ground-based planning scale better when the
number of nodes in the constellation increases.

Therefore an evolutionary algorithm was used to optimize
the CPD under the particular restrictions of the study case.

TABLE IV
SCENARIO B, TASK 2 EXAMPLE CONTACT PLAN AND FLIGHT PLAN

SOLUTION.

Contact plan
from to start end
16 2 1601428500 1601428800
2 14 1601431200 1601431500
2 5 1601432400 1601432700
5 8 1601432700 1601433000
8 18 1601433600 1601433900
8 16 1601436000 1601436300

Flight plan
Time Node Command

1601428500 16 fp send 2
1601431200 2 get data data1
1601432400 2 fp send 5
1601432401 2 send data 5 data1
1601432700 5 fp send 8
1601432701 5 send data 5 data1
1601433600 8 get data data2
1601436000 8 send data 16 data1
1601436001 8 send data 16 data2
1601436002 8 fp send 16

The resultant Contact Plan is then used to generate a global
Flight Plan table that describes the operations that must be
performed by the satellites in the constellation. The case study
based on an Ad Hoc constellation of 10 satellites showed that
it is possible to control the satellites using the flight plan table
derived from the contact plan design.

The results of this work open several opportunities to
explore. Scalability to larger constellations of hundreds to
thousands of satellites is an important concern. It is relevant
to know if the algorithm can provide feasible solutions in
bounded time, even for a large number of nodes. Also, a real-
life demonstration is important to validate ideas, so we expect
the system to be available for the upcoming launches of the
SUCHAI 2, 3, and PlantSat nanosatellites being developed at
the University of Chile.

REFERENCES

[1] Simon; Lee, Amy; Hutputanasin, Armen; Toorian, Wenschel; Lan, Riki;
Munakata, Justin; Carnahan, David; Pignatelli, and Arash Mehrparvar.
Cubesat design specification rev. 13. Technical Report 2, The CubeSat
Program, Cal Poly San Luis Obispo, US, 2014.

[2] Deganit Paikowsky. What is new space? the changing ecosystem of
global space activity. New Space, 5(2):84–88, 2017.

[3] R. Radhakrishnan, W. W. Edmonson, F. Afghah, R. M. Rodriguez-
Osorio, F. Pinto, and S. C. Burleigh. Survey of inter-satellite communi-
cation for small satellite systems: Physical layer to network layer view.
IEEE Communications Surveys Tutorials, 18(4):2442–2473, Fourthquar-
ter 2016.

[4] Y. Su, Y. Liu, Y. Zhou, J. Yuan, H. Cao, and J. Shi. Broadband leo
satellite communications: Architectures and key technologies. IEEE
Wireless Communications, 26(2):55–61, 2019.

[5] Saptarshi Bandyopadhyay, Rebecca Foust, Giri P Subramanian, Soon-
Jo Chung, and Fred Y Hadaegh. Review of formation flying and
constellation missions using nanosatellites. Journal of Spacecraft and
Rockets, (0):567–578, 2016.

[6] A. Marinan, A. Nicholas, and K. Cahoy. Ad hoc cubesat constellations:
Secondary launch coverage and distribution. In 2013 IEEE Aerospace
Conference, pages 1–15, March 2013.

[7] Christopher Boshuizen, James Mason, Pete Klupar, and Shannon Span-
hake. Results from the Planet Labs Flock Constellation. In AIAA/USU
Conference on Small Satellites, aug 2014.

[8] Inigo [del Portillo], Bruce G. Cameron, and Edward F. Crawley. A
technical comparison of three low earth orbit satellite constellation
systems to provide global broadband. Acta Astronautica, 159:123 –
135, 2019.

[9] I. F. Akyildiz and A. Kak. The internet of space things/cubesats. IEEE
Network, 33(5):212–218, 2019.

[10] J. Alvarez and B. Walls. Constellations, clusters, and communication
technology: Expanding small satellite access to space. In 2016 IEEE
Aerospace Conference, pages 1–11, March 2016.

[11] Danilo JosÃ© Franzim Miranda, MaurÃcio Ferreira, Fabricio Kucinskis,
and David McComas. A Comparative Survey on Flight Software Frame-
works for TNew Space Nanosatellite Missions. Journal of Aerospace
Technology and Management, 11, 00 2019.

[12] Andrew K. Kennedy and Kerri L. Cahoy. Performance analysis of algo-
rithms for coordination of earth observation by cubesat constellations.
Journal of Aerospace Information Systems, 14(8):451–471, 2017.

[13] Sreeja Nag, Alan S. Li, and James H. Merrick. Scheduling algorithms
for rapid imaging using agile cubesat constellations. Advances in Space
Research, 61(3):891 – 913, 2018.

[14] J. A. Fraire and J. M. Finochietto. Design challenges in contact plans for
disruption-tolerant satellite networks. IEEE Communications Magazine,
53(5):163–169, May 2015.

[15] J. A. Fraire, G. Nies, C. Gerstacker, H. Hermanns, K. Bay, and
M. Bisgaard. Battery-aware contact plan design for leo satellite
constellations:the ulloriaq case study. IEEE Transactions on Green
Communications and Networking, pages 1–1, 2019.

[16] Tomás Ferrer, Sandra Céspedes, and Alex Becerra. Review and eval-
uation of mac protocols for satellite iot systems using nanosatellites.
Sensors, 19(8):1947, 2019.

[17] Zixuan Zheng, Jian Guo, and Eberhard Gill. ”swarm satellite mission
scheduling & planning using hybrid dynamic mutation genetic algo-
rithm”. Acta Astronautica, 137:243 – 253, 2017.

[18] Zixuan Zheng, Jian Guo, and Eberhard Gill. Onboard autonomous
mission re-planning for multi-satellite system. Acta Astronautica, 145:28
– 43, 2018.

[19] Michel Lemaitre, Gérard Verfaillie, Frank Jouhaud, Jean-Michel
Lachiver, and Nicolas Bataille. Selecting and scheduling observations
of agile satellites. Aerospace Science and Technology, 6(5):367 – 381,
2002.

[20] J. A. Fraire, P. G. Madoery, and J. M. Finochietto. Traffic-aware contact
plan design for disruption-tolerant space sensor networks. Ad Hoc
Networks, 47:41–52, 9 2016.

[21] Carles Araguz, Marc Marı́, Elisenda Bou-Balust, Eduard Alarcon, and
Daniel Selva. Design Guidelines for General-Purpose Payload-Oriented
Nanosatellite Software Architectures. Journal of Aerospace Information
Systems, 15(3):107–119, mar 2018.

[22] Massimo Tipaldi, Cedric Legendre, Olliver Koopmann, Massimo Fer-
raguto, Ralf Wenker, and Gianni D’Angelo. Development strategies for
the satellite flight software on-board Meteosat Third Generation. Acta
Astronautica, 145:482–491, apr 2018.

[23] C. E. Gonzalez, C. J. Rojas, A. Bergel, and M. A. Diaz. An architecture-
tracking approach to evaluate a modular and extensible flight software
for cubesat nanosatellites. IEEE Access, pages 1–1, 2019.

[24] J. A. Fraire, Pablo G. Madoery, Jorge M. Finochietto, and Guillermo
Leguizamón. An evolutionary approach towards contact plan design for
disruption-tolerant satellite networks. Applied Soft Computing Journal,
52:446–456, 3 2017.

	Introduction
	Satellite constellation control framework
	Genetic algorithm
	Encoding
	Constraints and fitness function
	Initialization and stopping criteria
	Mutation operation
	Cross-over operation

	Flight plan design

	Case study
	Task 1
	Task 2

	Conclusions
	References

