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ABSTRACT Delivering better flight software is an important concern to improve CubeSat missions
success. It has been identified as a key element to enhance team collaboration, increase reusability,
reduce the mission risk and facilitate development and operation of new mission concepts, such as
satellite mega constellations. An appropriated fight software architecture represents the functional and non-
functional requirements, and guides the development. Therefore, to achieve the expected software quality
the architecture should be closely monitored during the entire software life cycle. However, ensuring
that a flight software for a spacecraft embedded system closely follows the proposed architecture and
addresses the set of non-functional requirements is a difficult and non trivial problem. Motivated by
requirements commonly described in previous CubeSat missions, in this work we present the design and
implementation of a flight software architecture based on the command design pattern. We also present
an architecture tracking methodology to verify and control the flight software quality criteria during
the development process through the use of graphical software analysis tools and agile programming
techniques. This automatic software analysis tool was developed using Git, Jenkins, Moose, and Roassal,
and has been applied in the SUCHAI series of nanosatellites to evaluate the impact of the architecture
verification during the development history. The implemented flight software and the verification tools
has been released as open source platforms and are available for the CubeSat community.

INDEX TERMS cubesat, embedded software, flight software, nanosatellites, software architecture,
software quality, software visualization, open source

I. INTRODUCTION

Historically, space missions and satellites have been devel-
oped either by space agencies or large companies. However,
this context is changing thanks to the emergence of an
standardized type of nanosatellite, the CubeSat [1]. Cube-
Sats were conceived as an educational tool where students
could develop, through hands-on experience, a complete
mission, including design, construction, launch, and oper-
ation of a satellite in the time frame of a college degree.
The results obtained since its conceptions attracted the
attention of entrepreneurs, which founded small companies
not only to offer CubeSat parts or platforms, but also for
services. In contrast to classical satellites, space missions

based on CubeSats are developed in extremely flexible
work environments [2]. In this new and particular scenario,
developers may be inexperienced and can easily enter and
leave the project. Also, the agile philosophy of CubeSats
commonly requires a simple procedure for including and
removing payloads, ideally implying minimal changes to the
system. The flight software is one of the critical elements to
ensure the mission success in this context because the flight
software implements most of the functional requirements
and its complexity is related to the mission risk [3], [4].
Furthermore, the flight software also enables repeatability
and scalability of nanosatellite missions to constellations
consisting of hundreds or thousands of units.
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Table 1. Review of flight software architectures used in CubeSat projects

Project Architecture details OS
supported

Language Hardware
supported

Source
code

License

PilsenCUBE [5] State machine N/A C NXP LPC2148 No N/A
Delfi-n3Xt [6] Layered. State machine. State machine in the

application layer.
N/A C TI MSP430F1611 No NI

RACE,
ARMADILLO
[7]

Layered. Component based modules. State ma-
chine to execute modules functionalities in the
application layer.

GNU/Linux C, C++ NXP LPC3250 No N/A

UWE-2 [8] Centralized. Modules controlled by a central
module.

uClinux C Hitachi H8 No N/A

Kysat [9] Layered. Component based modules. Central-
ized tasks organization.

Salvo RTOS C TI MSP430F1611 No N/A

Kysat-2 [10] Layered. SPA distributed messaging system. SPA middle-
ware

NI SL 8051F930 No N/A

PolySat [11] Modules separated in processes, inter process
communications with UDP sockets

GNU/Linux C Atmel
AT91SAM9G20

No N/A

ESTCUBE-1
[12]

Layered. Modules as independent tasks. FreeRTOS C STM32F1 No N/A

WinCube [13] Layered. Modules as independent tasks. Salvo RTOS C TI MSP430F169 No N/A
Asundi et al. [14] Distributed. Functionalities distributed across

two microprocessors.
NI NI MSP430, TI C6000 N/A N/A

3Cat-1 [15] Layered. Two high level layers: System Core
and Process Manager. Modules are threads with
messaging system and task scheduler.

Linux Prolog AT91SAM9G20 No N/A

NUTS [16] Layered. Service oriented. Inter task and inter
processor communications with CSP.

FreeRTOS C Atmel AVR32UC3,
SAMV71

Yes NI

CubETH [17] Component-based model, verified and validated
with BIP framework.

N/A C, C++ SL EFM32GG880 No N/A

EQUULEUS,
PROCYON [18]

Layered. Command Centric Architecture (C2A). N/I C, C++ N/I No N/A

NASA Core
Flight System
[19]

Layered. Service oriented. Publisher-Subscriber
inter task messaging system.

GNU/Linux,
VxWork,
RTEMS

C x86, RAD750,
MCP750, Coldfire,
and others

Yes NASAs
Open Source
Agreement

Kubos [20] Layered, N-thier architecture. Service oriented. GNU/Linux Rust,
Python, C

BeagleBone Black
(Cortex A8), ISIS
OBC (ARM9)

Yes Apache 2.0

Brightascension
GenerationOne

Layered. Component-based framework. Compo-
nent generator using XML definitions.

GNU/Linux,
FreeRTOS,
RTEMS

XML, C Nanomind
A712(ARM7TDMI),
Clayspace OBC
(FPGA based
ARM Cortex M3),
BeagleBone Black
(Cortex A8), TI
MSP430, Vorago
VA10820, Xiphos Q7

No Commercial

N/A: Not applicable. NI: No information available

Significant efforts have been developed to provide better
flight software for nanosatellites. Table 1 summarizes publi-
cations describing the flight software of CubeSat missions.
Most of the analyzed solutions separated the software in
layers to encapsulate different abstraction levels. This de-
cision is accompanied by the use of an operating system
(OS), where third-party solutions such as GNU/Linux or
FreeRTOS are preferred. On the other hand, CubeSats are
using a variety of on-board computers (OBC) from 16-bits
microcontrollers to modern ARM-Cortex microprocessors
capable of running GNU/Linux.

Undoubtedly, the election of the processor, the OS, and
the programming language are closely related, and this de-
cision directly affects other mission variables. On one hand,
if the flight software requires a high-level programming
language or entirely depends on features available only in
GNU/Linux, then a more powerful processor is needed,

which impacts the power consumption. On the other hand,
using an OS for embedded systems, can save power at the
cost not only of the processing capabilities, but also limiting
the availability of developers, since they are required either
to know or learn a low-level programming language.

Based on the experience of the Cubesat missions listed in
Table 1, modularity, extensibility, flexibility, robustness and
fault-tolerance have been identified as the main features of
the flight software for nanosatellites. Most of the time the
upper abstract layer is the result of architectural decisions
to provide these quality characteristics, often considered
as non-functional. Thus, the reviewed solutions can be
grouped in: state machines [5]–[7], centralized architec-
tures [8], [9], [11], [12], distributed architectures using
messaging systems [10], [13]–[16], and formally verified
architectures [17], [21]. Modularity is a common concern
for flight software developers, but the definition of a module
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varies from one solution to another. In Schmidt et al. [8]
and Hishmeh et al. [9] modules are defined as a set of
functionalities while in Manyak et al. [11] are defined as
tasks or threads. Flexibility or extensibility are also common
goals in this context. State machines type solutions offer
a simple and clean implementation of the flight software
once the satellite’s functional requirements are well defined;
however, there are no metrics about how a change in the
requirements, during the development process, affect the
evolution of the states and transitions. Component-based
and service-oriented architectures are more flexible solutions
to support an incremental development or changes in re-
quirements, depending on how the components/services are
orchestrated. Messaging systems add more flexibility and
less coupling between modules compared with centralized
architectures, especially if a publisher-subscriber pattern is
implemented [19] in which subscriber modules can be added
or removed without affecting the entire system. Distributed
systems are a common solution to provide robustness and
fault-tolerant capabilities by physically duplicating the com-
putational resources.

Nowadays, it is possible to find ready to use flight
software solutions for CubeSats being the NASA Core
Flight System (cFS) [19], the Kubos initiative [20], and
the Brightascension GenerationOne some of the alternatives.
Except for NASA cFS and Kubos, all the reviewed works
are not open source or do not report details of the actual
implementation. Without this information it is challenging to
evaluate software quality criteria beyond the design phase;
moreover, as far as we are aware of, there is not any standard
and low-cost methodology to verify software quality criteria
for space systems neither in an agile fashion nor in real
time. The guidelines provided in Araguz et al. [22] represent
an important step in this direction. The cFS developers
have used, among others, unit testing and graphical tools
to verify the architecture and quality of the software [23],
[24] but these tools are not continuously integrated into the
development process in a way that might allow real time
monitoring of the architecture after contribution of different
developers.

The numbers of satellites proposed for the coming con-
stellations are unprecedented. It is critical that current and
future flight software solutions facilitate mass production of
satellites and operation of a large number of spacecrafts.
Therefore, it is imperative that the declared features of
the flight software, such as modularity, flexibility and ex-
tensibility, could be evaluated in agile manner, during the
development and integration of the software in each mission.

1) Our contributions
In this article, we present an architecture-tracking approach
to achieve, evaluate, and maintain the quality of the flight
software during its development. The proposed methodology
assumes that if we define a clear software architecture that
satisfies our set of functional and non-functional require-
ments, then by validating that this architecture is being

followed at any point of the development process, the
deployed software will also satisfy the expected quality
attributes. Moreover, if we can track the architecture of the
implemented software during its development history, this
supervision may prevent quality deterioration, thus reducing
the probability of software errors and reducing mission risk.

To accomplish this, we propose a flight software ar-
chitecture based on the command design pattern, which
is described and implemented in detail. This architecture
was designed with the set of non-functional and functional
requirements in mind, resulting in a highly modular, ex-
tensible, and reusable solution. This solution is evaluated
using an architecture-tracking approach. Therefore, we de-
veloped a set of visualization tools to extract the architecture
automatically from the source code. The visual analysis
tools were integrated into the software development process
to evaluate if the proposed software architecture is being
represented by the implemented source code.

The methodology was evaluated by studying the quality
of the flight software developed for the SUCHAI-1 [25],
launched into space in 2017. In addition, the methodology
has been used in the development of the other nanosatellites
of the SUCHAI program, which includes the SUCHAI-2 and
-3 nanosatellites [26]. The SUCHAI flight software had to
satisfy the identified requirements including producing and
operating a large number of vehicles.

These contributions represent an interdisciplinary effort
that combines experiences in fields such as software engi-
neering, embedded systems development, and space systems
design. In summary, our article makes the following contri-
butions:

• Flight software quality monitoring. It presents a quality
monitoring methodology for spacecraft flight software.
Our approach is based on principles of agile program-
ming and software visualization techniques but adapted
to meet the constraints of critical/autonomous embed-
ded systems. The tools are offered as an open software
platform. To show the properties of the methodology,
we use the SUCHAI flight software development as a
case of study, presenting the design and implementation
in detail.

• Requirement analysis. It revises and summarizes the
state-of-the-art in terms of software requirements for
on-board nanosatellite flight software systems. This
analysis is used not only to present the motivations of
the SUCHAI flight software but most importantly to
design and implement the evaluation tools according
to mission requirements since in the end, these are the
main goals to be satisfied by the flight software.

• Flight software architecture. It presents a flight soft-
ware architecture for nanosatellites, based on the com-
mand design pattern, that satisfies these quality require-
ments. This software is also an open source project
with flight heritage (SUCHAI-1), which is currently
being adapted to the coming missions of the SUCHAI
program. We use the implemented flight software to
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exemplify the use of the architecture-tracking method
and how changes are identified in the tracking tool.

2) Outline
The article is organized as follows: Section II analyzes
the requirements that commonly have to be satisfied when
developing the flight software for nanosatellites. Section III
proposes an architecture for flight software that meets the
identified requirements and its implementation key points.
Section IV describes the techniques used to validate the
architectural rules over the implemented flight software,
including resultant visualizations. Section V shows how to
extend the software with new functionalities and analyzes
the effects of these changes in the global architecture.
Additionally, in Section VI we discuss about the usage
of this software architecture in the SUCHAI series of
nanosatellites, including pros and cons, and the usability of
the visualization tool. Finally, Section VII summarizes the
main conclusions of the work and presents possible avenues
for further extensions.

II. REQUIREMENTS
We based our flight software decision on previous works
that collect and analyze in depth the flight software fea-
tures and requirements such as listed in Table 1. In this
section, we explicitly present a summary of the desired flight
software characteristics, both non-functional and functional
requirements, in the context of agile CubeSat missions,
high flexibility of mission goals, and a constellation of
large numbers of nanosatellite. We also present the reasons
that motivated the requirements and architectural decisions
behind the implementation of the SUCHAI flight software.

A. NON-FUNCTIONAL REQUIREMENTS
Non-functional requirements refer to the quality attributes of
a system [27]. Beyond the functional aspects of a satellite
mission, it is necessary to define some design guidelines
that will affect the architectural decisions, especially in
the context of agile, flexible and fast-growing CubeSat
projects. This context makes non-functional requirements
more relevant not only in the design phase, but also in the
development process. Based on the literature review of a
series of CubeSat missions and flight software, we detail the
quality attributes considered in this work and the motivations
behind this selection.

Extensibility: An extensible software is required to sup-
port iterative development of CubeSat projects. The iterative
development is crucial in low-cost and fast-delivery projects
to deal with uncertainty in mission deadlines, launch op-
portunities, component shipments or budget limitations. In
the lean development strategy for CubeSat projects, it is
highly desirable to have a working platform supporting the
Minimum Viable Product (MVP) from the beginning of the
project [2], [28]. A primary CubeSat platform consists of
a bus that includes a command and data handling system

(C&DH), energy power system (EPS), the communication
system or transceiver (TRX) and the attitude determination
and control system (ADCS). If the base bus can orientate
itself, acquire data from a set of sensors, send this data
using the transceiver, and send a periodic beacon, then the
platform may be considered an MVP. To obtain the final
product a series of incremental modifications to the flight
software is required. These modifications should not affect
the functionalities of the base system and may be reverted
at any time with minimum effort. This is the definition of
an expandable or extensible software [29]. For example, in
the Kysat mission, four flight-ready revisions of the flight
software were released before the final launch [9].

Modularity: A modular flight software can facilitate team
collaboration and adds flexibility to integrate or remove
payloads. Team collaboration in CubeSat projects implies
the coordination of technical staff having a varied back-
ground. As described in Bouwmeester et al. [30], most
CubeSat missions were originally related to technology
demonstration or educational projects, which means that
not only software developers, but also scientists, engineers,
and even students can collaborate with the programming
[9], [12], [16], [30]–[33]. Development groups focus on a
specific component, subsystem or payload of the mission.
Furthermore, with a standardized nanosatellite bus plus a
modular flight software architecture, we can obtain a flexible
platform to integrate a variety of payloads. Also, modularity
facilitates the understanding of the code and debugging
process, since functionalities are well defined in specific
modules.

Reusability: Hardware tends to evolve more frequently
than the software architecture and overall logic, especially
across different missions [3]. Processors and peripherals
evolve rapidly; moreover, newer and better technology is
constantly available for the same price of previous hardware.
In contrast to classical satellites, CubeSats projects are more
prone to adopt newer technologies with limited in-space
heritage. For example, the SUCHAI-1 mission, the first
University of Chile CubeSat project that started in 2011,
used a Microchip™ PIC24 16-bit microcontroller while the
SUCHAI-2 CubeSat (started in 2015) is using an Atmel™
AVR32 32-bit microcontroller. These two embedded system
platforms largely differ in terms of computation resources,
hardware architectures, and development tools. They also
differ compared with an x86 or a modern ARM machine
capable of running GNU/Linux. Some CubeSat missions are
using OBC platforms which support GNU/Linux Manyak
et al. [34], and Javanainen et al. [31] proposes that using
GNU/Linux instead of FreeRTOS in the Aalto-1 flight
software facilitates the inclusion of non-embedded system
experts in the project. However, computational resources are
limited in other missions; for example, the NUTS mission
preferred a FreeRTOS-based flight software [16]. Therefore,
the flight software should work on both platforms. Many
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University-CubeSat projects have evolved into CubeSat
programs. Some of the universities that conduct CubeSat
development on regular basis are Cal Poly [34], University
of Tokyo [35], [32], Aalborg University (AAUSAT) [36],
University of Kentucky/Morehead University (Kysat) [10],
TU Delft (Delfi, DelFFi) [32], and University of Chile
(SUCHAI) [26] to name a few. These programs developed
flight software solutions that have been reused and enhanced
along missions with different levels of difficulty. This will
also be the case of future large nanosatellite constellations
that will be developed and maintained for years. While
the constellation objective may not change over time, these
projects may face several technological changes. Thus, it is
desired that a flight software should be portable and reusable
by design [29].

Reliability: CubeSat nanosatellites, like any other space
mission, are critical systems that must operate autonomously
for years and in most cases, without a way to fix any
hardware or software failure. For this reason, the flight
software should be extensively tested before launching [7],
[9], [37], and component redundancy is implemented to deal
with hardware failures [10], [14], [16], [36], [38]. However,
whole coverage testing is most of the time impracticable,
and there are other methods to improve mission reliability.
For example, it is crucial to reduce failure points as much
as possible. Some coding recommendations to avoid errors
include limiting the usage of mutexes, dynamic memory
allocations and operations with pointers [39], [40]. A clear
data or message path, and clear application logic can
also help to identify and trace errors in the software.
The integration of quality verification tools into the flight
software development process could improve reliability by
guaranteeing that the architectural decisions are followed
without waiting for final testing phases to identify these
kind of failures [23], [24].

Scalability to constellations: CubeSat standard has proven
to be a cost-effective manner to reach space. Besides, the
standardized satellite has shown signs of being a disruptive
technology concept, exponentially acquiring new capabili-
ties. These capabilities have made available a whole new
spectrum of missions and space service models based on
constellations of hundreds or even thousands of satellites.
Agencies and companies are proposing, developing and
even already operating large constellations of nano or small
satellites [2], [41]–[43]. In contrast to classical satellites,
standardized satellites can be delivered to space in short
times. However, thus far they can be produced by few or at
the most by tens per month. To make a reality the envisioned
constellations they need to be produced by hundreds per
month with higher sophistication and reliability. On the one
hand, the flight software must consider the mass production
of satellites and the operation of a large number of satellites
once in space. Ideally, the programming of the satellite
should be agile, but reliable allowing customization or

improvements for the different batches. On the other hand,
the current CubeSat missions operate few satellites, except
for the Flock constellation from Planet Labs. However, this
constellation does not have inter-satellite communication ca-
pabilities, which might allow the propagation of operational
goals, such as monitoring a specific location. The flight
software is the key system that might facilitate not only the
propagation but also the automatic decomposition of the
operational goals into each satellite tasks while avoiding
commanding each satellite separately. In this context, a
scalable flight software should facilitate the manufacturing
(assembly, integration, and testing) and the operation of
nanosatellite missions when the number of satellites in the
constellation increases.

To identify these non-functional requirements in the fol-
lowing sections, we summarize the SUCHAI flight software
non-functional requirements as follows:
Q1 The flight software must be extensible, in the sense

that any change or improvement should be localized,
avoiding affecting the system structure.

Q2 The flight software must be modular, so that non-
critical modules, such as payloads, might be added
or removed without affecting the entire system (e.g.,
needing to modify or recompile the entire system).

Q3 The flight software design should reduce failure points
and help in the implementation of fault tolerance tech-
niques to improve the mission reliability.

Q4 The flight software must be portable to multiple
hardware and software platforms, such as embedded
systems supported by FreeRTOS or computers capable
of running GNU/Linux, being reusable along current
and future missions.

Q5 The flight software must be scalable, in the sense
that the solution can support the manufacturing and
operation of an increasing number of nanosatellite in
large constellations.

B. FUNCTIONAL REQUIREMENTS
To determine the functional requirements of the flight soft-
ware, we considered the operation model (or use case)
described in Fig. 1. When the satellite is within the range
of the ground station, the operators can send telecommands
to it. The satellite can execute these commands immediately
(for example, download telemetry, download payload data
or modify settings) or can queue commands in the flight
plan for later execution (for example, sample sensors, take
payload data or attitude control). During the rest of the orbit,
the satellite has to perform some activities autonomously.
These activities include periodic tasks (such as house-
keeping, sending a beacon, resetting watchdog timers and
waiting for incoming telecommands), execute commands
queued in the flight plan at some specific time, and react to
non-deterministic events such as malfunctions, unexpected
resets, batteries discharge, among others. As a reference, a
low orbit nanosatellite can establish contact with the ground

VOLUME 4, 2016 5



This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2927931, IEEE Access

Gonzalez et al.: An architecture-tracking approach to evaluate a modular and extensible flight software for CubeSat nanosatellites

station three or four times in 24 hours and each contact
may last between 5 to 10 minutes. The rest of the time, the
satellite executes autonomous or scheduled operations.

This operation model is heavily based on the satellite’s
ability to execute commands, both remote or self-generated
[18], [25]. The satellite operators should be able to break
down the satellite mission in a series of commands. Au-
tonomous operations are translated to self-generated com-
mands with a well-defined execution logic (for example,
periodical or event-based).

The concept of remote and self-generated command ex-
ecution can also be extended to constellation operations.
Let suppose that each satellite in the constellation can
execute a set of commands. Mission control can decompose
(manually or automatically) the mission goals into a series
of commands that each satellite in the constellation has to
execute. If we add inter-satellite communication capabilities,
then any satellite can decide either to execute commands or
delegate commands to surrounding satellites, thus facilitat-
ing the operation by distributing the mission goals over the
constellation.

Therefore, the flight software functional requirements can
be expressed in three generic enough sentences:

F1 The flight software must execute remote (on-demand)
commands generated from ground satellite operators

F2 The flight software must execute self-generated (au-
tonomous) commands, the execution logic of these
commands can be single event, periodical, or event-
based.

F3 The flight software must store and download telemetry
data.

Note that any specific mission functional requirements
should be translated to commands and command execution
logic. Thus, the flight software is flexible enough to execute
the requirement. For example: “to send a beacon once a
minute”, “to reset the satellite on demand” or “to collect
particles-counter samples over the South Atlantic Anomaly”,
are all examples of possible mission functional requirements
that can be implemented as commands executed with a
defined logic.

III. FLIGHT SOFTWARE ARCHITECTURE DESIGN AND
IMPLEMENTATION
A. GENERAL DESIGN
Following the experiences of similar projects [22], [23] the
proposed software design follows the layer architectural
pattern dividing the system in hardware drivers, operat-
ing system and application layers. This design provides a
portable solution [44]–[46] that satisfies the requirement
Q4 because the operating system and the device drivers
layer can be exchanged by design. This approach allow us
to integrate existing solutions in the drivers and operating
systems layers and focus in the design and implementation
of an application layer that satisfies the operation model
discussed in Section II-B.

Figure 1. Example of satellite operations. Operators can send commands
to the satellite which are executed immediately or queued in the flight
plan. Additionally the satellite has to perform autonomous activities such
as sending periodic beacons and executing the commands listed in the
flight plan. All this activities may be considered commands, despite of
they are remote or autonomous instructions.

We divided each layer functionality in modules and
defined the possible dependencies between modules. Start-
ing from the lower abstraction level, the minimum set of
functionalities we required are: real time clock, data storage
system, access to input/output devices and drivers for exter-
nal devices or peripherals. The operation system layer will
use these functionalities to provide high level features such
as: threads, thread/task scheduler, timing functionalities,
queues or message systems and synchronization structures.
Finally in the application layer we require functionalities to
implement tasks, data repositories, an implementation for
the concept of commands and a main or application entry
point. The dependency tree of these modules is described
in Fig. 2

Maintaining this dependency tree helps to maintain porta-
bility because by design the operating system and drivers
are totally independent from the application code. This
architecture does not have any cycle between modules and
between layers. Avoiding circular dependency is known
to be effective on improving the maintenance and the
comprehension of the overall architecture.

The following sections describe the design and imple-
mentation details of each layer, with special focus on the
application layer implementation.

B. DRIVERS LAYER
This layer is populated by hardware or vendors dependent
software, created to interact with peripherals and devices
at a low level. Any supported device should provide a
set of drivers, libraries or frameworks that help to interact
with the device features. In our experience working with
embedded systems, the diversity in this layer is so extended
that we recommend following each vendor standard and
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Figure 2. SUCHAI Flight software architecture: UML model diagram. Each
layer consists of number of coarse-grain modules, a module being the
result of compiling a number of C files and headers. A direct dependency
between modules is indicated with an arrow. Our architecture follows a
top-down interaction: higher level layers can interact with layers below,
but a lower level layer should never depend on layers above.

solve the differences in the upper layer trough interfaces and
wrappers. This recommendation includes managing different
build systems at this level.

C. OPERATING SYSTEM LAYER
The Operating System (OS) adds an abstraction level be-
tween the hardware and application layers so more advanced
solutions can be implemented in the application layer using
utilities such as: multi-tasking, message queues, timers,
files, among others. From requirement Q4 and Q5 we
are interested in supporting at least two operating sys-
tems: GNU/Linux and FreeRTOS. Supporting GNU/Linux
is useful for simulating the satellite functions in personal
computers (a developer’s laptop or testing servers) and to
support powerful embedded computers such as the Rasp-
berry Pi or the ARM™ Cortex A9 found in the Zynq
7000 family. Meanwhile, FreeRTOS is more suitable for
low-power embedded systems, which are usually 16 or 32-
bit microcontrollers such as the Microchip™ PIC24 and
PIC32, the Atmel™ AVR32, the Espressif™ ESP32, to
name a few. This portability layer is required to map
specific operating system functionalities to our custom
common interface. For example, we create our custom
function osTaskCreate() to create Tasks, which is a
wrapper to pthread_create() in GNU/Linux and to
xTaskCreate() in FreeRTOS.

D. APPLICATION LAYER
Our solution is an application layer architecture based on
the command processor design pattern. This pattern explains
how to build an application that separates the service request
from its execution, encapsulating each requirement in dif-
ferent commands [45]. However, this pattern was used at
an architectural level and adapted for implementation in the
C programming language [46]. The software architecture

Figure 3. SUCHAI Flight software architecture: UML communication dia-
gram. In this architecture clients only generate requests to execute com-
mands, depending on the control strategy that each client implements.
These requests are sent as messages to the invoker that may implement
some control strategies over the command execution such as filtering,
priorities, logging, among others. If the invoker decides that the command
can be executed, it sends the request to the receiver. The receiver actu-
ally executes the command by calling the corresponding function. The
command and data repositories provide an interface to handle commands
creation and data storage respectively. From this diagram, we can extract
the application messages path and how modules interact with each other.

is described by the UML communication diagram shown in
Fig. 3 and the UML sequence diagram shown in Fig. 4. The
execution logic is the following: when a client is required
to do a particular action, it creates a specific command
and requests its execution to the invoker by sending the
“send_cmd” message. The invoker checks if the com-
mand is executable and sends the requirement to the receiver
as the “exe_cmd” message. The receiver actually executes
the command by calling the corresponding function and
sends the return value back to the invoker in a “result”
message. Furthermore, the satellite needs to store at least
the set of available commands, a list of settings or status
variables, and data generated by payloads. Therefore, we
included a set of repositories in the architecture, which are
modules designed to encapsulate the data handling.

The architecture’s necessary modules are the clients,
the invoker and the receiver because they implement the
command execution logic. As described in Listing 1, these
modules are implemented as concurrent tasks (FreeRTOS)
or threads (GNU/Linux) that use a messaging system to
communicate clients’ requests. These requests or commands
are data structures (C structs) that contain all the relevant
information to execute the target code such as a function
pointer and parameters. Any of the many existing clients
can generate commands. The messaging mechanism might
be a shared queue where clients can push the commands
as C structs; thus, the invoker can pop commands to be
processed one at a time.

The SUCHAI flight software presents a clear execution
logic because clients just generate the requirements and only
the receiver actually calls functions for its execution; if
additional control is required (such as command priorities,
safe mode, execution logging, etc.), the invoker can imple-
ment these functionalities. This execution logic (described
in Fig. 3 and 4) requires the definition of the set of client
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Figure 4. SUCHAI Flight software architecture: UML sequence diagram. Each client implements a control strategy and can request commands execution
under certain circumstances. To execute a command the client has to create it using the command repository and then send an asynchronous message
to the invoker. The invoker receives all client messages and organizes the execution by sending the request to the receiver. The receiver actually executes
the command by calling the corresponding function. Once the command is executed, the receiver send a message back to the invoker with the execution
result. From this diagram we can extract the application concurrency and the sequence of operations required to execute a command. We can see that
clients works in parallel, that the invoker acts as a load balancer or proxy for the requests, and that the receiver performs the heavy work executing
the code corresponding to each command. Note that clients send execution requests asynchronously and do not have direct feedback of the execution
result.

modules, commands and repositories.

1) Client modules
Each client module controls a specific subsystem such
as a device (radio, EPS) or a payload (camera, sensors)
by requesting commands for execution. Each client may
implement particular control strategies, such as listening
for events, incoming telecommands or periodic timers. For
example, Listing 1 shows that to reset the internal watchdog
timer the “reset_wdt” command is generated at intervals
of one second.

Note that clients can be modified, added or removed
without affecting other clients nor the command execution
mechanism. The architecture supports several clients work-
ing concurrently, which expresses a high level of modularity
as formalized in requirement Q2. The final set of client
modules depends on the specific mission requirements. As
shown in Fig. 3, the SUCHAI flight software includes
the following set of default client modules that meet the
requirements of this series of nanosatellites:

• Initialization: Executes initialization activities such as
subsystem configurations, starts other clients depending
on the operational mode (safe mode, normal mode,
science mode), post-deployment silent time, initial de-
tumbling, among others.

• Debug console: This module includes functionalities
to execute commands on-demand using a serial or
remote terminal. It is essential for debugging during
the development and pre-launch stages, although it is
not useful once in orbit.

• Communications: Receives telecommands from the
ground station and parses these telecommands to gen-
erate the corresponding system commands.

• Flight Plan: Schedules commands to be executed at a
certain date and time. The schedule can be modified by
specific commands to dynamically change the mission
plan once the satellite is in orbit.

• Housekeeping: All the activities related to control the
satellite status and health are included here. Most of
them require the generation of commands at specific
time intervals.

• Payloads: The coordination and control logic of pay-
loads is isolated in a dedicated client. This client
module implements the requirements of each payload.

• Watchdog: Periodically resets both internal and ex-
ternal watchdog timers, also implements a software
watchdog in case no telecommands are received during
a certain time.
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Listing 1. Application layer implementation example

1 /* Example Client thread */
2 void client(void){
3 while(1){
4 /* execute every 1 second */
5 sleep(1000);
6 /* create a command */
7 cmd_t *send_cmd = cmd_get("reset_wdt");
8 /* send command as a message to invoker */
9 send_message(invoker_queue, send_cmd);

10 }
11 }
12
13 /* Invoker thread */
14 void invoker(void){
15 while(1){
16 /* read a command sent by a client */
17 cmd_t *exe_cmd = receive_message(

invoker_queue);
18 /* check if the command is executable */
19 if(check_if_executable(exe_cmd)){
20 /* send the command to the receiver */
21 send_message(receiver_cmd_queue, exe_cmd

);
22 /* wait and receive the command result*/
23 int result = receive_message(

receiver_stat_queue);
24 /* keep an execution log */
25 save_execution_result(exe_cmd, result);
26 }
27 }
28 }
29
30 /* Receiver thread */
31 void receiver(void){
32 while(1){
33 /* wait and receive command from invoker

*/
34 cmd_t *run_cmd = receive_message(

receiver_cmd_queue);
35 /* execute the command */
36 int result = run_cmd.function(
37 run_cmd->fmt,
38 run_cmd->params,
39 run_cmd->nparams);
40 /* Send the result back to the invoker */
41 send_message(receiver_stat_queue, result);
42 }
43 }

2) Commands
Commands are implemented as functions that share a com-
mon interface. As shown in Listing 2 we defined an interface
in C (a typedef) that all commands must implement. Thus,
the receiver can make a generic function call. Any command
is identified by an unique pair of name and numeric ID. They
can receive an arbitrary number of parameters, which can
be either numeric or text data types. The implementation
of a command is very specific, but usually consists of
a wrapper to low-level functions such as device-driver
calls, communication with external subsystems or read/write
processes. For example, Listing 2 shows the implementation
of the command that sets the text and period of the satellite’s
beacon. The command receives two parameters, the period
in minutes and the beacon text as a string, and then calls the
specific driver functions to configure the satellite transceiver.

Listing 2. Command implementation example

1 /* Command interface definition */
2 typedef int (*cmd_function)(char *fmt, char *

params, int nparams);
3
4 /** Register functions in command repository
5 **/
6 int cmd_trx_init(void){
7 cmd_add("update_beacon", cmd_update_beacon,

"%d %s", 2);
8 }
9

10 /** Updates the beacon content and period.
11 **/
12 int cmd_update_beacon(char* fmt, char* params,

int nparams){
13 int period;
14 char beacon[10]; /* Max 10 characters */
15
16 if(sscanf(params, fmt, &period, &becon) ==

nparams) {
17 printf("Parsed: %d, %s", n, s);
18 trx_set_beacon_period(period);
19 trx_set_beacon_text(beacon);
20 return 1;
21 } else{
22 printf("Failed parsing parameters"):
23 return 0;
24 }
25 }

Listing 3. Client implementation example

1 #include "repoCommand.h"
2
3 void taskHousekeeping(void *param){
4 int elapsed = 0;
5 while(1){
6 _sleep(1000); // Sleep 1 second
7 elapsed ++; // Seconds counter
8 // Execute every 10 minutes
9 if((elapsed % 60*10) == 0){
10 // Get command by name
11 cmd_t *new_cmd = cmd_get_str(
12 "update_beacon");
13 // Set command parameters
14 cmd_add_params(new_cmd, 3, "SUCHAI");
15 // Send command to execution
16 cmd_send(new_cmd);
17 }
18 }
19 }

The implementation of this command is independent from
the rest of the system and its functionality may be tested
separately.

Commands are implemented in separated files and
grouped by functionalities. The cmd_update_beacon
is related with the transceiver functionalities, so it is im-
plemented in the cmdTRX.c and cmdTRX.h files. Then,
this command has to be registered in the command reposi-
tory to be available in the system. We use the cmd_add
function, part of the command repository API available
in repoCommand.h, to register the command name, the
function, the parameters format and the number of parame-
ters.
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Once implemented and registered, commands can
be searched and executed using the command repos-
itory API. Usually in a client module (example
taskHousekeeping.c) we include repoCommand.h
to get commands, fill parameters and request command ex-
ecution. As shown in Listing 3, the taskHousekeeping
client requires updating the satellite beacon every ten
minutes. Consequently, the satellite creates a new
“update_beacon” command with the corresponding
parameters and sends the command for execution every ten
minutes.

3) Repositories

Repositories are modules that provide a uniform and thread
safe methods to access (read, write) all data in the system
and to organize the available storage space. In this design,
three data types were identified: the system status variables,
the list of available system commands and the payloads data.
To handle these data types and their attributes, the following
repositories are defined:

• Command repository: This repository is used to store
and give access to the commands available in the
system. Clients use this repository to create a new
command with specific parameters. This repository
is initialized at boot up time and provides read-only
access.

• Status repository: This repository provides access
to the system status variables such as operational
parameters (battery voltage, temperatures, date and
time, position, available energy level, among others),
system health reports (e.g., reset counter, last reset
source, number of days since the last connection with
ground station) and system settings (including operat-
ing mode, enabled subsystems, communication baud
rates and beacon periodicity). Some of these variables
require a persistent storage to maintain the system
coherence and configuration in case of unexpected
resets. In GNU/Linux a SQL database is used, while in
the SUCHAI 2 and 3 OBC (GomSpace™ Nanomind
A3200) these variables are stored in an external FRAM
chip.

• Data repository: General data such as payload results,
system logging, flight plan schedule or telemetry wait-
ing to be downloaded is accessed using this repository.
This repository requires a massive and persistent stor-
age system such as and external SD memory, and the
concurrent access needs to be synchronized to avoid
data races.

The SUCHAI flight software is a free and open-
source (FOSS) project licensed under the GPLv3 li-
cense. The source is hosted on GitHub and can be
found in the following link: https://github.com/spel-uchile/
SUCHAI-Flight-Software. Installation and execution in-
structions are available in the repository and can be tested
on any computer running GNU/Linux.

IV. VALIDATION
As discussed in SectionII, the CubeSat community is con-
cerned about the design and quality of the flight software.
However, defining and ensuring rigorous software quality
criteria is not a simple task. CubeSat projects apply different
techniques such as extensive testing [16], [36], hardware
in the loop simulation [37], static analysis, or the use
of certified language standards [9]. Our approach utilizes
software engineering tools, in the context of embedded
systems development, to track the quality attributes of
the flight software using a visual architecture evaluation
tool. If this visual tool is integrated with the development
process, we can monitor the evolution of the non-functional
requirements and early detect architecture disruptions that
may deteriorate the software quality.

Visual displays allow the human brain to study multiple
aspects of a complex problem in parallel. It is well known
that software visualization allows for a higher level of ab-
straction and a closer mapping to the problem domain [47].
For this reason, we have produced several visualizations
to measure and assess the modularity of the components
involved in our flight software and to extract the architecture
from the source code. Source code visualizations are gen-
erated using a script written in the Pharo programming lan-
guage [48] and based on an agile visualization library called
Roassal [49]. Instructions to use the visualization script
are available in the Git repository server: https://github.
com/spel-uchile/SUCHAI-Flight-Software/blob/master/test/
viz/dependency_graph.md. Additionally we created a simple
web interface, available on https://data.spel.cl/ to interac-
tively navigate across this visualization timeline.

Our validation methodology is complemented with auto-
matic cross-compilation and automated testing to evaluate
portability and reliability of the software. The tools pre-
sented in this section have been included in a continuous in-
tegration server built with Jenkins. On every commit a set of
validations scripts are executed in a pipeline and the results
are reported in the web platform: https://jenkins.spel.cl/. As
Fig. 5 shows, the stages included in the pipeline are:

1) Fetch the SUCHAI Flight Software source code from
GitHub.

2) Generate a set of visualizations of the source code
architecture.

3) Compile the code for GNU/Linux.
4) Recompile the code for three embedded architectures

(AVR32 UC3, ESP32, and Nanomind A3200)
5) Run the test suite in GNU/Linux.
The continuous integration system helps us ensure that

changes in the source code do not break the compilation in
any of the supported platforms or the expected behavior of
the software. Furthermore, extracting visualizations in each
commit tracks changes in the architecture and allows de-
velopers to take actions when the commit is made avoiding
long divergences along the project history. In the same way,
automated testing increases software reliability by adding
traceability to encountered errors.
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Figure 5. Capture of the Jenkins pipeline status. The continuous integra-
tion system can run several stages to extract visualizations, build, and
test the source code to detect any error introduced in a commit.

A. EVALUATION OF MODULARITY USING SOFTWARE
VISUALIZATION
Visualizing software dependencies is a common technique
employed to communicate interaction between components
[50]. In the global architecture, these interactions express
the modularity of the flight software solution. Our visu-
alization tool consists of a script that parses the files in
the source code, classifying them in application (including
main, clients, invoker, receiver, repositories and commands
files), operating system and drivers and associate a color to
each of these components. Then, constructs a directed graph
based in its dependencies. Dependencies are extracted from
the #include directives contained in the source code.
Edges between modules indicate a dependency as described
in the UML model diagram shown in Fig. 2. Two snapshots
of the SUCHAI flight software source code are represented
in Fig. 6. The first snapshot was produced in December 2017
(commit 765c128 on GitHub) while the second in May
2018 (commit 0ca21db on GitHub).

Our visualization shows modules (files having the exten-
sion .c with the corresponding .h) and their dependencies.
Each file is represented as a colored box. The height of
the box indicates the number of lines of code contained
in the module while the width of a box represents the
number dependencies included in the represented module.
For example, the central green box in Fig. 6 represents
the module named repoCommand.c, which represent the
command repository whose purpose is to store and give
access to available commands. This module is one of the
largest modules of the SUCHAI flight software since it is

the highest box. Similarly, the blue box on the top represents
the main.c file. The main is the widest module because
it includes a large number of dependencies, which makes
sense because it is the software entry point.

In the commit 765c128 from December 2017 the flight
software contains only the fundamentals modules to support
command executions. The diagram in Fig. 6 left shows
that client tasks depend on command and data repositories,
command repository includes all command modules, and
data repository includes drivers for data storage handling.
This dependencies graph matches the proposed architecture
described in Fig. 2, except for a circular dependency be-
tween the command repository and the command modules.
This circular dependency is not described nor desired in
the architecture shown in Fig. 2. However, inspection to the
source code reveals that using a command repository func-
tion inside command modules to register new commands in
the system increases the readability and maintainability of
the code.

The diagram of the commit 0ca21db from May 2018
in Fig. 6 right shows the evolution of the software after
several commits. In a similar analysis, we determined that
the architecture is preserved and that no extra dependencies
were added. However, we observe that new clients were
added, one was deleted, new commands were added, while
some modules changed their amount of code. The main
module has reduced the lines of code since some initial-
ization routines were moved to the new taskInit client.
On the one hand, new commands and clients were added,
which means new functionalities; but on the other hand, the
Invoker and the Receiver remains intact, which means
that the commands execution logic was not intervened. A
significant number of lines of code have been added to the
data and command repository; hence, we should concentrate
on testing these modules.

These visualizations can be immediately exploitable by a
software engineer. They are meant to be an early indicator
of (i) a violation of the architecture and (ii) an anomaly
that may be due to exceptional entities. This case can be
observed in Fig. 7 that corresponds to the commit f1d695a
from December 2017. The visualization reveals that a new
client module - the flight plan - was added. Additionally,
we can see a dependency between the taskFlightPlan
client module and the data_storage driver. Although
this commit produced a functional code that passed all
the tests, this new dependency disrupts the proposed archi-
tecture, because a client task should not directly execute
code of a driver module as described in Fig. 2. The
taskFlightPlan client should use the data repository
API or a command instead.

Another example is the SUCHAI I flight software, which
is already in orbit and have been working properly for
more than a year. This software also used this architecture
but Fig. 8 shows a complex dependencies tree between
modules. This is a symptom of high software complexity
where several disruptions of the architectural rules had a
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Figure 6. Modules dependencies comparison between commits 765c128 and 0ca21db.

negative impact on the quality attributes.

B. EVALUATING APPLICATION LAYER ARCHITECTURE
USING SOFTWARE VISUALIZATION
The same visualization tool is used to validate the ar-
chitectural rules of the application layer. The application
layer architecture is based on the command pattern as the
UML diagram in Fig. 3 details. Modules in the application
layer are related by a messaging system to send commands
from Task modules to the Invoker and the Receiver. The
messaging system was implemented as queues in FreeRTOS
and Linux, so we are interested in visualizing the relation
between Task modules and queues. Figure 9 shows the

structure and evolution of the application layer after several
months of development. Only Task modules of type Client
are using the queue to send commands for execution.
Although some Client modules were added and removed
from commit 765c128 to 0ca21db, the architecture of
the application layer remains intact. The evolution shown in
Fig. 6 contrasts from the results in Fig. 9 because with time,
new features, lines of code and modules were added, but the
execution logic in the upper layer has remained intact.

12 VOLUME 4, 2016

https://data.spel.cl/viz_html/2017-12-11.21:24:57.765c128.html
https://data.spel.cl/viz_html/2018-05-22.22:51:08.0ca21db.html
https://data.spel.cl/viz_html/queues/2017-12-11.21:24:57.765c128.html
https://data.spel.cl/viz_html/queues/2018-05-22.22:51:08.0ca21db.html


This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2927931, IEEE Access

Gonzalez et al.: An architecture-tracking approach to evaluate a modular and extensible flight software for CubeSat nanosatellites

Figure 7. Example of an architecture disruption in commit f1d695a. The
flight plan module includes code from the data storage driver, but this
is not allowed in the architecture. Client modules should use the data
repository API instead.

C. EVALUATING RELIABILITY AND PORTABILITY
USING A CONTINUOUS INTEGRATION SYSTEM FOR
TESTING
1) Testing software reliability
Our strategy to ensure software reliability is based on
automated testing, which includes unitary and integration
tests. Unitary tests can be applied to individual commands,
because they are functions that can be called independently,
as an API or simple interfaces. A command developer
should provide the corresponding unitary test, and Jenkins
will execute automatically the unitary tests using CUnit
framework.

Integration tests are mini-applications that run full use
cases such as running a command with different variables,
running load test by executing hundreds of commands in a
second, adding and removing commands in the flight plan,
among others. We expect that the flight software can run
these cases without crashing, finishing within a certain time,
and that all commands return a valid code. These behaviors
are tested by comparing execution log outputs with the
expected ones; if they do not match, the maintainers can
review the report and fix potential issues.

2) Testing software portability
The three-layer architecture used to design and program
our flight software should allow porting it to new platforms
straightforward. As described in Section III, the OS layer
has been ported to GNU/Linux and FreeRTOS. Running
the software in GNU/Linux helps us to test and debug
the fundamental logic of commands execution as well as
to test any change in the API or interfaces. For new
collaborators, especially non-embedded systems developers,
it is significantly easier to program new features in their

laptops running GNU/Linux rather than working with an
embedded system such as the Atmel™ AVR32 included in
the Nanomind A3200, which is actually the flight version
and cannot be damaged in the developing process. Later,
the results obtained in a GNU/Linux platform have to
be replicated in the satellite OBC with the help of more
experienced team members. Section II described how many
CubeSats are using GNU/Linux in their flight software.

FreeRTOS is an operating system that supports many of
the embedded platform currently used in CubeSats such as
the PIC24F (SUCHAI 1), the AVR32 (Nanomind A3200
used in SUCHAI 2 & 3), among others. Consequently,
we ported the drivers’ layer to three different hardware
platforms using the SDK available from manufactures:

• Atmel™ AVR32UC3: we use the UC3-A3 XPLAINED
evaluation board, which mount an AT32UC3A3256 mi-
crocontroller, as a low-cost alternative to the Nanomind
A3200. In this platform, we can test the majority of
the SUCHAI 2 and 3 flight software features without
compromising the flight-model OBC. We use the
Atmel™ ASF libraries, which include drivers, utilities,
and FreeRTOS v7.0.0 for this particular board.

• Espressif™ ESP32: this is a popular, low-cost, em-
bedded system that integrates a two-core processor
with WiFi and Bluetooth capabilities. Because this
platform supports FreeRTOS, using the SUCHAI flight
software here may extend the usage of our solution to
the Internet of Things (IoT) applications. Espressif™
provides an SDK with drivers, libraries and FreeRTOS
v8.2.0.

• Gomspace™ Nanomind A3200: this is the actual
OBC used in the SUCHAI 2 and 3 CubeSats. It mounts
an AT32UC3C0512C microcontroller and Gomspace™
provides a customized version of the Atmel™ ASF,
which includes drivers, utilities and FreeRTOS v8.0.0
for this particular OBC.

Through a simple configuration file (config.h) we
can select the target platform and run the corresponding
compilation script. Listing 4 shows a configuration file ready
to compile for the Nanomind platform; if we comment the
FREERTOS define in line 3 and uncomment LINUX in
line 2, the software can be compiled for GNU/Linux. If a
command has to implement code for a specific platform,
it is possible to use this definition to do a conditional
compilation.

Our pipeline in Jenkins automatically changes this config-
uration file, compiles for every platform, and generates the
binaries. If a change breaks the code for a specific platform,
the maintainers are notified, so they can react and fix any
potential problem.
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Figure 8. Modules dependencies visualization of SUCHAI I flight software. This flight software is currently in orbit.
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Figure 9. Application layer architecture visualization. Relation between
Task modules, Invoker, Recevier and messages queues for commits
765c128 and 0ca21db.

Listing 4. Configuration file

1 /* Select one operating system */
2 // #define LINUX // Use Linux
3 #define FREERTOS // Use FreeRTOS (select arch)
4 /* Select the correct architecture */
5 #ifdef FREERTOS
6 // #define ESP32 // Run in ESP32
7 // #define AVR32 // Run in AVR32
8 #define NANOMIND // Run in Nanomind A3200
9 #endif

10
11 /* System debug configurations */
12 // Debug levels
13 #define LOG_LEVEL LOG_LVL_INFO
14 ...

Listing 5. Adding commands to existing modules

1 //File: cmdObc.h
2 #include "wdt.h"
3 /** Register on OBC commands
4 */
5 void cmd_obc_init(void);
6
7 /** Reset the watchdog timer
8 */
9 int obc_reset_wdt(char *fmt, char *params, int

nparams);
10
11 //File: cmdObc.c
12 void cmd_obc_init(void){
13 cmd_add("reset_wdt", obc_reset_wdt, "", 0);
14 }
15
16 int obc_reset_wdt(char *fmt, char *params, int

nparams){
17 return = wdt_reset();
18 }

V. CASE STUDY: EXTENDING THE SOFTWARE
In this section, we aim to exhibit attributes such as ex-
tensibility and modularity as described in requirements
Q1 and Q2 by extending the software functionalities. The
SUCHAI flight software has two strategies to extend the
system functionalities. The first one is the addition of new
commands that can be executed from any existing client.

Figure 10. Comparing the software architecture after adding a com-
mand in commit 79ed268. We superimpose both diagrams and compare
changes using colors differences. Gray means that both diagrams are
identical. However, differences are detected in the main module and in
the data repository commands module (cmdDRP.c)

For example, if we implement the “reset watchdog timer”
command, it can be issued by a remote telecommand or the
satellite can execute it periodically. The second extension
strategy is the addition of a new client that can execute
any of the existing commands to achieve a specific control
goal. For example, to add a new client that implements a
“software watchdog timer” which resets the satellite if a
certain telecommand has not been sent during a specific
period.

A. EXTENDING BY ADDING NEW COMMANDS

1) Adding commands to existing modules

Let consider that the “reset watchdog timer” command
is related to the commands that manage the OBC func-
tionalities, so we included it in the existing cmdOBC.c
file. Also, that the OBC vendor provides a driver module
called wtd.c/.h to use the watchdog timer peripheral.
As shown in listing 5, only five lines of code (excluding
comments) were necessary to implement and register a new
command called “reset_wdt”. Our visualization tool
in Fig. 10 shows that this modification only affects one
module keeping the application logic intact. Although the
command has been implemented and registered, it has not
being used by any client module yet, so adding this new
feature has little or no impact in the entire system.
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2) Adding a new commands module
In contrast, if we consider that the watchdog timers related
commands should be part of a separated module, we can
create a new pair of files called cmdWDT.c and cmdWDT.h
and implement the reset-watchdog command inside. As
described in listing 6 we added 9 lines of code in four files,
one new module was added, and the repoCommand.c
module was modified. This is because command mod-
ules need to be registered in the command repository,
which is done by calling an initialization function. The
cmd_repo_init() function in the command repository
is called in the main function to initialize all command
modules.

B. EXTENDING BY ADDING NEW CLIENTS
In this section, we implement the control of two watch-
dog timers using the commands implemented previously
in Section V. Thus, the flight software was extended by
adding a new client module to perform the control logic
described in the Algorithm 1. In this logic, the client
performs two tasks. First, periodically reset the OBC watch-
dog timer (as a signal of correct functioning) using the
“reset_wdt” command. Second, implements a “software
watchdog timer” by sending the “reset” command if the
variable “elapsed_gnd_timer” has not been cleared
by a telecommand (which is a signal of system malfunction).

This client was implemented in the taskWDT.c and
taskWDT.h files; additionally, the task is launched from
the main function as described in Listing 7. In this
case, the modification consists of the implementation of
simple control logic to send commands periodically. To
use the commands, we included the command repository
API (repoCommand.h). Similarly, the data repository
API from repoData.h was included to read and update
system-wide variables such as the timer for the software
watchdog. This variable should be reset by a command

Algorithm 1 Control logic to reset watchdog timers

max_obc_wdt ← 10
max_gnd_wdt ← 3600 ∗ 48
elapsed_obc_timer ← 0
elapsed_gnd_timer ← 0
loop

sleep 1 second
elapsed_obc_timer ← elapsed_obc_timer +1
elapsed_gnd_timer ← elapsed_gnd_timer +1
if elapsed_obc_timer > max_obc_wdt then

elapsed_obc_timer ← 0
send command "reset_wdt"

end if
if elapsed_gnd_timer > max_gnd_wdt then

send command "reset"
end if

end loop

executed from the ground station, or the WDT client will
send the “reset” command. Figure 11 was generated using
our visualization tool and showed that only the main mod-
ule was modified, and one new module was created. No
dependencies with existing modules were added except by
the usage of the command and data repository APIs.

Listing 6. Adding commands to existing modules

1 //File: cmdWDT.h
2 #include "wdt.h"
3 /**Register on watchdog timer (WDT) commands
4 */
5 void cmd_wdt_init(void);
6
7 /** Reset the watchdog timer
8 */
9 int wdt_reset_timer(char *fmt, char *params,

int nparams);
10
11 //File: cmdWDT.c
12 void cmd_wdt_init(void){
13 cmd_add("reset_wdt", wdt_reset_timer, "",0)

;
14 }
15
16 int wdt_reset_timer(char *fmt, char *params,

int nparams){
17 return wdt_reset();
18 }
19
20 //File repoCommand.h
21 #include cmdWDT.h
22
23 //File repoCommand.c
24 int cmd_repo_init(void){
25 // Init existing repos.
26 cmd_test_init();
27 cmd_obc_init();
28 cmd_drp_init();
29 // Init new cmd repo.
30 cmd_wdt_init();
31
32 return CMD_OK;
33 }

Listing 7. Adding new client module

1 //taskWDT.h
2 #include "repoCommand.h"
3 #include "repoData.h"
4
5 void taskWDT(void *param);
6
7 //taskWDT.c
8 #include "taskWDT.h"
9

10 void taskWDT(void *param) {
11
12 // Seconds to send "reset_wdt" command
13 unsigned int max_obc_wdt = 10;
14 // Seconds to send "reset" command (48hrs)
15 unsigned int max_gnd_wdt = 3600*48;
16 // OBC timer counter
17 unsigned int elapsed_obc_timer = 0;
18 // Get GND timer counter
19 unsigned int elapsed_gnd_timer = 0;
20
21 while(1) {
22 // Sleep task to count seconds
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23 osDelay(delay_ms);
24 elapsed_obc_timer ++;
25 // Get current counter value
26 elapsed_gnd_timer = dat_get_system_var(

dat_gnd_wdt);
27 // Update GND timer counter
28 dat_set_system_var(dat_gnd_wdt,

elapsed_gnd_timer+1);
29
30 // Periodically reset the OBC watchdog
31 if(elapsed_obc_timer > max_obc_wdt) {
32 elapsed_obc_timer = 0;
33 cmd_t *rst_wdt=cmd_get_str("reset_wdt")

;
34 cmd_send(rst_wdt);
35 }
36
37 // If nobody reset elapsed_gnd_timer
38 // then reset the OBC
39 if(elapsed_gnd_timer > max_gnd_wdt) {
40 cmd_t *rst_obc = cmd_get_str("reset");
41 cmd_send(rst_obc);
42 }
43 }
44 }
45
46 //main.c
47 #include taskWDT.h
48
49 int main(void)
50 {
51
52 /* On reset */
53 on_reset();
54 /* Initializing shared Queues */
55 dispatcher_queue = osQueueCreate(25,
56 sizeof(cmd_t *));
57 executer_stat_queue = osQueueCreate(1,
58 sizeof(int));
59 executer_cmd_queue = osQueueCreate(1,
60 sizeof(cmd_t *));
61
62 os_thread threads_id[7];
63
64 /* Crating system task (the others are

created inside taskDeployment) */
65 osCreateTask(taskDispatcher,"invoker",

15*256, NULL, 3, &threads_id[0]);
66 osCreateTask(taskExecuter, "receiver",

15*256, NULL, 4, &threads_id[1]);
67
68 /* Creating clients tasks */
69 osCreateTask(taskWDT, "WDT", 15*256, NULL,

2, &threads_id[2]);
70 osCreateTask(taskConsole, "console", 15*256,

NULL, 2, &threads_id[3]);
71 osCreateTask(taskHousekeeping, "housekeeping

", 15*256, NULL, 2, &threads_id[4]);
72 osCreateTask(taskCommunications, "comm",

15*256, NULL,2, &threads_id[5]);
73 osCreateTask(taskFlightPlan,"flightplan"

,15*256,NULL,2,&threads_id[6]);
74
75 /* Start the scheduler. Never return */
76 osScheduler(threads_id, n_threads);
77 return 0;
78 }

Figure 11. Comparing software architecture after adding a client module
and new commands in commit de059ae. The module task watchdog
(taskWatchdog.c) was added, and new lines of code were added to the
OBC commands module (cmdOBC.c).

VI. DISCUSSION
A. THE SUCHAI CUBESATS PROGRAM EXPERIENCE

The development of this flight software started with the
SUCHAI 1 CubeSat, launched into space in 2017. This first
version was successfully proven in space, demonstrating
that the concept of the command executor architecture is
feasible and the functional requirement were met. However,
due to common limitations in the development of CubeSat
projects, we had concerns about the quality attributes and the
coverage of non-functional requirements of the implemented
software. When the visualization tools where first developed
and used to analyze the SUCHAI 1 flight software we
realized that, at some point of the development history,
source code changes could disrupt the architectural rules
without affecting functionalities (See Fig. 8. As a result,
it was difficult to verify quality attributes or the software
architecture itself.

With more CubeSat in the production line (SUCHAI
2, 3 and PlantSat), we decided to re-implement the same
software architecture of SUCHAI I in a second version
of the flight software, as described in Section III. In this
occasion, we integrated the visualization tool, tests and
cross-compilation tasks in a continuous integration server.
The requirements and design guidelines were the same as
the first CubeSat, but this time the software quality attributes
have been tracked closely during the development process.
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The results of Section IV show that the automatically gen-
erated visualizations can be compared with the architecture
UML diagrams shown in Figures 2 and 3 to determine
architectural rules breaks, such as incorrect dependencies
or miss-usage of the messages paths.

Up to this moment, the concept of a flight software based
on the command design pattern has demonstrated being use-
ful in the nanosatellite program of the University of Chile.
Functional requirements related to periodical telemetry ac-
quisition, localized telemetry acquisition, system integrity
operations (housekeeping), and mission re-planning has
been successfully translated to commands and implemented
in these satellites. This solution has also demonstrated
advantages in minimizing and debugging software errors,
because, independently of the task, the software functioning
is well known.

Using the portability capabilities, we have discovered
advantages in using the same flight software in the ground
segment (x86_64 computers with GNU/Linux) and also in
related projects, such as balloons with radiosondes (based
on Raspberry Pi).

B. VISUALIZATIONS UNDER TEST
To determine the usability of the visual code analysis tool
presented in section IV, we conducted a user-study experi-
ment with a group of 11 persons that we considered potential
flight software developers in an educational CubeSat project.
The group was composed of undergrad students (5), grad
students (2), and engineers (4) with software development
skills mainly in Python (10), C (8), Java (8), and C++
(6). In total, four (4) individuals have worked with the
SUCHAI Flight Software previously, three (3) have used
a visualization tool before, and the authors were not part
of the experiment. Participants were asked to perform a
series of tasks using the visualization to extract relevant
information about the software architecture and the impact
of code changes in global architecture. These tasks were
divided into four steps, described as follows:

• T1. Read a description of the visualization ob-
jectives, interact with a figure similar to Fig. 6
from commit 765c128 and answer the following
questions:
– Q1. In a scale from 1 to 5. How much do you

understand the visualization?
– Q2. Which module contains the most lines of code?
– Q3. Which module contains the most dependencies?
– Q4. Which module depends on a driver?

• T2. Understand the architecture using Fig. 2 and
find architecture disruptions using Fig. 7:
– Q1. Can a "Task" module use a "Command" module

directly in Fig. 2?
– Q2. Can a "Task" module use the "Queue" module

directly in Fig. 2?
– Q3. Can a "Task" module use any "Driver" module

directly in Fig. 2?

Table 2. Summary of survey results

Task Question Answers Correct answer
Correct Incorrect

T1

Q1 NA NA 11 subjects understood the
visualization (option 5)

Q2 9 2 repoCommand.c
Q3 10 1 main.c
Q4 10 1 repoData.c

T2

Q1 11 0 No
Q2 11 0 Yes
Q3 11 0 No
Q4 3 8 Yes
Q5 2 0 No
Q6 5 6 Yes

T3
Q1 5 6 4
Q2 9 2 main.c, repoData.c,

repoCommand.c,
datastorage.c, cmdOBC

Q3 2 9 taskTest.c, cmdTestCom-
mand.c

T4 Q1 6 5 main.c, cmdDRP.c

– Q4. Does a "Task" module of type "Client", "Re-
ceiver" or "Invoker" use a "Command" module di-
rectly in Fig. 7.

– Q5. Does a "Task" module of type "Client", "Re-
ceiver" or "Invoker" use the "Queue" module directly
in Fig. 7.

– Q6. Does a "Task" module of type "Client", "Re-
ceiver" or "Invoker" use any "Driver" module di-
rectly in Fig. 7.

• T3. Determine changes in the architecture compar-
ing the visualization of two commits in Fig. 6:
– Q1. How many modules were added in the Fig. 6

commit 0ca21db?
– Q2. Considering the modules existing in both com-

mits of Fig. 6. Which modules were significantly
changed?

– Q3. Which module was deleted in Fig. 6 from
commit 765c128 to commit 0ca21db?

• T4. Determine changes in the architecture compar-
ing the visualization of two commits in Fig. 10
– Q1. Which modules present changes between com-

mit db9def4 and commit 79ed268 in Fig. 10?
Table 2 summarizes our survey results. It shows that the

proposed visualization tools can be useful visualizing how
changes in the source code affect the general structure of the
software. If considerable changes in the number of lines of
code or dependencies are detected in some modules, then it
is necessary to check that code in detail. Architectural rules
issues, such as incorrect dependencies can be detected with
a detailed analysis of the figures. However, it is still difficult
to analyze some specific questions, such as modules added
or removed, some specific dependencies changes or actual
changes in the functionalities.

In their comments, users valued the integration of these
visualizations within the software development because they
could understand better how the software is organized and
how changes affect its organization. However, we have to
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improve user interaction, colors, and data representation
to emphasize changes. The visualization tool is probably
not yet suitable for less experienced team members, but
the capacity to automatically display architectural relations
in software under development is valuable for software
architects and quality assurance engineers.

C. ARCHITECTURE LIMITATIONS

Due to the asynchronous nature of the command design
pattern architecture presented in Fig. 3, the software cannot
execute commands in accurate timing. In the flight soft-
ware, commands pass through the invoker and arrive in the
receiver where the command is executed. If a command
takes considerable time to run, the execution of all other
commands in the queue will be delayed. However, this
behavior was chosen by design, because microcontrollers
usually have very limited resources. Queuing commands for
an organized execution helps to control the program flow
and reduce errors derived from concurrency, memory usage
or CPU load. It is worth noting that a natural extension of
this solution is to add multiple receivers to implement a
thread pool pattern.

VII. CONCLUSIONS
CubeSat nanosatellites emerged as an accessible methodol-
ogy to reach space. The accessibility is achieved by reducing
the mission cost through standardization, size and weight
reduction, and adding agility to the development. It has
allowed that actors with limited experience in the topic or far
from large space agencies, such as students at universities,
research centers, and startup companies, can reach space
in short amount of time. However, this flexibility has also
added risk. From reports of NASA to engineering thesis,
we encountered that flight software design and development
is an active concern in the CubeSat community. Software
complexity may compromise the space mission success;
therefore it is relevant to design and develop high-quality
flight software. In CubeSat flight software development,
this flexibility may imply that students can come and go
to the mission in quarters or semesters, similarly to young
engineers in a startup company. This flexibility requires a
closer follow up of the code under development. Therefore,
our approach moves the efforts to design a software solution
that meets important quality criteria and to maintain the
proposed software architecture during the development cycle
in an agile manner. We propose an architecture-tracking
tool to maintain control of the flight software architecture
on real time during the project development, and in this
manner, also monitor the quality of the flight software. We
use the development of the SUCHAI CubeSats to show the
use of the methodology. We present the requirements for
the SUCHAI program flight software and the designed ar-
chitecture that satisfy them. The architecture is the structure
closely followed for the architecture-tracking tool, since it
is assumed that if the architecture is followed at all time

the quality of the flight software, which is related to the
accomplishment of the requirements, by design will be met.

Motivated by a review of a series of CubeSat missions and
flight software solutions we selected a set of non-functional
and functional requirements that are relevant to these space
missions. We identified five quality attributes that a flight
software design should consider: i) it should be easily
extensible (Q1), ii) the flight software should be modular
(Q2), iii) the flight software should be reliable (Q3), iv)
the flight software should be portable and reusable (Q4),
and v) the flight software should scale to the development
and operation or large nanosatellite constellation (Q5). The
functional requirements were extracted from a use case that
centered our attention on the necessity of implementing a
system capable of executing commands, both remote and
self-generated. We therefore implemented a flight software
based on the command processor design pattern on top of
a three-layer architecture. This three-layer architecture en-
abled the portability of the software (Q4); in fact, we ported
the flight software to two operating systems (GNU/Linux
and FreeRTOS) and three embedded platforms (AVR32UC3,
ESP32, and Nanomind A3200). The command processor
pattern generated a solution that can be easily extensible
(Q1) by adding new commands or new clients. Moreover,
clients and commands may be removed without affecting
the software’s base structure (Q2). Unitary test, integration
tests, and quality monitoring tools were designed to ensure
software reliability (Q3).

The proposed solution presents two strengths. First, it is
based on three general functional requirements derived from
representing the satellite operations as a command executor.
We have been successfully able to translate our missions
specific functional requirements in the form of commands
and commands execution logic. Such a generic and flexible
approach may be of interest to the CubeSat developers
community. If the expected behavior of a nanosatellite
mission matched the command executor model, then this
flight software can be adapted for that mission with a level
of flexibility inside this model. However, as this behavior
is fixed in the upper abstraction layer and by design the
command execution is asynchronous, some missions with
more demanding requirements may not fit.

Second, as the architecture is inspired by a well-known
design pattern, the implemented solution is simple and clear.
The main command execution mechanism is implemented
once. Then, successive changes in the code are related to the
implementation of new commands and to determine when
or where these commands are executed. Quality attributes
should not be modified. However, to corroborate that the
architecture and the quality requirements are effectively
accomplished in real code, we developed a set of validation
tools. This tools are based on software engineering frame-
works and were added in a continuous integration server
to track the mentioned software quality criteria along the
project history. Our validation methodology includes the
following steps:
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1) Visual analysis of the code: A visual support of the
source code helps to detect architecture disruptions in
perfectly working code. However, for our purposes, this
situation can represent potential errors or a deteriora-
tion in software quality. Dependencies, message paths,
and differences between commits were visualized to
easily determine which components are affected by a
source code change.

2) Automated tests: Test execution was automated by
running unitary and integration test on every commit.
Thus we can detect errors early during the development
process.

3) Automated cross-compilation: Being able to automat-
ically cross-compile code for all the supported plat-
forms is essential to ensuring the software portability
at any moment of the development process. With
this technique, the collaborators can add new features
without having to deal with platform-specific issues.
Features tested in GNU/Linux can be integrated later
in the embedded platforms by more experienced team
members.

We were able to analyze attributes such as extensibility
and modularity using a real example of CubeSat under
development. That is, extending the features in the actual
source code, and determining the effects of these changes
over the architectural rules using the proposed visualiza-
tion framework. Consequently, using the quality assurance
methodology, we verified that the flight software source
code actually matches the proposed architecture and thus,
the quality requirements. The study was useful at showing
that the software on board the SUCHAI-1 formerly departed
from the desired architecture without being identified as
disruptive change at development time. We are also using
this approach in the development of the SUCHAI-2 and
-3 missions; thus, we can control and track the quality
of the software at any point of the development history.
At the moment the same flight software solution is being
used in four CubeSats and three radiosonde missions at the
University of Chile, so we see a scalability potential for
using this flight software in nanosatellite constellations.

The flight software and the visualization tools were devel-
oped as open source projects. With this decision we not only
expect to the community to revise and improve our work,
but also we expect to facilitate and make more robust the
development of Cubesat-based missions, especially those of
new actors. The source code of the SUCHAI flight software
can be found in the following GitHub repository https://
github.com/spel-uchile/SUCHAI-Flight-Software, the visu-
alization history in the following link http://data.spel.cl/, and
the continuous integration system is hosted in the following
address https://jenkins.spel.cl/.
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