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Abstract—Automated unit test generation consists of two
complementary challenges: Finding sequences of API calls that
exercise the code of a class under test, and finding assertion state-
ments that validate the behavior of the class during execution.
The former challenge is often addressed using meta-heuristic
search algorithms optimising tests for code coverage, which are
then annotated with regression assertions to address the latter
challenge, i.e., assertions that capture the states observed during
test generation. While the resulting tests tend to achieve high
coverage, their fault finding potential is often inhibited by poor or
difficult observability of the codebase. That is, relevant attributes
and properties may either not be exposed adequately at all, or
only in ways that the test generator is unable to handle. In
this paper, we investigate the influence of observability in the
context of the EvoSuite search-based Java test generator, which
we extend in two complementary ways to study and improve
observability: First, we apply a transformation to code under test
to expose encapsulated attributes to the test generator; second,
we address EvoSuite’s limited capability of asserting the state
of complex objects. Our evaluation demonstrates that together
these observability improvements lead to significantly increased
mutation scores, underscoring the importance of considering the
class observability in the test generation process.

Index Terms—Observability, Automatic Test Generation, Mu-
tation Analysis

I. INTRODUCTION

Testing is a key aspect of the software development cycle,
but it is also considered one of the most time-consuming
tasks for developers [1], [2]. To support developers in writing
unit tests to verify the behavior of their code, research has
therefore proposed different approaches and tools to automat-
ically generate unit tests [3]–[5]. These tools produce tests
consisting of sequences of statements that satisfy predefined
testing goals, such as maximizing the code coverage. While
studies have demonstrated that automatically generated tests
succeed in achieving high code coverage, they also showed
that these tests are limited in their effectiveness at revealing
faults [6]–[10]. One factor influencing this is a poor choice
of test assertions, which often fail to establish a relationship
between the methods being tested and what they check [11].

An important reason contributing to this issue is the ob-
servability of the class under test, i.e., the ability to access
(and check) the internal state of an object. For example,
consider the DbConnectionBroker class (Listing 1), which is

public class DbConnectionBroker{
private int maxConnections = 0;
//...
public void release(DbConnectionAttributes attrs) {
if (attrs.getIndex() >= 0 &&
this.attributesArray[attrs.getIndex()] != null) {
if (attrs.getIndex() < this.min) {

this.attributesArray[attrs.getIndex()].free();
--this.maxConnections;

} else {
this.disconnect(attrs);

}
} else {

this.disconnect(attrs);
}

}
}

Listing 1. The DbConnectionBroker class does not allow verifying if the
release method works as expected.

public class HtmlViewerPanel extends JPanel {
private URL _currentURL;
...
public synchronized void goForward(){
if (_historyIndex > -1 &&

_historyIndex < _history.size() - 1) {
displayURL(_history.get(++_historyIndex));

}
}
private void displayURL(URL URL) {
...
_currentURL = url;
...

}
public URL getURL() {
return _currentURL;

}
}

Listing 2. The internal state of HtmlViewerPanel objects is accessible but
current test generators cannot make use of that information.

responsible for handling database connections in the biblestudy
open source project. When testing the release method, a test
generator will struggle to create an appropriate assertion as
the method neither has a return value to check, nor is the
private maxConnections attribute publicly accessible for use
in an assertion. A recent study [11] revealed that in most
cases (69%) when automatically generated tests fail to produce
appropriate assertions, the class under test lacks methods to
verify the effects of the behavior being tested.

Even if the class under test allows inspecting the internal
state, test generators may be unable to make use of that infor-



mation. For example, consider the HtmlViewerPanel class in
Listing 2, taken from the open source project squirrel-sql: The
method goForwards moves the content of an HTML viewer
forward to the next URL, which is stored in the attribute
_currentURL. While the method again does not provide a
return value on which an assertion can be generated, in this
example there actually is a means to access the internal state,
as the getURL method allows retrieving the currently stored
URL. However, the popular EvoSuite unit test generator [3],
like other tools, will nevertheless fail to produce an appropriate
assertion as it only considers getter functions that return
primitive datatypes (e.g., integers or Booleans).

Without appropriate assertions, tests may miss faults [12].
The urgency of this problem has been demonstrated by a recent
study [13] that found that low observability led to inconsistent
results in EvoSuite, as measured by the mutation score (i.e.,
a proxy metric estimating the fault finding potential of tests).
Additionally, although various studies have shown that observ-
ability is an aspect that makes test creation difficult [14], [15],
little is known about the extent to which limited observability
negatively impacts test generation algorithms. In this paper,
we therefore aim to assess the impact of class observability
on the effectiveness of EvoSuite’s automatically generated
tests; the central research question consequently is: To what
extent does the observability of the class under test impact the
effectiveness of the generated tests?

In order to answer this research question, we designed a
study where we automatically increased class observability
through two EvoSuite extensions addressing two types of ob-
servability problems. The first extension increases the visibility
of class attributes by automatically injecting public accessors
into private and protected attributes. The second extension
improves EvoSuite’s ability to inspect the states of composed
objects (i.e., non-primitive types) by generating assertions that
recursively check their states. We then conducted an extensive
experiment in which we generated tests for a well-known set of
100 complex classes from the SF-110 dataset [16]–[18] using
EvoSuite, both with and without our extensions, separately
and together. This study seeks to contribute to the literature
on how test-generation tools can produce more effective tests
by increasing class observability.

In detail, this paper makes the following contributions:
• We propose an observability transformation that exposes

internal object states to automated test generators.
• We propose an extension of existing assertion generation

techniques for asserting on states of complex objects.
• We empirically evaluate the effects of observability on a

sample of 100 open source Java classes.
Our study reveals that increasing the visibility of class

attributes alone significantly increased the mutation scores of
the generated tests for 26 out of the 100 classes. When we both
increased visibility and enabled EvoSuite to recursively assert
composed objects, the mutation score improved significantly
for 26 classes. These results demonstrate that observability
has a substantial and significant impact on the effectiveness
of assert generation and the mutation score. However, we

recommend further research on techniques that improve the
observability and testability of classes to determine when and
how to apply such strategies effectively.

II. OBSERVABILITY CHALLENGES IN TEST GENERATION

Software testability, defined as the ease of testing a software
artifact, plays an important role for testing. High testability
simplifies test creation, whereas low testability can signifi-
cantly increase the time and effort required in the development
of unit tests [19]–[21]. Various factors have been shown to
induce negative testability, such as controllability [22], com-
plexity [23], cohesion/coupling [24], understandability [25],
and inheritance [26], with observability being particularly
important and subject of extensive research [14], [27].

Observability is the ability to monitor a program’s behavior
through its outputs [28], therefore, it represents an important
aspect in verifying correct input processing [14], [29]. In
classes with limited observability, creating unit tests and
especially their assertions, becomes a challenge specifically
for test generation tools. A previous study showed that limited
observability of class attributes may lead to inconsistencies
in automatically generated tests, particularly inconsistencies
between the test target goals and the generated assertions [11].
For example, resulting assertions may not be related to the
intended behavior being tested. In the following paragraphs,
we describe two root causes of these inconsistencies.

A. Limited Object State Visibility

Listing 1 showed that if the class under test lacks mech-
anisms to verify that an object reaches the expected state, it
becomes difficult to create effective assertions, even manually.
This issue arises because, without access to the internal state, it
is challenging to confirm whether the methods have performed
as intended. For instance, consider the ScriptOrFnScope class
shown in Listing 3, and the two resulting tests automatically
generated by EvoSuite for it shown in Listing 4.

class ScriptOrFnScope {
private int braceNesting;
private ScriptOrFnScope parentScope;
private ArrayList subScopes;
private Hashtable identifiers = new Hashtable();
private Hashtable hints = new Hashtable();
private boolean markedForMunging = true;
private int varcount = 0;
...
void preventMunging() {
if (parentScope != null) {
markedForMunging = false;

}
}
void munge() {
if (!markedForMunging) { return; }
...
for (int i = 0; i < subScopes.size(); i++) {
ScriptOrFnScope scope =
(ScriptOrFnScope) subScopes.get(i);

scope.munge();
}

}
}

Listing 3. Excerpt of ScriptOrFnScope class.



public void test09() throws Throwable {
ScriptOrFnScope scope0 = new ScriptOrFnScope((-870), (

ScriptOrFnScope) null);
ScriptOrFnScope scope1 = new ScriptOrFnScope((-870),

scope0);
scriptOrFnScope1.preventMunging();
scriptOrFnScope1.munge();
assertFalse(scope0.equals((Object)scope1));

}
public void test10() throws Throwable {
ScriptOrFnScope scope0 = new ScriptOrFnScope((-870), (

ScriptOrFnScope) null);
scope0.preventMunging();

}

Listing 4. Generated tests for ScriptOrFnScope class.

EvoSuite generates regression assertions for a given test by
tracing its execution, and then elaborating all possible asser-
tions using basic heuristics. For example, for each primitive
return value it will add an assertion that compares the return
value to the one observed during the execution, and for all non-
primitive objects contained in the test it will create assertions
comparing the values returned by all getter functions with the
observed values. Thereby, a getter is simply identified as a
parameterless method that returns a primitive value and has
no side-effects. In a second step, EvoSuite will then iteratively
insert mutations into the code under test and filter out those
assertions that can successfully reveal a difference between
the executions on the original code and the mutated code. The
result is a minimized set of assertions supposed to check only
attributes relevant to the execution [30].

As the ScriptOrFnScope class provides no public accessors
or other means to check the state of variables used by
the methods under test, specifically the preventMunging and
munge attributes, none of the assertions generated using this
approach can reveal a difference in behavior induced by the
mutants. This may result in a test without any assertions at
all, like test10. To avoid filtering all assertions, EvoSuite
implements some heuristics that try to select arbitrary but
plausible assertions, such as assertions at the end of the test
case like the assertion in test09. This assertion attempts
to compare the states of two objects, but this comparison
is ineffective because the class ScriptOrFnScope does not
override the equals method. Consequently, the equals method
only checks if the two variables reference the same object,
which is not the case. As a result, unless an exception is thrown
during execution, the test will always pass independently of the
presence of faults, and it provides no meaningful validation.

B. Asserting Composed Object States

Even when a class contains methods that provide visibility
of its internal state, the complexity escalates when creating
assertions for non-primitive objects, which are objects that
have other objects as attributes. Currently, EvoSuite gener-
ates five types of assertions: primitive assertions, comparison
assertions, inspector assertions, field assertions, and string
assertions. Some of these assertions, such as inspector and field
assertions, help to assert the final state of an object after test
execution. For instance, they can inspect a private primitive

attribute through an inspector method (e.g., an accessor) or
directly access the primitive field if it is public.

However, these types of assertions do not check the state
of non-primitive objects (other than comparing against null),
such as objects that have other objects as attributes. As a result,
it is not possible to detect bugs related to the attributes of inner
objects. For example, consider the class HtmlViewerPanel

in Listing 2 and its method goForwards, which helps users
navigate in the HTML viewer by moving forward to the next
URL. During the mutation testing step of assertion generation,
EvoSuite injects bugs into the if condition within the method
goForwards. When the if condition is met, the URL object is
updated through the method displayURL. Although the class
has a public accessor for the attribute _currentURL, EvoSuite’s
assertions are unable to validate if the URL to which the HTML
viewer moves forward is correct. To do so would require
checking if the state of the URL object is correct. However,
since the URL object is an attribute of HtmlViewerPanel, it is
necessary to assert the state of the inner objects.

C. Motivation

Automatically generating tests for classes with restricted
observability presents a formidable challenge. Most test gen-
eration tools focus on achieving high code coverage, often
overlooking the testability of the class under test. Especially
observability greatly influences the formulation of effective
assertions and is directly reflected in the (low) mutation scores.
Our examples illustrate that even during manual test creation
it may be challenging to generate feasible assertions in some
scenarios. Moreover, recent research highlights a disconnec-
tion between the assertions and the branches targeted in tests
due to limited observability [11]. Our research is motivated
by the goal of understanding how observability impacts the
effectiveness of generated tests and to what extent. Therefore,
we hypothesized that increasing the observability of the class
under tests can lead to a better performance of the generation
tool, mainly on mutation analysis.

III. STUDYING AND INCREASING OBSERVABILITY

To assess the impact of class observability on EvoSuite’s
effectiveness, we implemented two complementary extensions.
This section provides a detailed description of each extension.

A. Open Object State Visibility Extension

This extension increases the observability of the class under
test by automatically injecting public accessors for all private
or protected attributes that do not already have an accessor.
We inject these accessors at the bytecode level. The injected
accessors simply put the attribute on the stack and include a
return instruction. The method names of the accessors are a
concatenation of the string get, the attribute name, and the
keyword _Injected at the end. This keyword helps us to
differentiate between the accessors that already exist and those
that we injected. To detect whether an attribute already has an
accessor, we search its class for a public method containing
only one statement that returns the attribute.



When this extension is activated, EvoSuite runs a pre-
processing algorithm before starting the generation. This al-
gorithm iterates over all classes in the system and injects
public accessors. Our goal is to open object state visibility,
allowing EvoSuite direct access to all attributes in the system.
Since these accessors are part of the bytecode, EvoSuite
would consider them when computing target goals or during
mutation testing. We modify EvoSuite so it considers these
injected accessors only during the assertion generation algo-
rithm, which is a post-processing step. However, the injected
accessors are not considered for mutation injection or as part
of the coverage goals. Listing 5 shows a generated test for the
class ScriptOrFnScope using this extension. The generated
test uses an injected getter getMarkedForMunging_Injected

in the assertion generation (in bold). This helps to increase
the mutation score of the class ScriptOrFnScope by 5.40%.

public void test10() throws Throwable {
ScriptOrFnScope scope0 = new ScriptOrFnScope(-870, (

ScriptOrFnScope) null);
ScriptOrFnScope scope1 = new ScriptOrFnScope(-870,

scope0);
scope1.preventMunging();
scope1.munge();
assertFalse(scope1.getMarkedForMunging_Injected());
assertNotSame(scope1, scope0);

}

Listing 5. Example of generated test that use an injected getter (in bold).

Note that this EvoSuite extension is not intended as a
solution for the observability problem, but as a means to
assess its impact. Encapsulation is important in object-oriented
programming, as it reduces dependencies on internal object
data. We further discuss this point in Section VI.

B. Recursive Inspector Assertion Extension
This extension adds a new assertion type to EvoSuite

called a recursive inspector assertion. It builds on the existing
Inspector Assertion in EvoSuite. Inspector assertions create an
assertion for each inspector method found in the object under
analysis. EvoSuite considers an inspector method as one that
takes no parameters, has no side effects, and returns a primitive
data type. This excludes methods that return an object. In our
case, we extend this functionality to also consider inspector
methods that return an object. We focus on methods that take
no parameters, and consist only of functionality of returning
a class attribute that is not primitive.

Our extension generates assertions that contain a chain of
inspector methods that are executed over the object under
analysis. The recursion stops either when an inspector method
is found that returns a primitive value, for which an assertion
is added, or when a configurable threshold of the recursion
depth is reached. The algorithm inspects all attributes that
have a public accessor, and if the attribute is an object the
algorithm will inspect their attributes too, recursively. Listing 6
shows a test for the HtmlViewerPanel class (Listing 2) that
uses this extension. Note that the generated test has three re-
cursive inspector assertions. For instance, the second assertion
evaluates the URL protocol using two accessors getURL and
getProtocol in a chain.

public void test15() throws Throwable {
...
HtmlViewerPanel panel0 = new HtmlViewerPanel(uRL1);
panel0.gotoURL(uRL0);
panel0.goBack();
panel0.goForward();
assertEquals("file://some/fake/but/wellformed/url",

panel0.getURL().toExternalForm());
assertEquals("file", panel0.getURL().getProtocol());
assertEquals("some", panel0.getURL().getHost());

}

Listing 6. Example of recursive inspector assertions (in bold)

Note that after assertion generation, EvoSuite performs a
mutation-based assertion minimization, which removes as-
sertions not relevant to the mutation testing analysis. As
a consequence, EvoSuite will only keep recursive inspector
assertions that are considered useful for detecting mutants.

IV. EXPERIMENTAL SETUP

This section details the empirical study for evaluating the
impact of class observability on EvoSuite effectiveness.

A. Research Questions

Our main research question is: To what extent does the
observability of the class under test impact the effectiveness
of the generated tests? As we have shown in Section II,
the limited access to private/protected class attributes and
mutants that affect composed objects can hinder test generation
algorithms. To assess the impact of these limitations, we aim
to answer the following research questions empirically:

• RQ1 Encapsulation: To what extent does the limited
access to private/protected attributes in the system impact
EvoSuite’s effectiveness?

• RQ2 Composed Objects: To what extent does checking
the state of composed objects impact EvoSuite’s effective-
ness?

• RQ3 Combined Effectiveness: To what extent does
the combination of the two EvoSuite extensions impact
EvoSuite’s effectiveness?

RQ1 investigates how encapsulation affects EvoSuite’s ef-
fectiveness. To address this question, we compare EvoSuite’s
performance, in terms of code coverage and mutation score,
before and after modifying the visibility of all class attributes
in the system. RQ2 and RQ3 examine the impact of the
ability to inspect the state of composed objects on EvoSuite’s
effectiveness. Specifically, these questions evaluate recursive
object assertions with and without restricted access to non-
public attributes. RQ3 specifically aims to determine the extent
to which encapsulation limits our proposed recursive assertion
generation technique.

B. Subject Java Classes

Our evaluation uses 100 classes from the SF110 dataset,
widely used in unit test-generating tool evaluations [31]–[33].
The complete dataset contains over 23K classes from 110
projects. However, studies have shown that the dataset contains
many trivial classes [34]. Therefore, we decided to use a subset
of classes previously used in other studies [11], [18], [35]. This



subset was filtered using a cyclomatic complexity threshold of
3 to ensure that the generated tests are not solely composed
of accessors. This filtering guarantees a wider variety of
explored branches and generated mutants while keeping the
time required to run our experiments manageable.

C. Baseline for Comparison

As in previous studies, we use the DynaMOSA algorithm
as a baseline for comparison [11], [18], [36]. DynaMOSA
uses a multi-objective technique known as the Many-Objective
Sorting Algorithm (MOSA) with dynamic selection; this tech-
nique has proven to generate tests with higher coverage. We
generate unit tests for our subjects following the recommended
hyperparameters of previous studies. We also extended the
time of the search budget to 180 seconds and the assertion
timeout to 600 seconds, as suggested by Panichella et al. [32].

D. Treatments

To answer our research questions, we compare the base-
line results with three treatments based on the observability
extensions described in Section III.

1) Injected Getters: The first treatment involves a pre-
processing step before generating tests, which injects pub-
lic accessors for attributes that are protected or private.

2) Recursive Assertions: The second treatment allows Evo-
Suite to generate assertions that recursively check the
state of composed objects, using only accessors already
defined in the original source code.

3) Combined Extensions: The third treatment combines both
extensions, injecting public accessors, which can later be
used for generating recursive inspector assertions.

Note that in all cases, the injected code is not considered
when computing the test goals and mutation score. Our goal
is to generate tests with the same test goals and analyze how
many additional mutants the treatments help to kill using the
same set of mutants from the baseline. For recursive assertions
in the second and third treatments, we use a threshold of n =
3. This means that the generated assertion checks recursively
all the primitive attributes of the composed object up to a
maximum depth of three levels.

E. Experimental Protocol

To answer our research questions, we compare a baseline
of generated tests with the treatments previously defined. We
consider the following aspects of the conducted experiment
for comparing test suites generated for the same class.

1) Collected Metrics: For coverage metrics, we compare
the statement, branch, and resulting test suite’s coverage, with
the latter being a summary of the eight coverage metrics
considered during EvoSuite’s generation. By construction,
our EvoSuite extensions should not impact coverage, but we
compute these metrics only to support this claim. However, our
primary focus is on mutation analysis metrics. We analyze the
mutation score (i.e., the percentage of mutants detected by a
test suite) to compare if the use of a treatment yields a higher
percentage of mutants detected. To determine if a detected

mutant is related to the extensions used, we manually examine
the details of killed mutants. For mutation analysis, we use the
EvoSuite mutation engine and their default mutation operators
(delete call, delete field, insert unary operator, replace arith-
metic operator, replace bitwise operator, replace comparison
operator, replace constant, and replace variable) [30], [37],
[38], this allowed us to control the use of our extensions for
mutation analysis in a single workflow. In total, all classes
under analysis contain 26,177 mutants, varying between 3 and
2,944 for each class.

2) Data Collection: We generated tests for each of the
treatments and the baseline using 30 randomly generated 13-
digit seeds to ensure reliable detection of statistical differences.
In consequence, we had to generate tests for each class using
four different configurations 30 times each, making a total of
120 generated test suites for each class and 12 thousand test
suites overall. We stored all the data outputs and metrics in
text files for each configuration and statistically analyzed them.
Each treatment generation of 30 seeds per class took around a
day and a half to complete. All experiments were executed on
a computer with an M1 processor with 20 cores and 64 GB
RAM. In total, the experiment took 6 days of computation
time.

3) Statistical Analysis: After applying all treatments to
the studied subjects, we compared the generated tests from
each treatment against the baseline generated tests in terms
of coverage and mutation score. As the Shapiro-Wilk test
suggested that the data is not normal, we used a one-tailed
Wilcoxon test [39] to identify statistically significant differ-
ences between the baseline and the treatments. Specifically,
we compared the 30 mutation scores and coverage metrics
of the 30 generated test suites for each class, with each test
suite generated using a different seed. We aim to conclude
if the collected metrics of the treatments were significantly
higher than the baseline, using a threshold value of 0.05.
After comparison, for each class that shows a statistically
significant difference, we manually analyze the source code of
the generated tests to confirm if they use an injected accessor
or a recursive inspection assertion, and if the mutation score
increment is directly related to our EvoSuite extensions.

Finally, we measure the impact of each treatment using the
Vargha-Delaney (Â12) statistic [40] to gauge the effect size.
We interpret the Â12 statistic, taking as reference the value
0.5. If the value is 0.5, we conclude that the treatment used
does not affect the generated tests. However, a value greater
than 0.50 suggests that in further generations, the use of the
strategy has a greater probability of obtaining better metrics.
Consequently, a value lower than 0.50 indicates the opposite.

F. Threats to Validity

Threats to construct validity concern the relationship be-
tween theory and experimentation. The evaluation of the
proposed extensions is based on effectiveness metrics com-
monly used in the literature: coverage metrics and mutation
score [32], [33], [41], [42]. Coverage metrics represent the
quantity of code executed by the tests and mutation score



creates artificial bugs and measures how many are detected by
the test suite. Although these artificial bugs do not necessarily
represent all possible bugs in the code, mutation score is
considered as a reasonable estimation of effectiveness to
evaluate a test suite [43], [44].

Threats to internal validity arise from factors that might
influence the obtained results. To reduce the randomness and to
ensure the sufficiency of data for statistical tests, we generated
tests 30 times per class using different seeds. For generation,
we used parameters suggested in previous studies that have
proven to generate tests with higher coverage. Another threat
comes from the additions caused by our extensions. When
using injected getters, we modified EvoSuite to ignore the
injected methods in the mutation analysis (i.e., to not create
mutants for these methods) and from the generation goals.
This avoids variations in the number of mutations or tests. In
consequence, the results in each treatment are comparable as
they are analyzed using the same set of mutants.

Threats to external validity are related to the generalization
of our results. Because of the high number of test generations
needed for the experiment, we limited the studied classes to
100 Java classes from the SF-110 dataset. Although reduced,
this dataset contains classes from a variety of 32 projects
and several domains. The use of these 100 classes is also
comparable with previous studies that use the same selection
to study EvoSuite improvements and test quality [11], [18].
While the injected getters implementation is applicable to
different test generation tools, the recursive assertions im-
plementation aligns with the functionality and limitations of
EvoSuite. Asserting the state of composed objects remains a
relatively unexplored field in test generation, which we aim to
expand on in future work.

Threats to conclusion validity arise from the relationship
between treatment and results. For analyzing the effectiveness
of our extensions using the mutation score of the generated test
suites, we use appropriate statistical tests and 30 repetitions to
ensure enough data to use these tests. For each comparison,
we performed a Wilcoxon test using alpha = 0.05 and
used the Vargha-Delaney effect size. We concluded only from
statistically significant results.

V. RESULTS

This section summarizes the results after generating tests for
the selected subjects using the three defined treatments and the
baseline 30 times using different seeds. A replication package
containing the results in detail is available online.1

A. Code Coverage

It is important to note that our proposed EvoSuite extensions
are designed to enhance the visibility of the classes under test,
thereby mitigating observability limitations during assertion
generation. This enhancement is directly correlated with the
mutation score. Consequently, by construction, the coverage
of the tests generated by both the baseline and the treatments

1https://figshare.com/s/46bfa8872f668fafdf66
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Fig. 1. Mutation score of the 100 classes in the different treatments compared
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Fig. 2. Vargha-Delaney size effect of the 100 classes in the different
treatments

remains unchanged. Our results confirm this assumption as
the treatments do not exert a direct impact on the coverage
metrics, and there are no significant differences between the
treatments. The average resulting test suite’s coverage for the
100 classes is 62.13% where the ElGamalKeyParameters class
has the highest resulting coverage on the set, 97.20%, 3 classes
were not covered by any test generated (FileNodeModel,
OpenPreviousDialog, PreviewDialog) and 9 classes of the
set reached full branch coverage.

B. Baseline Mutation Score

We generated tests for the 100 classes under analysis using
the DynaMOSA EvoSuite algorithm, to take these results as
baseline for comparison. EvoSuite produced 3000 test suites,
30 per class. On average, the generated test suites reached
an average mutation score of 28.62%. For 22 classes, the
generated test suites did not detect any mutants in any of their
30 generations, and for only one class, the generated test suites
killed all the injected mutants.

C. Object State Visibility

To answer our first research question (RQ1), we employed
our first extension, which introduces public accessors to private
and protected attributes that previously lacked such accessors.

https://figshare.com/s/46bfa8872f668fafdf66


Upon analyzing the 100 classes under study, we observed that
only 60 classes were augmented with at least one injected pub-
lic accessor. Therefore, the remaining 40 classes either did not
contain any private or protected attributes, or their attributes
were already equipped with public accessors. Consequently,
the bytecode of these classes remained unchanged. On average,
the generated test suites with the injected accessors contained
132 more assertions than the baseline.

We conducted a manual analysis and observed that the
generated tests for 40 classes did not contain any assertions
using an injected getter. Consequently, their mutation scores
did not experience any variation. No tests were generated
for three classes with injected accessors, and consequently,
these classes were not further considered in the analysis. The
remaining 57 classes contain injected getters in the assertions
of their generated tests. Through statistical analysis, we found
that 26 of these 57 classes have a significant increase in their
average mutation score when using injected getters. Table I
summarizes these 26 classes and the difference between the
mutation score and the number of mutants killed. By using
the injected accessors, the 26 classes improved their mutation
score from 0.13% to 49%, with one class killing 61 additional
mutants. Therefore, 45.61% of the classes that used injected
accessors significantly increased their mutation score and
detected more mutants.

Figure 2 illustrates the variation of the effect size for the
100 classes studied. We found that 49 classes have an Â12
value greater than 0.50, but only 26 of these classes show
a statistically significant increase in the mutation score. The
Â12 values for these classes range from 0.56 to 1. For 36
classes, although they have a positive effect size (Â12 > 0.5),
the difference in mutation scores is not significant, with Â12
values ranging from 0.503 to 0.603. The remaining 51 classes
do not present a significant improvement and have a Â12 of
0.5 or close to it, indicating that the treatment used does not
impact the mutation score.

We conducted a manual review of these 26 classes with a
significant increment in the mutation score and confirm that the
mutation score increment is due to the use of injected getters
in the assertions. In total, 435 new mutants were detected, with
an average of 16 additional mutants per class. We were able to
confirm that on each of the 26 classes, the injected accessors
helped detect mutants related to class initialization, variable
value changes, and conditionals. The 26 classes contained 177
injected getters. We found that only 76 helped detect at least
one new mutant. On average, each of the 26 classes used only
47% of their injected getters. In most cases, no test in the suite
covers the lines where the field linked to an injected accessor
is modified. However, if we consider all the injected getters in
the 100 selected classes, only 76 of 346 (22%) injected getters
were helpful.

TABLE I
RESULTS FOR SIGNIFICANT CLASSES (P-VAL < 0.05) USING INJECTED

GETTERS CONSIDERING MUTATION SCORE (MS) AND NUMBER OF
KILLED/DETECTED MUTANTS(#KM).

Class Baseline Injected Getters
∆MS Â12

MS #KM MS #KM

AlphabeticTokenizer 37% 110 49.2% 140 12.2% 0.86
AxisServlet 5% 10 12% 25 7% 1.00
AZMessageDecoder 40.4% 149 47% 167 6.6% 0.91
AZOtherInstanceImpl 71.2% 81 74.1% 84 2.9% 0.72
CalEventModelImpl 66.9% 560 71.6% 598 4.6% 0.97
DbConnectionBroker 27.4% 64 42% 97 14.6% 1.00
DHTRouterNodeImpl 37% 105 44.9% 129 7.9% 0.99
DirEntry 47.6% 35 51.5% 37 3.5% 0.81
DLFileEntryModelImpl 67.7% 929 72.1% 990 4.4% 0.98
EngineImpl 7.6% 17 9.4% 19 1.8% 0.66
GetRevision 43.3% 20 46.1% 21 2.8% 0.95
HL7CheckerImpl 9.6% 12 12.8% 16 3.2% 0.96
HtmlViewerPanel 42.6% 129 59.3% 180 16.7% 1.00
JoomlaOutput 47.6% 44 59.3% 55 11.7% 0.96
NoenFormatter 27.9% 8 52.0% 15 24.1% 1.00
NotificationEventComparator 47.7% 32 56.4% 37 8.7% 0.65
OrganizationModelImpl 61.9% 393 65.4% 417 3.5% 0.94
Parser 3.6 % 114 4.9% 145 1.3% 0.93
PDFProcessorImpl 7.4% 39 7.9% 41 0.5% 0.73
PollsChoiceModelImpl 47.2% 270 51.2% 294 4% 0.90
PortalExecutorFactoryImpl 18% 12 32.6% 22 14.6% 0.98
PreLaunchHelperImpl 15.9% 26 19.3% 33 3.4% 0.80
RDResumeHandler 0.9% 3 1% 7 0.1% 0.57
SACPluginActivator 1.2% 1 13.5% 6 12.3% 1.00
ScriptOrFnScope 46.3% 27 51.7% 30 5.4% 1.00
TestJava 0% 0 49% 18 49% 1.00

Finding 1. Increasing the visibility of class attributes
improved EvoSuite’s mutation score between 0.13% and
49% in the tests generated for 26 classes. A manual
review confirmed that these additional mutants killed
were directly associated with assertions utilizing the
injected accessors. This underscores the importance of
considering observability in the test generation process.

The generated tests for 49 classes show no variation in the
mutation scores, despite containing injected public accessors.
In 18 classes, despite having between 1 and 13 injected public
accessors, EvoSuite did not use them in the assertion genera-
tion process. We analyzed these classes and found that for 11
of them, EvoSuite generated only test methods that ended in
exceptions, resulting in no assertions being used. For 7 classes,
EvoSuite deleted the assertions that used the injected accessors
during the mutant-based minimization process because they
were unrelated to any mutants.

In the remaining 31 classes of the 49 without changes in
mutation score, we found that the generated tests included
injected getters in the assertions. However, they showed no
changes in their mutation scores, as the generated assertions
killed the same mutants as the baseline, showing no improve-
ments. For instance, in the class ConnectionConsumer, the 25
detected mutants in the baseline remained after applying the
treatment. It is likely that in these cases, the injected getters are
related to attributes that are not associated with the undetected
mutants, the generated tests do not even execute the undetected
mutants due to low coverage, or the mutants related to these



TABLE II
RESULTS FOR SIGNIFICANT CLASSES (P-VAL < 0.05) USING RECURSIVE

ASSERTIONS CONSIDERING MUTATION SCORE (MS) AND NUMBER OF
KILLED/DETECTED MUTANTS(#KM)

Class Baseline Rec Assertions
∆MS Â12

MS #KM MS #KM

AZOtherInstanceImpl 71.2% 81 73.8% 84 2.6% 0.70
HtmlViewerPanel 42.6% 129 44.2% 131 1.6% 0.63
isc_stmt_handle_impl 93.2% 331 94.2% 333 1% 0.64
ShoppingCategoryWrapper 17.9% 9 19.9% 11 2% 0.64

attributes are already killed by other assertions.
These observations on the use of the injected getters can be

seen in the Vargha-Delaney distribution where some classes
with a higher effect size have few instance variables while
others show no effect despite numerous injected accessors, for
example, NoenFormatter class is injected with only one getter
and reports an Â12 value of 1.00 while the MacawStateEditor

class contained 13 injected getters but only reaches a Â12 value
of 0.50, suggesting further research is needed to determine the
conditions under which a getter is beneficial.

Finding 2. The increment in the mutation score is not
directly related to the number of injected getters, as not
all injected getters may provide benefits. This identifies
an area for further research to develop strategies for
determining which attributes require accessors.

D. Asserting Composed Objects

To understand to what extent the lack of observability is
due to EvoSuite’s inability to assert on composed objects
(RQ2), we now consider our second EvoSuite extension, which
recursively checks the states of composed objects using a
threshold. Note that treatment two only assesses the impact
of recursive assertions without injecting getters to the code
under tests. After generating tests for the 100 classes, we
manually checked the 30 test suites generated for each class,
one for each seed, and found that 33 of the 100 checked classes
at least one generated test suite used a recursive inspection
assertion. On average, the generated test suites that allowed
asserting composed objects contained 218 more assertions than
the baseline. Therefore, we manually analyzed the assertions
in these 33 cases, of which 18 were included in the 57 classes
that were injected with getters in the previous treatment.

We compared mutation scores and found that only in
four cases the difference in mutation score is statistically
significant. This represents 12.12% out of the 33 classes that
use recursive inspection assertions. The increment of mutation
score ranges from 0.96% to 2.63%, and a maximum of 3
new mutants are detected. We manually reviewed the newly
detected mutants for each class and found a direct relation
between recursive assertions and mutants changing the values
of internal objects or the initialization of a composed object;
this means that asserting the composed object was related to
mutants injected to change the internal value of an element.

Table II summarizes the mutation scores, the number of killed
mutants, and the effect size of these four classes.

Figure 1 shows the comparison between the mutation scores
on the baseline and using recursive assertions. The tendency
between the boxplots does not reveal a significant impact of
the recursive assertions on the mutation score; for most classes,
the effect size remained at 0.5, implying the same performance
as the baseline. This low impact is also observed in Figure 2
compared to the previous treatment. For the 100 classes under
analysis, only 29 classes had a Â12 value slightly higher than
0.50, varying between 0.51 and 0.7. Of these 29 classes, only
4 show a statistically significant increase in the mutation score.
The remaining 71 classes do not experience increases in their
mutation scores, and their Vargha-Delaney values are 0.5 or
close to it.

Finding 3. The generation of recursive inspection as-
sertions had a slight impact on mutation scores, im-
proving them between 0.96% and 2.63% for only four
classes. Our manual review confirms that this increment
is directly related to the generated recursive assertions.
This shows that asserting complex objects can impact
mutation scores in specific cases, but further research is
needed on alternative assertion generation methods, as a
considerable portion of mutants remain undetected.

E. Open State Visibility and Asserting Composed Objects

Our findings show that encapsulation impacts the effective-
ness of generated tests, particularly the generated assertions.
Our proposed assert generation technique is not exempt from
this. To understand the degree to which encapsulation limits
recursive assertion generation, we evaluate the effectiveness
of asserting recursively composed objects when all attributes
of the code under test are visible, which we can simulate by
using both extensions at the same time. After generating tests
for the 100 classes using a combination of our previously
implemented extensions, we observe that 61 of them use one or
both extensions, 7 use only injected getters in their test suites,
15 use only recursive assertions, and 39 use both extensions,
9 use the extensions combined in their assertions, and 30
separately. Therefore, we focus on the assertions generated
for these 61 classes using 30 different seeds. On average, the
generated test suites resulting from the use of the combined
extensions contained 1,286 more assertions than the baseline.

Statistical analysis shows that in 26 of these 61 cases the
mutation score increased significantly. Of these 26 classes, 7
only use injected getters, no class uses recursive assertions
without using injected getters of the composed objects, and
19 use both extensions in their assertions, 2 classes combine
the extensions in the assertions and 17 use them separately.
Table III details the mutation score, number of killed mutants,
and the effect size of each one of these 26 classes.

We conducted a manual review to determine the relation
between the assertions generated for the 26 significantly
improved classes and the new detected mutants. We found



TABLE III
RESULTS FOR SIGNIFICANT CLASSES (P-VAL < 0.05) USING COMBINED

EXTENSIONS CONSIDERING MUTATION SCORE (MS) AND NUMBER OF
KILLED/DETECTED MUTANTS(#KM)

Class Baseline Combined Extensions
∆MS Â12

MS #KM MS #KM

AlphabeticTokenizer 37% 110 49.1% 141 12.1% 0.86
AxisServlet 5% 10 12% 25 7% 1
AZOtherInstanceImpl 71.2% 81 73.7% 85 2.5% 0.71
CalEventModelImpl 66.9% 560 68.9% 587 2% 0.89
DbConnectionBroker 27.4% 64 42% 97 14.6% 1
DHTRouterNodeImpl 37% 105 45% 130 8% 0.97
DirEntry 47.6% 34.5 52% 37 4.4% 0.85
DLFileEntryModelImpl 67.7% 929 69.9% 956 2.2% 0.79
EngineImpl 7.6% 17 10.9% 19 3.3% 0.69
HL7CheckerImpl 9.6% 12 12.4% 15 2.9% 0.94
HtmlViewerPanel 42.6% 129 51.9% 180 9.3% 0.87
JoomlaOutput 47.6% 44 52.8% 49 5.1% 0.93
NewScheduler 39.2% 43.5 45.7% 52 6.5% 0.67
NoenFormatter 27.9% 8 53.9% 15 26% 1
NotificationEventComparator 47.7% 32 77.5% 37 29.8% 0.69
OrganizationModelImpl 61.9% 393 65.6% 418 3.7% 0.94
Parser 3.6% 114 4.9% 148 1.3% 0.94
PDFProcessorImpl 7.4% 39 8% 40 0.6% 0.74
PollsChoiceModelImpl 47.2% 270 51.6% 294 4.4% 0.92
PortalExecutorFactoryImpl 18% 12 33% 22 15% 0.98
PreLaunchHelperImpl 15.9% 26 19.9% 33 4% 0.8
RDResumeHandler 0.9% 3 1% 7 0.1% 0.57
SACPluginActivator 1.2% 1 13.7% 7 12.5% 1
ScriptOrFnScope 46.3% 27 51.6% 30 5.3% 1
TestJava 0% 0 49% 18 49% 1
Version 53.1% 139 53.8% 142 0.8% 0.6

a direct relation between the assertions generated and the
mutants detected, in most cases the generated tests contained
in the same test assertions generated using both extensions, in-
stead of only one. For instance, consider the generated test for
AZOtherInstanceImpl on Listing 7 where different assertions
on the same test use both extensions. For example, the asser-
tion that contains the get_UDP_non_data_portKeyInjected is
related to mutants created to simulate bugs during object con-
struction. The two last assertions are related to test the internal
state of the composed object of the class InternalAddress.
This check is useful because of mutants dedicated to change
the assignment of the attribute. The classes with significant
improvement found for combined extensions correspond to the
classes found with the use of only injected getters excepting
two AZMessageDecoder and GetRevision where their gener-
ated tests contained unstable assertions. However, two new
classes had significant improvement in their mutation score,
NewScheduler and Version.

The increment on mutation score in these classes ranges
from 0.6% to 49% and a maximum of 51 new mutants were
detected. Figure 1 shows the comparison between the mutation
score of the generated test suites using both extensions, using
only one and not using any. Note that in all cases, the
extensions do not lower the mutation score of the classes under
test. The figure also reveals a notable impact of the extensions
used.

Compared to the exclusive use of injected getters, the
addition of recursive assertions raised the mutation score by
a maximum of 21.13% in the NotificationEventComparator

class. However, this addition did not increase the mutation

score of the other classes, which has an average increase of
0.30% on the mutation score.

The combination of both extensions improved the mutation
score across 26 classes, with 19 classes using both recursive
assertions and injected getters. However, 24 classes showed
similar improvements with only injected getters, indicating a
minimal additional benefit from asserting complex objects.
These findings suggest that, while recursive assertions are
beneficial, they do not fully address the limitations of assertion
generation. Further research is required to explore alternative
methods to enhance assertion generation.

Finding 4. The combination of both extensions im-
proved the mutation score from 0. 6% to 49% in 26
classes, with 19 classes using both recursive assertions
and injected getters. While recursive getters are benefi-
cial, they do not fully address the limitations of assertion
generation. Further research is required to explore alter-
native methods to enhance assertion generation.

For the Vargha-Delaney Â12 statistic, 42 of these 61 classes
showed a value greater than 0.50, suggesting a 68.85% chance
of higher mutation scores as a result of using the combined
extensions. Figure 2 shows the comparison of Â12 between
treatments. The figure shows a higher concentration of classes
surpassing the 0.5 value. The classes that used the extensions
have on average a 0.70 Â12 value, a higher effect than the
average of the significative classes of separate extensions.
However, no clear relation between the use of the injected
getters and the effect size is found.

Finding 5. Although the number of significant classes
has increased using extensions combined rather than
separately, the recursive assertions do not demonstrate
a higher effect on the mutation score. The results using
injected getters remark the importance of class attributes
observability for generating more effective test suites.

public void test00() throws Throwable {
...
AZOtherInstanceImpl aZOtherInstanceImpl0 = new

AZOtherInstanceImpl("yYl_u{kvr}", "`BfD",
inetAddress0, inetAddress0, 744, 744, (-385),
hashMap0);

assertEquals(744,
aZOtherInstanceImpl0.getUDP_Port_());

assertEquals((-385),
aZOtherInstanceImpl0.getUDP_non_data_port_Injected());

...
assertEquals("127.0.0.1",
aZOtherInstanceImpl0.

getInternalAddress().getHostAddress());
assertFalse(
aZOtherInstanceImpl0.

getInternalAddress().isMCSiteLocal());
}

Listing 7. Test with injected getters and recursive assertions.



VI. DISCUSSION

A. Encapsulation

Our results show that injecting public accessors enhances
the observability of internal states, thereby improving mu-
tation testing effectiveness by exposing class attributes for
verification. However, manual analysis revealed that not all
injected accessors were beneficial. Among the 26 classes
with significant improvements in the mutation score, 177
accessors were injected, but only 76 were used by EvoSuite to
detect additional mutants. This highlights that while increased
accessibility can be advantageous, its use in production code
must be carefully managed to avoid violating encapsulation
principles, which could compromise modularity and security.

Maintaining a delicate balance requires strategic decisions
regarding public accessors. Developers should selectively im-
plement public accessors to maximize testing coverage without
compromising class structure. Future research should focus
on developing techniques that guide developers in identifying
attributes that need accessibility, helping them make informed
decisions on injecting public accessors. This approach would
optimize the trade-off between enhanced testability and pre-
serving encapsulation principles.

B. Recursive Assertions

To assert the state of composite objects, we proposed
a direct variation of the EvoSuite inspector assertion that
assesses the states of these objects through consecutive method
accessor calls. This strategy complements our extension, which
facilitates the automatic introduction of accessors. Neverthe-
less, it is important to acknowledge that alternative methods,
such as incorporating functions like equals or hashCode, could
further enhance class observability. A significant advantage
of employing recursive inspector assertions is their ability to
simplify the debugging process: if a test fails, the problematic
attribute with an unexpected value is easily identified.

Our results show that recursive inspector assertions may
be useful in certain cases where the effects of artificially
injected mutants have side effects on composed objects. We
also observed that the use of these assertions did not lead to a
noticeable variation in performance (e.g., test generation time).
However, further work is needed to evaluate the potential of
recursive inspector assertions, particularly with real bugs and
a wider range of classes. This could help identify the cases in
which these types of assertions are most useful. An alternative
approach is to understand how manually created tests kill
mutants similar to the ones that remain undetected and learn
from them to create new strategies for generating assertions.

C. Observability vs. Propagation

Our experiments demonstrated that the observability of
internal states has a significant effect on the effectiveness of
generated unit tests, but we also found that this is not simply
due to a lack of the ability to assert on complex object states.
Besides guiding developers in improving the observability
of their code and revisiting assertion generation techniques,
there is an orthogonal aspect to consider: The process of how

faults lead to software failures has been studied intensively.
In particular, the RIP model [45]–[47] describes that faults
need to be Reached (i.e., executed), cause a state Infection,
which then needs to Propagate to an observable output; the
PIE model (Execution, Infection, and Propagation) describes
the same process. A recent extension of the RIP model [48]
includes a final requirement Revealability.

Our investigation of assertion generation targets this last
step of Revealability. We based our experiments on the
common practice of automatically generating unit tests for
code coverage; therein lies a potential problem related to
observability: Optimizing tests for code coverage only ensures
that Reachability is satisfied, but whether or not Infection
happens is coincidental, and generated tests may require
further calls to ensure propagation of infected internal states to
allow generating adequate assertions. Consequently, it will be
important for future work to also consider optimization goals
for test generation that go beyond code coverage [38], [49].

We did not find a clear relation between code coverage and
the improvement in mutation score in any of our experiments.
In the first treatment, the average coverage achieved by the 26
classes with mutation coverage improvement ranges between
23.17% and 96% where only 8 classes had an average coverage
< 70% and only 2 classes exceeded 90% coverage. However,
classes such as SACPluginActivator and JoomlaOutput report
a high mutation score increase (> 11%) reaching 49.9%
and 68.83% average coverage respectively. In contrast, 7
classes with an average coverage > 80% had a mutation
score improvement < 5%. In the second treatment, all the
4 classes with significative increase had an average coverage
> 80% with similar mutation score improvement. Finally,
the third treatment presented similar results as the first one,
without directly relating the coverage with the improvement
in mutation score.

D. Assertion Minimization

The recursive inspector assertion strategy may lead to a
large number of assertions for each composed object and even
more for each generated test. Furthermore, it may introduce
indirect testing, a well-known test smell, as these assertions
may end up testing methods that do not belong to the class un-
der test. In such cases, the EvoSuite mutation-based assertion
minimization algorithm plays an important role by reducing
the number of generated assertions using mutation analysis,
retaining only those directly related to a mutant. Consequently,
the remaining assertions are considered useful for detecting
mutants injected into the class under test. However, as previous
studies have shown, EvoSuite-generated tests, even without
our extensions, may contain indirect testing smells among
other types of test smells [17], [18]. Therefore, further research
is needed to assess whether recursive assertions or increased
observability might decrease the quality of the generated tests,
particularly by increasing the number of test smells present in
the generated code.



VII. RELATED WORK

Controllability and observability are widely studied fac-
tors [14], [22]–[27], [50], [51] in research on testability. Con-
trollability involves the ease with which testers can manipulate
state and input to achieve specific test conditions and control
execution flow. On the other hand, observability involves the
ability to observe and verify the outputs and behaviors of the
unit under test. This section summarizes related work aimed
at improving testability.

Diverse approaches have been proposed to improve the
testability of the code under test. A common method in-
volves performing automatic transformations on the program
components to enhance their testability. These transformations
target various source code patterns that are known to affect
testability and reduce the effectiveness of test generator tools.
For instance, they address boolean flags that may be present in
conditionals [52], [53] or loops [54], as well as nested condi-
tionals [55] and unstructured control flows [56]. Additionally,
these transformations can also be performed at the bytecode
level [57].

Refactorings can significantly enhance the testability of
program components. Previous studies indicate that class de-
sign and code quality impact testability. Cinnéide et al. [58]
used a search-based refactoring tool [59] to perform various
refactorings on the class under test. Practitioners developed
tests before and after refactoring, suggesting improved testa-
bility, though the results were not definitive. Reich et al. [19]
analyzed 200 pull requests aimed at improving testability,
identifying ten beneficial refactoring patterns. Common pat-
terns included method extraction for overriding or invocation,
widening method access, and class extraction for invocation.

Improving observability is another method to enhance testa-
bility. Several studies focus on tracking execution to inject
assertions for checking constraints [60], pre/post conditions, or
class invariants [61], [62]. For instance, Kansomkeat et al. [22]
proposed injecting observability probes to track variable states
and insert assertions to verify them. Mao [63] uses Aspect-
Oriented Programming (AOP) to verify component invariants
by introducing a tracing aspect to gather preconditions of
method executions, aiding in regression testing. Schuler and
Zeller use dynamic slicing to determine checked coverage, the
statements with an actual contribution to the test oracles [12].
Finally, Zhu et al. proposed 19 code observability metrics with
a strong correlation with the mutation score [64].

In contrast to previous work, our study evaluates the impact
of observability on test generation algorithms. We conducted
an experiment that exposed encapsulated attributes and en-
abled state assertions of complex objects. Our results show that
improved observability significantly increases mutation scores.
This highlights the need for further research to understand how
observability affects the effectiveness of test generation.

VIII. CONCLUSION

This paper introduces two complementary EvoSuite ex-
tensions designed to enhance class observability by publicly

exposing all class attributes and enabling EvoSuite to as-
sert the states of composite objects. We implemented these
extensions to evaluate their impact on test generation tools,
particularly EvoSuite. Our empirical study, conducted using a
well-known set of 100 complex Java classes from the SF110
dataset, demonstrated that increased observability through our
extensions led to a significant improvement in the mutation
score for generated tests for 26 classes. This underscores the
importance of class observability in the test generation process.
In future work, we plan to study the effects not only in a
mutation testing scenario but also on real faults, to explore
heuristics to identify variables that significantly benefit from
being accessed by generated tests, as well as further improved
assertion generation techniques. We also aim to extend our
study using other mutation engines (e.g., PIT [65]) with varied
mutation operators, and study the mutants detected vs. the
mutants reached by the test suite.
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