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Asking and Answering Questions During Memory
Profiling

Alison Fernandez Blanco, Araceli Queirolo Córdova, Alexandre Bergel and Juan Pablo Sandoval Alcocer

Abstract—The software engineering community has produced numerous tools, techniques, and methodologies for practitioners to
analyze and optimize memory usage during software execution. However, little is known about the actual needs of programmers when
analyzing memory behavior and how they use tools to address those needs. We conducted an exploratory study (i) to understand what a
programmer needs to know when analyzing memory behavior and (ii) how a programmer finds that information with current tools. From
our observations, we provide a catalog of 34 questions programmers ask themselves when analyzing memory behavior. We also report a
detailed analysis of how some tools are used to answer these questions and the difficulties participants face during the process. Finally,
we present four recommendations to guide researchers and developers in designing, evaluating, and improving memory behavior
analysis tools.

Index Terms—Program analysis, memory management, experimental design
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1 INTRODUCTION

Developers often spend a substantial amount of time man-
ually analyzing memory consumption to localize memory
anomalies (e.g., memory leaks, memory bloats) that usually
generate crashes on software applications [1], [2], [3]. For
this reason, a number of memory profiling tools have been
proposed to assist developers in this task, offering a wide
range of information displayed through full-text reports or
visualizations [4], [5], [6], [7]. Nevertheless, earlier studies
have suggested that the information presented may be
insufficient for programmers to identify and address memory
issues [8], [9], [10]. Furthermore, other investigations also
argue that how the information is displayed (whether as full-
text or visualizations) impacts developers’ comprehension
during software analysis [11], [12], [13], [14].

A limited number of studies have presented empirical
evidence regarding how memory profiling tools support
developers in conducting memory analysis activities [15].
Understanding how programmers analyze memory behavior
using tools and the challenges they encounter can provide
valuable insights for the design and improvement of these
tools. Consequently, there is still room for further research
to enhance our understanding of the needs and behaviors of
programmers when analyzing memory management.

In this paper, we undertook an exploratory study to pro-
vide a comprehensive and empirically-based set of questions
that programmers ask during memory behavior analysis. In
addition, we report on programmers’ behavior when using
two dedicated tools to answer these questions. We focused on
understanding how programmers employ Python’s memory
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profiler tools because Python is considered one of the most
popular programming languages1 and it is primarily applied
to Data Science and ML applications in academia, and several
companies [16], [17]. The latter supports the intuition that
Python programmers are more likely to analyze memory
usage due to the large amount of data involved in their
programming activities.

We selected two memory profilers, Vismep and Trace-
malloc, for our study. These profilers provide diverse in-
formation through interactive visualizations and full-text
reports, respectively. Memory profilers offer an extensive
variety of features, and most profilers broadly differ on how
information is provided and navigated. For example, some
profilers [18], [19] may provide details about the garbage
collector activity, while some others [20], [21] may focus on
the context-call-tree or control flow. For this reason, selecting
two different memory profilers instead of one hopefully
enables us to cover different questions programmers ask. In
addition, the selected memory profilers together provide a
variety of features typically proposed by current memory
profilers.

We observed twenty-two programmers analyzing soft-
ware applications with which they were familiar, using the
two memory profilers, and responding to open questions.
We deliberately asked open questions to ensure partici-
pants looked for the information they considered valuable
to understand memory behavior and detect optimization
opportunities. Then, we centered on collecting and analyzing
data about the questions asked by participants and how they
employ the selected tools to answer those questions. For
this, we followed a similar method of data extraction and
analysis presented in other studies focused on identifying
the information needs of developers [22], [23], [24]. One
assumption we are making, based on our findings, is that
memory profilers are tools relevant to people with moderate
or extended backgrounds in addressing memory issues.

1. https://insights.stackoverflow.com/survey/2019

https://insights.stackoverflow.com/survey/2019
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This paper makes the following contributions:

Catalog of questions. We present an empirically-based
catalog of 34 different questions asked by the participants.
These questions are organized into five categories based
on the information needed and the behavior of the pro-
grammer: understanding source code, understanding control
flow, discovering the memory usage at a single point of
time, comparing and contrasting memory consumption, and
discovering memory events. To our knowledge, this is the
most comprehensive list published to date that programmers
may ask when analyzing memory behavior.

Tool usage analysis. We provide an observational analysis
about how programmers employ Vismep and Tracemalloc to
answer the raised questions. We discovered that participants
numerous times combine multiple views (e.g., Call graph
view and Source code view) from Vismep or use multiple
features from Tracemalloc to obtain the required information.
We also reported the questions that participants could not
answer using these tools. Based on these results, we discuss
the support missing from Vismep and Tracemalloc. Our
analysis provides an opportunity to guide the design of tools
to support programmers more effectively.

Outline. This article is structured as follows: we describe
the essential background of the area, the context, and the
current memory profilers for Python (Section 2). Section 3
outlines previous empirical studies about information needs
in other domains. Section 4 details our exploratory study.
Section 5 presents the 34 different questions and 775 question
occurrences during the work sessions. Section 6 details how
programmers employed the memory profilers to respond
to the raised questions. Section 7 outlines unanswered
question types and provides a number of recommendations.
In Section 8, we discuss our findings and the open challenges.
Finally, we close the paper with threats to validity in Section 9
and conclusion in Section 10.

2 BACKGROUND

Memory space is a limited computational resource, and
software applications need to allocate memory to store data
values and data structures. Currently, software applications
handle a vast amount of data (e.g., data science, artificial
intelligence) that increases over time. Thus, understanding
memory behavior is vital to locating and repairing memory
issues that could cause performance degradation and pro-
gram crash [1], [3]. For example, when programmers locate
an abnormal memory growth during software execution,
they usually report “consistently observing memory growth” or

“can lead to a leak” to indicate potential issues [25]. An example
of a memory anomaly is memory bloat which happens when
a program requires excessive memory to operate correctly,
exposing inefficient memory usage of a program [26], [27].
Consequently, programmers may locate and investigate the
code responsible for suspicious memory allocations. Another
memory anomaly is a memory leak often occurring when
an unused memory resource is not released [25], [28], [29].
Therefore, programmers could explore when and why the
memory is not released.

Manually performing these activities is complex as
programmers must (i) analyze multiple technical memory

aspects simultaneously, e.g., memory allocations, garbage
collector information and (ii) carefully examine the corre-
sponding code and memory behavior [6], [30].

2.1 Memory Profiling
Mainstream modern software development environments
provide memory profiler tools to support practitioners
monitoring memory usage during software execution. These
profilers assist developers in evaluating how well programs
perform based on a set of aspects, including memory usage,
garbage collections, and frequency of function calls [6], [7],
[26], [31]. For this, they first help programmers extract
valuable information from program execution. Then, the
profiler presents the extracted information through full-text
reports, textual tables, and visualizations.

Fig. 1. Enlisting the top ten sites that allocate most memory using
Tracemalloc.

Reported information. The data extracted by memory profil-
ers varies [15]. For example, memory profilers often collect
the memory allocations made during software execution
along with the software components (e.g., function or
method) responsible for these allocations to support users
with the detection of allocation hotspots and memory growth
[6], [7], [31]. Some profilers add metrics about the release
of memory [4], [5], [32], [33], and the references between
the objects allocated to assist programmers in discovering
memory leaks [34], [35], [36]. Furthermore, a number of
profilers connect the dynamic aspects with the source code
to help developers locate the cause of an issue [6], [26].
Report presentation. Memory profilers show the collected
information in diverse ways. Several profilers display lists or
tables through a full-text report or non-interactive visualiza-
tions. An example is Tracemalloc, which enlists the primary
sources (code lines and files) responsible for allocating the
most memory (see Figure 1). Another typical example is
Yourkit [37], and JProfiler [38], which report data structures
that consume the most memory, the number of instances of
the data structure, and the amount of allocated memory
for each type using a textual table. On the other hand,
various studies introduce profilers that report information
using interactive visualizations to facilitate the practitioner’s
comprehension [39], [40]. For instance, some interactive
visualizations [6], [7], [31], [36], [41], [42] support developers
with the memory consumption analysis for C/C++ and Java
programs using different visualization techniques (e.g., node-
link diagrams, hierarchical stacking) [15], [43].
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Evaluation of tools. Most proposed studies evaluate memory
profiler tools through usage scenarios [5], [7], [31], [44].
Few studies present empirical evidence about how the tool
performs with programmers and software applications [15].
These studies primarily aim to assess tool usefulness for
practitioners, highlighting valuable features for program-
mers knowledgeable in memory management [6], [45]. For
instance, Weninger et al. [26] conducted a qualitative study to
analyze students’ behavior using AntTracks to address mem-
ory anomalies and providing general recommendations for
researchers and developers of interactive memory analysis
tools. Fernandez et al. [21] performed an exploratory study
evaluating Vismep’s support in memory usage analysis,
reporting five information needs and how programmers
utilized Vismep to fulfill them.

In contrast to the previous studies, our work provides
a catalog of questions developers ask themselves when
understanding the memory behavior of Python applications.
Furthermore, we detail how programmers employ two
memory analysis tools to answer these questions and discuss
the difficulties encountered while using these tools.

2.2 Memory Consumption Analysis in Python

Several approaches center on memory usage analysis in
Python. Table 1 illustrates the tools/libraries along with the (i)
activities they claim to support, (ii) information collected, and
(iii) report presentation used. We extracted this information
and other data (e.g., installation requirements, links) from
their respective documentation2.

These approaches extract diverse information and re-
port it using textual reports, non-interactive visualizations,
and interactive visualizations. The libraries in Table 1 are
highly expressive, flexible, and can generate tuned reports
(primarily textual), but users must modify their code using
the correct function calls. For instance, memory profiler [49]
provides a decorator (@profile) to mark the functions to be
profiled and report the memory used by each code line from
the selected function. On the other hand, standalone tools
[19], [20], [21] have a graphical user interface or a command-
line interface that allows users to extract and report specific
information without manually changing the code.

Both libraries and tools commonly claim to help program-
mers in the following activities:
Analyzing Allocations and Allocation Sites. Most ap-
proaches report memory allocations during program ex-
ecution, displaying allocations made by specific parts of
the code, such as variables, lines of code, or functions.
For instance, tools like Muppy, Guppy, and vprof provide
information about memory allocations and the memory
occupied by these allocations during program execution.
Other approaches [18], [20], [49], [21], [50], [51] focus on
displaying the executed functions and the associated memory
consumption per function or line-by-line.
Analyzing memory usage over time. Some approaches [19],
[49], [50], [51] display the memory usage over time through
line charts or sparklines. Although other memory profilers
[18], [46], [47], [21] do not collect any time metric, they help

2. https://www.dropbox.com/s/49mdqg5n11bhvdd/
PythonMemoryProfilers.csv?dl=0

users note changes in memory usage between points in time.
For example, Tracemalloc shows how memory usage changes
(increased, decreased) before and after executing a function.
In addition, Fil, Vismep, memray highlight the code (lines of
code, functions) responsible for allocating most memory 3

using visual hints (e.g., color, size). To exemplify, Vismep
provides a visualization representing each executed function
as a rectangular box, where the width indicates the memory
allocated by an invoked function during program execution.
Therefore, programmers could visually detect the function
responsible for allocating the most memory by locating the
widest box in the view.
Analyzing leaking objects. Few libraries [46], [47], [48] show
the memory allocations made at a given point in time (after
a function call) along with the objects that reference these
allocations. For instance, objgraph displays a graph where
each node is an object allocated in memory, and the edges
represent the references between objects. These libraries allow
programmers to detect memory leaks by locating unused
memory resources.
Impact. Although several libraries and tools are available to
help programmers with memory usage analysis, some are
limited due to their installation requirements, documentation
available, maintenance, and problems with functionality.
Additionally, when practitioners adopt libraries, they need
to make the right function calls to obtain the required data
and filter only relevant values (e.g., excluding data structure
directly allocated by the runtime and not the profiler ap-
plication). Furthermore, both standalone tools and libraries
may have limitations in the information reported and their
interaction mechanisms. Consequently, practitioners could
face challenges when adopting some of these options.

3 RELATED WORK

Several studies centered on extracting information about
developer needs. As a result, these studies usually present
emerging questions raised by developers in particular sce-
narios.

Sillito et al. detect 44 types of questions asked by pro-
grammers during software evolution tasks [23], [24]. These
questions are categorized based on the kind and scope
of the required information. The study also exposes that
developers need better tool support to answer some specific
questions. In a similar field, Kubelka et al. [22], [52] analyze
the impact of live programming when developers perform
software evolution tasks and identified eight additional
questions compared to the set of questions provided by
Sillito and colleagues [23], [24]. Additionally, Kubelka et al.
notice that Live Programming impacts the questions asked
by developers and the use of tools.

LaToza et al. survey professional developers to identify
questions about code that they consider hard to answer [27].
They gathered 94 questions grouped into 21 categories. They
reported that the most frequent questions deal with the intent
and rationale of code or describe specific situations, such as
security or error logging.

3. We use the term memory allocated by a code entity to refer to the
memory allocated during the execution of the respective entities, such
as lines of code or functions.

https://www.dropbox.com/s/49mdqg5n11bhvdd/PythonMemoryProfilers.csv?dl=0
https://www.dropbox.com/s/49mdqg5n11bhvdd/PythonMemoryProfilers.csv?dl=0
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TABLE 1
Libraries and tools along with (i) the activities that claim to support (A1 = Analyzing allocations and allocation sites; A2 = Analyzing memory usage
over time; A3 = Analyzing leaking objects), (ii) the information reported (M.A. = Memory allocations; M.R = Memory releases; R.F. = Relationships
between functions; O.R. = Object references; T. = Time; TH. = Threads; L.C. = Lines of code; C. = Class; S.C. = Structural component) and (iii) the

report presentation used. Accessed at 02/09/2022.

Library/Tool
Activities Information reported Report presentation

Program execution Source code
A1 A2 A3 M.A. M.R. R.F. O.R. T. TH. L.C. C. S.C. Textual Visualization

Guppy [46] ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗

Muppy [47] ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗

Objgraph [48] ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✓
Memory profiler [49] ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✓
Tracemalloc [18] ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✗

Fil [20] ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✓
vprof [19] ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓
Vismep [21] ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✓
Scalene [50] ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓
memray [51] ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Fritz et al. identify 78 questions raised by developers
during a software development project. They also report a
lack of tool support to answer these questions [53] since these
questions involves connecting information from different
sources (e.g., source code, changesets, teams).

De Alwis et al. collect 36 questions from literature, blogs,
and their experience in software development [54]. They
claim that developers present difficulties when answering
some questions because connecting multiple results from dif-
ferent tools is necessary to extract the required information.

Ko et al. detect 21 types of questions when analyzing
software development teams [55]. The work highlights that
the most frequent questions are related to mistakes in the
code and co-workers’ activities.

LaToza et al. focus on reachability questions and enlisted
12 questions with their difficulty and frequency [56]. The
results show that reachability questions are challenging to
answer and are associated with the most prolonged activities.
Due to this, tools with support to answer these questions are
relevant.

In contrast to the studies previously mentioned, to
our knowledge, our work is the first observational study
centered on developer information needs during memory
consumption analysis.

Impact. We consider that documenting solid knowledge
about programmers’ needs while monitoring memory be-
havior helps (i) improve the design and effectiveness of the
current tools and new ones, (ii) recognize if a tool fits the
programmers’ needs and which needs may not currently
be covered and (iii) facilitate the organization of current
approaches to help practitioners find a suitable tool.

4 METHODOLOGY

Our study investigates the questions Python programmers
raised during memory usage analysis and how program-
mers answer these questions using memory profiler tools.
Consequently, we designed an exploratory study as Figure 2
illustrates. The following subsections describe the main steps
of the study.

4.1 Research Questions

We aim to answer the following research questions (RQ):
• RQ1: What questions do Python programmers ask when

analyzing memory behavior using memory analysis tools?
• RQ2: How do Python programmers answer these questions

using memory analysis tools?
• RQ3: Which type of questions did Python programmers not

answer, and what barriers did they face?
Our research questions focus on three dimensions: infor-

mation needs (RQ1), tool usage (RQ2), and the challenges
faced (RQ3). Our three research questions were inspired by
previous studies that reported information needs in other
context domains (see Section 3) and studies that propose
memory analysis tools (see Section 2.1).

RQ1 centers on identifying programmer’s questions
during memory behavior analysis to discover valuable
information needs that researchers and tool builders should
consider when designing adequate tools. Compared to previ-
ous literature (Section 3), our study focuses on information
needs during memory behavior analysis.

RQ2 focuses on understanding how programmers use
current approaches to satisfy their information needs. There-
fore, we provide empirical evidence about the practical sup-
port of approaches (e.g., useful features, helpful information)
and the actions made during the process. RQ3 highlights
the challenges users face when using memory analysis
tools to obtain the required information. The latter helps
identify inadequate or missing features of the approaches
and provides opportunities to improve the tools.

4.2 Memory Profiler Tools Under Study

We selected Tracemalloc and Vismep to understand the
impact of memory profiler tools on supporting programmers
with memory behavior analysis.

Tracemalloc. Tracemalloc is one of the most flexible libraries
and provides multiple functions to display information
related to memory usage through full-text reports. Program-
mers must modify the application’s code under study when
using Tracemalloc [18]. Tracemalloc is part of the standard
distribution of Python. It provides several features:
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Fig. 2. Overview of the workflow of the exploratory study.

• Display TOP. This feature assists programmers in enlist-
ing the top sites (code line, file) responsible for allocating
the most memory, as shown in Figure 1.

• Compute differences. Tracemalloc supports programmers
in exploring memory usage over time by indicating the
differences (increase, decrease) in memory consumption
before and after executing the potential leaking function.

• Get traceback. This feature helps programmers traceback
where an object was allocated, specifically, in which case
the memory allocation is made.

• Get traced memory. Tracemalloc presents functions to
display the total memory occupied and the peak during
the computation of certain parts of code.

Vismep. Vismep is an interactive visualization for supporting
programmers in analyzing memory usage over Python
applications [21]. To employ Vismep, a developer must
execute scripts with specific parameters. Vismep collects the
invoked functions with their respective memory footprint
during the program execution. Vismep also gathers the
calling relationships between invoked functions. To display
this information, Vismep provides multiple views as shown
in Figure 3:

• Call graph view. The main view summarizes the functions
with the calling relationships and the memory footprint
using an interactive call graph. This view assists users
in locating relevant code, detecting allocation sites re-
sponsible for memory usage increment, and identifying
the circumstances in which memory is allocated.

• Source code view. This view displays the source code
of a function and highlights the code lines responsible
for memory usage increment. It supports practitioners
in detecting memory growth at a more fine-grained
level (code line) and understanding the memory events
involved with a particular code.

• Scatter plot view. Vismep provides a secondary view
that shows the relationships between memory behavior
and the execution times of functions. This view assists
programmers in exploring memory growth and learning
how the memory is used (allocated/released) during the
program execution.

• Sub call graph view. Vismep facilitates users in navigating
a selected function’s direct calling relationships. As a

1 2

Changing views

3 4

Fig. 3. Visualizing an example with Vismep (1) Call graph view – the
main view that summarizes the functions with the calling relationships
and the memory footprint,(2) Source code view – a view that displays the
source code and highlights memory usage increment, (3) Scatter plot
view – a secondary view that shows the relationships between memory
behavior and the execution times of functions, (4) Sub call graph view –
for navigating through the calling relationships of a function.

result, the user can select an allocation site (function)
and navigate through an execution path.

Vismep also offers several interaction mechanisms, such
as canvas movement (e.g., panning, zoom in and out), search
option (find a function based on its name), and options to
obtain detailed data about a particular function (e.g., popup
window with information-on-demand).
Selecting memory profilers. We selected Tracemalloc and
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Vismep for several reasons:
• Reported information. Tracemalloc and Vismep provide

information to perform various tasks described in Sec-
tion 2.2 (e.g., analyzing memory growth). Furthermore,
they connect dynamic information (e.g., memory alloca-
tions) with the source code. Therefore, we consider that
they help programmers trace memory events and better
understand program behavior.

• Report presentation. Tracemalloc provides only full-text re-
ports, which has become standard among other options
for profiling. On the other hand, Vismep reports the
information only using interactive visualizations that
could facilitate data comprehension [39], [40]. Conse-
quently, we considered investigating how programmers
employ both approaches.

• Availability and maintenance. Tracemalloc and Vismep are
available, maintained, and provide material (structured
documentation, examples) for practitioners to learn how
to use them. Tracemalloc is a native module4 used
internally in Python to improve other functionalities
(e.g., ResourceWarning reports). As a result, it works
independently of the operative system and has no
external dependencies. Furthermore, a previous research
introduced Vismep and presented how Vismep support
programmers with memory usage assessment [21].

Vismep and Tracemalloc offer features commonly found
in various Python memory profiler tools. Therefore, we
expect that selecting these two different memory profilers
will increase the diversity and range of the questions asked
by practitioners. However, as indicated in Table 1, the
selected tools lack certain runtime information, such as object
references and multithread analysis. The analysis of object ref-
erences has proven valuable for detecting memory leaks and
optimization opportunities. Similarly, considering threads in
memory analysis is essential for specific application types
[50]. Nevertheless, only a few Python approaches provide
this information compared to other programming languages
[15], [26]. In our future work, we plan to explore additional
tools that further enhance the scope of our study.

4.3 Participants & Applications
To recruit participants, we sent invitations to students and
bachelors from our university and members of Python
communities. We make it clear in the invitation that the
study investigates how programmers analyze the memory
behavior of familiar code using memory profiler tools. We
also clarified that programmers who wished to participate in
the study must choose a Python program they have written
themselves and intend to analyze its memory behavior.
Participant Selection. We carefully selected twenty-two pro-
grammers who volunteered to participate and have a Python
application to analyze in the study. This participant group
comprises individuals from diverse fields of study. We reason
that numerous Python programmers (e.g., data scientists,
journalists) may not possess or actively pursue a formal
Computer Science degree. Specifically, eleven participants
have or are pursuing a degree in Computer Science, while the
rest come from diverse fields such as Geology, Mathematics,

4. https://python.readthedocs.io/en/stable/whatsnew/3.6.html

and Electrical Engineering. Five participants were from
the industry, four were in research centers, four pursued
a master’s degree, and the rest were in their bachelor’s
studies. Six participants were women. Table 2 details the
demographic information of each participant.

Experience in Python programming. Participants manifested
various experience levels in software development, but all
were familiar with Python programming. Their average
experience in programming with Python was 4.70 years (std.
dev. 2.24). Also, participants self-assessed their experience
using a Likert scale of five steps, i.e., 1 (novice) to 5 (expert).
As a result, the average experience in Python programming
was 3.29 (std. dev. 0.73).

Experience in memory usage analysis. We intentionally incor-
porated participants with diverse experiences in addressing
memory issues (e.g., memory bloats, leaks, churn) and
performing memory analysis activities. Based on previous
studies [15], [26], we categorized participants’ experience
into two activities:

• A1: Analyze memory behavior in a single point. All par-
ticipants mentioned that they frequently focused on
memory allocation details in various parts of the code,
such as data structures, functions, or specific lines, at
specific moments during execution. For instance, P3
mentioned, “I usually check where I create objects in the
code to see how they affect memory behavior and if they’re
really needed in that specific moment”.

• A2: Analyze memory behavior over time. Thirteen partici-
pants mentioned that they often check how memory is
handled (used and released) over time to detect memory
leaks and excessive memory usage.

While all the participants have experience analyzing
memory behavior, fourteen have experience fixing memory
issues. Although the remaining eight have not formally
resolved memory issues, they perform memory analysis
activities while developing their applications. Various mem-
ory analysis experiences enhance our capacity to gather
multifaceted insights into memory analysis questions. It
also helps provide a deeper understanding of how distinct
participants use the tools under study. Table 2 provides
an overview of participants’ involvement in memory issue
resolution and related activities. Furthermore, we observed
that participants usually modify their code to perform these
activities and identify abnormal memory behavior using
functions from specialized libraries.

Studied applications. As mentioned before, we explicitly
asked participants to choose a Python application to analyze
during the study. Since monitoring memory behavior is
not a trivial activity, we suggest that participants select an
application they are familiar with (own code, project) and
find interesting to analyze in terms of memory consumption.
Consequently, participants selected different programs (e.g.,
data analysis, IA, ML) with which they were familiar.
Additionally, they mentioned that their selection was based
on either (i) they considered memory usage a potential threat
to their application or (ii) they wanted to verify assumptions
about memory usage and find ways to reduce memory
consumption.

https://python.readthedocs.io/en/stable/whatsnew/3.6.html
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TABLE 2
Information of participants (Python programming experience (years); Self-assessment expertise (Likert-scale: 1 (novice) to 5 (expert)); Experience in
memory behavior analysis; Experience in fixing memory issues; Activities when analyzing memory behavior). Participants from groups G1 and G2

present gray and white backgrounds, respectively.

ID Study Field Python Programming Experience in Memory Behavior Analysis and Issues
Experience Self-assessment Memory Usage Fixing Activities
(Years) Expertise Analysis Memory Issues Performed

P1 Geology 9 2.5 ✓ ✓ A1, A2
P2 Electrical Engineering 4 3.5 ✓ ✓ A1, A2
P3 Electrical Engineering 6 4 ✓ ✓ A1, A2
P4 Physical Engineering 5 3 ✓ ✓ A1, A2
P5 Electrical Engineering 8 5 ✓ ✗ A1
P6 Aerospace Engineering 2.5 3 ✓ ✗ A1
P7 Computer Science 1.5 3 ✓ ✓ A1, A2
P8 Computer Science 6 4 ✓ ✓ A1
P9 Computer Science 4 3 ✓ ✓ A1, A2
P10 Computer Science 5 4 ✓ ✗ A1
P11 Computer Science 3 3 ✓ ✗ A1
P12 Metallurgical Engineering 1 3 ✓ ✓ A1
P13 Electrical Engineering 8 3.5 ✓ ✓ A1, A2
P14 Pedagogy in Math and Computing 3 2 ✓ ✓ A1
P15 Mathematical Engineering 3 3.5 ✓ ✗ A1, A2
P16 Pedagogy in Math and Computing 1 2 ✓ ✗ A1
P17 Computer Science 7 4 ✓ ✓ A1, A2
P18 Computer Science 5.5 4 ✓ ✓ A1, A2
P19 Computer Science 5 2.5 ✓ ✓ A1, A2
P20 Computer Science 6 4 ✓ ✓ A1, A2
P21 Computer Science 4 3 ✓ ✗ A1, A2
P22 Computer Science 6 3 ✓ ✗ A1

4.4 Procedure

We conducted a work session for each participant with
her/his respective application. Each work session started
with a moderator explaining the study’s goals described in
the invitation to programmers who agreed to participate
in the study. The moderator also explained how the think-
aloud protocol [57] works and asked the participant to use
it during the session. Then, general questions are asked
to the participant to collect demographic data such as
age, gender, experience in Python programming, memory
usage analysis, and addressing memory issues. After these
questions, the participant describes her/his application and
gives an opinion about the application’s memory usage. The
participant also explains the expectations or assumptions
about elements (e.g., functions, instances) that may produce
a memory anomaly (e.g., memory bloat, leak) during the
program execution.

Furthermore, the session proceeded with two phases,
each with a different memory profiler tool. Both phases are
structured as follows:

1) Exploration. The participant read the documentation
about the memory profiler tool and had an exploration
phase to familiarize herself/himself with the tool. The
participant also had the opportunity of asking the
moderator questions about the tool or its documentation.

2) Open-questions. The participant employed the respective
memory profiler tool for analyzing the memory usage
of her/his application and answered the open questions
in Table 3. As stated before, we deliberately asked
open questions to ensure that participants had a goal
they cared about and looked for the information they
considered valuable to understand memory usage and

detect optimization opportunities.
3) Post-study questionnaire. The participant answered ver-

bally and informally open questions regarding their
observations, recommendations, and perceptions of the
memory profiler tool.

For our study, we randomly divided the participants
into two groups, G1 and G2, each containing eleven partic-
ipants. These groups are balanced with participants from
the computer science field and other fields (e.g., electrical,
mathematical engineering). Table 2 presents the participants
from G1 and G2 with gray and white backgrounds, re-
spectively. In G1, participants initially worked with Vismep
and then with Tracemalloc, while in G2, the order of tools
was reversed. In both phases, participants analyzed the
same application they selected. As mentioned above, we
examine the benefits and drawbacks of tools’ features when
analyzing memory behavior since they report information
using different approaches. Note that our goal has not been
to compare Vismep and Tracemalloc.

We recorded a video of the screen and the laptop’s audio
used during the work sessions. These recordings were used
to collect data and analyze participants’ reasoning process.

4.5 Data Collection and Transcription

To answer our research questions, we aim to identify ques-
tions asked by the practitioners during memory consumption
analysis (RQ1), how they employ memory tools to answer
these questions (RQ2), and detect the barriers faced in the
process (RQ3). To achieve our goal, we extracted information
from work sessions when participants employed the memory
profiler tools to answer the open questions in Table 3.
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TABLE 3
Questions made to the participant during the work session.

Open Question Rationale

Q1: Can you characterize the memory
consumption of your application?

The participant identifies the information relevant for memory usage analysis, such as memory
growth, the allocation hotspots or the allocations made during program execution.

Q2: What have you learned from your
application? Anything surprising?

The participant compares the profiler’s report with their assumptions, identifies additional or
unknown valuable information, and highlights potential issues within the application.

Q3: Do you find an opportunity to decrease
memory consumption? If yes, can you
improve it and run the profiler again?

The participant describes and discusses the opportunities to reduce the application’s memory usage
if any. The participant also modifies the code that could be the cause of a memory anomaly. Then,
the participant verifies the impact of the changes in the application’s memory usage using the tool.

Firstly, we reviewed and checked session video and audio
recordings to generate spreadsheets that summarize each
work session. Each spreadsheet contains: (i) the memory
profiler (Vismep or Tracemalloc) used, (ii) the open question
that the participant responded, (iii) the respective period of
time in the video record, (iv) the verbalized thoughts of the
participant, (v) the actions made by the participant, and (vi)
the memory profiler tool features used.

To minimize biases in the data collection process, one
author generated the spreadsheets, and another author
checked if the data from the spreadsheets was consistent
with the audio and video records.

4.6 Data Analysis

This section describes the methods employed to analyze the
collected data.

Questions inference. To identify the questions asked by the
participants during our study, we performed an analysis
method similar to the one proposed by Kubelka and col-
leagues [22]. This method consists of two steps: (i) identifying
the concrete questions by analyzing the video and (ii)
generalizing, encoding, and unifying the concrete questions.

Firstly, we detected concrete questions using the spread-
sheets generated for each work session. Some questions
were inferred based on the actions and verbalized thoughts
of the participants. For example, we inferred “What part
(function, line of code, instance) of main function consumes
the most memory?” as the concrete question for the actions
mentioned in the following example:

Tool: Vismep
Open-question: Q1
Time: 00:01:40 - 00:01:53
Verbalized thoughts: For the main function, the lines
that consume much memory are reading the file, detect-
ing the fire, and showing the points where the fire is
detected.
Participant actions: The participant observes the source
code of main function and jumps to the highlighted lines
of the view while pointing out and describing the code
lines.
Features used: Source code view
Inferred question: What part (function, line of code,
instance) of main consumes the most memory?

We also gathered concrete questions that the participants
directly mentioned. To illustrate, P6 passed the cursor over
the CALC_PARAMETERS function and examined the connected

nodes with blue edges (outgoing functions) while he asked,
“Which functions does CALC_PARAMETERS call?”.

Then, we defined generic questions based on concrete
questions to abstract the details of a given task. For this,
we generalized the questions by identifying similar concrete
questions. For instance, we inferred the generic question
“Which functions does this function call?” from the concrete
question “Which functions does CALC_PARAMETERS call?” to
reference any function on the execution of a program. We
also mapped some questions with the questions mentioned
by Sillito et al. [23], [24] and Kubelka et al. [22] due to
the presence of questions related to understanding the
control flow and the rationale behind the source code. For
example, we transcripted “Where is this method called or
type referenced?” proposed by Sillito et al., instead of our
generic question “Which functions call this function?”. We
noticed that the participants asked these questions to enrich
their comprehension of the software application and make
decisions about memory anomalies or opportunities for
improvement in memory usage.

To minimize biases in the data analysis, one author
inferred the concrete and generic questions, and another
checked if the inferred questions (concrete and generic) were
consistent with the information in spreadsheets. In addition,
all the authors held two meetings to discuss any discrepancy
in the inferred questions’ consistency.

Classification scheme creation. We opted to organize the
discussion of the inferred questions around a classification
scheme. To create this classification scheme, the first author
conducted a thematic analysis [58] by following these steps:

• Familiarization. The inferred questions were read and
reread to obtain an overview of the data.

• Generating codes. To reflect relevant features of each
question, the author in charge assigned codes. For
instance, the author assigned the code “Understanding
implementation” for the question “Which entities (functions,
lines of code, instances) are involved in the implementation
of this behavior?”. Furthermore, the author conducted
continuous reviews to refine and check the consistency
of the assigned codes.

• Constructing initial themes. The author created coherent
groups to identify broader patterns based on the as-
signed codes with their associated inferred questions. If
a code does not belong to a specific theme, it is assigned
to a miscellaneous group and analyzed later.

• Reviewing themes. The author checked the initial themes
against the inferred questions to refine and create the
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final themes.
• Defining and naming themes. Final themes were defined

with a descriptive name and a detailed description.
Additionally, two authors reviewed the consistency of

codes and themes against the associated data. Two meetings
were held involving three authors to discuss the disagree-
ments or potential issues of the generated codes and themes.
Consequently, we minimized potential inconsistencies in the
coding process.

Furthermore, an author and a professional software engi-
neer independently categorized the inferred questions using
the generated classification scheme to validate the reliability.
For this, each one filled out a spreadsheet to categorize the
inferred questions based on the detailed description of the
created categories. Subsequently, we calculated the Cohen
kappa [59] as a reliability metric to examine the agreement
between reviewers. As a result, we detected that reviewers
present an “almost perfect agreement” (kappa > 0.81).
The latter suggests that the classification scheme presents
accurate representations (themes) for the inferred questions.

Events and questions analysis. To answer RQ2 and RQ3,
we first extracted the actions made by the participants
and the features used to answer the inferred questions.
Then we gathered patterns by concentrating on frequent
actions performed to answer specific questions using certain
features of memory profiler tools. We also located questions
that participants declared they could not answer due to
difficulties when using the memory profiler tools.

We considered whether or not the question asked was an-
swered based on the verbalized thoughts of the participants.
For instance, participants suggest that questions were not
answered when they mentioned phrases like “I can’t find out
with the information I have” or “I think this change would reduce
memory but I can’t do it right now because it will take a lot of time
and it’s complex”.

5 RQ1: WHAT QUESTIONS DO PYTHON PROGRAM-
MERS ASK DURING MEMORY BEHAVIOR ANALYSIS?
We identified 34 different questions and 775 question oc-
currences from 22 work sessions, with a total duration
of 24 hours (exploration, open-questions, and post-study
questionnaire). Also, we generated a classification scheme
with five categories to organize these inferred questions.

Table 4 illustrates the distribution of questions per
category and the occurrences raised by the participants
during the work sessions. The first column provides the
questions categorized according to our classification scheme.
The following twenty-two columns summarize the questions
occurrences during each work session with the format:
#Total questions occurrences (#Ocurrences using Vismep /
#Ocurrences using Tracemalloc) if any occurrence, otherwise
the cell is empty. We also use the cell background to show the
relative frequency of the questions, in which darker green
backgrounds indicate the most frequent questions in the
sessions. Additionally, the last column follows the format
previously described and represents the total number of
question occurrences per question or category.

The following sections describe each category and the
questions related to them.

5.1 Understanding Source Code

This category involves questions centered on understanding
aspects of the source code, such as its static structure, ratio-
nale, and implementation. We noticed that in this category,
six questions and 158 question occurrences (20%) were raised
during the work sessions. The following questions are most
frequent in this category: “4. What does the declaration or
definition of this look like?”, “1. Which entities (functions, lines
of code, instances) are involved in the implementation of this
behavior?”, and “2. Which entities (functions, lines of code, class)
belong to this file or module?”

Note that the questions in this category may not initially
align with memory analysis. However, we must consider that
memory analysis, like any other program comprehension
activity, involves navigating and understanding the source
code. Upon reviewing the literature, we found that five of the
six questions in this category resemble questions asked by
programmers in other contexts, such as programming change
tasks [22], [23], [24], [52]. Specifically, during the sessions,
participants posed these questions when (i) searching for
a particular piece of code to analyze its memory usage or
(ii) identifying a memory issue or opportunities for memory
optimization.

Finding a particular code. When participants characterize
the memory behavior of their applications, they commonly
focus on finding entities (functions, instances) relevant to the
program functionality based on their knowledge to analyze
its memory usage. For example, P3 wanted to analyze the
memory usage of some auxiliary functions that he considered
relevant: “I want to find my auxiliary functions that performs
multiple calculations and I want to know how much memory they
consume”. Participants usually found relevant entities based
on the provided behavior, the module they belong to, and
the entity’s name. As a result, the next questions were asked:

”1. Which entities (functions, lines of code, instances) are involved
in the implementation of this behavior?” , “2. Which entities
(functions, lines of code, class) belong to this file or module?”,
and ”3. Is there an entity named something like this in that unit
(project, package, or class)?”
Locating anomalies and improvements. When participants
tried to determine if an entity (function, line of code) was
involved with an anomaly (e.g., memory bloat, leak), they
often explored the entity’s source code to decide if the
memory allocated was necessary or not for the correct
functionality of the program. Furthermore, when participants
locate an anomaly or an opportunity for reducing memory
usage, they center on the parts of code responsible for the
anomaly to investigate how it is defined or structured and
what the code is supposed to do. Consequently, participants
asked the following questions: “4. What does the declaration or
definition of this look like?”, “5. What are the parts of this entity
(function, instance, type)?”, and “6. What is the behavior that
these entities (functions, lines of code, instances) provide together?”

5.2 Understanding Control Flow

Questions related to understanding the control flow (e.g.,
exploring the relationships between functions, identifying
when or in which situations some functions are called) belong
to this category. This category contains nine questions, and
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TABLE 4
Questions per category and the occurrences raised during the work sessions. Each column corresponding to a participant presents the format: T

(A/B), where A denotes the number of occurrences using Vismep, B indicates the number of occurrences using Tracemalloc, and T denotes the total
number of occurrences. Note that if T is zero, the cell is empty.

Questions Type per Category P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 Total
Understanding Source Code
1. Which entities (functions, lines of code, instances) are
involved in the implementation of this behavior?

2
(2/0)

1
(1/0)

2
(2/0)

2
(2/0)

1
(1/0)

1
(1/0)

2
(1/1)

1
(1/0)

1
(1/0)

2
(2/0)

1
(1/0)

2
(2/0)

2
(2/0)

1
(1/0)

2
(2/0)

2
(2/0)

1
(1/0)

2
(2/0)

3
(3/0)

2
(2/0)

33
(32/1)

2. Which entities (functions, lines of code, class) belong
to this file or module?

4
(1/3)

1
(0/1)

3
(2/1)

2
(0/2)

2
(1/1)

1
(1/0)

2
(1/1)

3
(2/1)

3
(2/1)

2
(2/0)

2
(2/0)

1
(1/0)

2
(1/1)

1
(0/1)

4
(3/1)

33
(19/14)

3. Is there an entity named something like this in that
unit (project, package, or class)?

1
(1/0)

2
(2/0)

1
(1/0)

1
(1/0)

6
(6/0)

2
(2/0)

2
(2/0)

1
(1/0)

1
(1/0)

17
(17/0)

4. What does the declaration or definition of this look
like?

4
(0/4)

7
(1/6)

3
(2/1)

2
(2/0)

2
(0/2)

4
(2/2)

2
(2/0)

1
(1/0)

4
(3/1)

5
(5/0)

3
(3/0)

1
(1/0)

1
(1/0)

5
(1/4)

1
(1/0)

1
(1/0)

46
(26/20)

5. What are the parts of this entity (function, instance,
type)?

2
(2/0)

2
(2/0)

6. What is the behavior that these entities (functions,
lines of code, instances) provide together?

2
(1/1)

2
(1/1)

1
(1/0)

2
(2/0)

2
(2/0)

3
(1/2)

1
(0/1)

1
(1/0)

1
(0/1)

3
(2/1)

1
(0/1)

7
(2/5)

1
(1/0)

27
(14/13)

Total in the category 12
(4/8)

9
(2/7)

6
(5/1)

9
(8/1)

8
(3/5)

9
(6/3)

7
(6/1)

8
(7/1)

11
(7/4)

3
(2/1)

1
(1/0)

11
(10/1)

14
(13/1)

3
(3/0)

8
(7/1)

2
(2/0)

5
(4/1)

6
(5/1)

13
(3/10)

1
(1/0)

9
(8/1)

3
(3/0)

158
(110/48)

Understanding Control Flow
7. Which entities (functions, lines of code) are the most
executed?

1
(1/0)

1
(1/0)

3
(3/0)

1
(1/0)

2
(2/0)

2
(2/0)

1
(1/0)

1
(1/0)

1
(1/0)

2
(2/0)

15
(15/0)

8. Where is this method called or referenced? 1
(0/1)

1
(1/0)

1
(1/0)

2
(2/0)

1
(1/0)

1
(0/1)

1
(1/0)

1
(1/0)

1
(1/0)

10
(8/2)

9. When during the execution is this method called? 2
(0/2)

1
(0/1)

1
(1/0)

1
(0/1)

5
(1/4)

10. Which functions are called by this function? 2
(2/0)

2
(2/0)

4
(4/0)

1
(1/0)

2
(2/0)

1
(1/0)

1
(1/0)

1
(1/0)

1
(1/0)

1
(1/0)

4
(4/0)

3
(3/0)

1
(1/0)

24
(24/0)

11. How many times is this entity (function or line of
code) executed?

2
(0/2)

2
(0/2)

2
(2/0)

8
(8/0)

1
(1/0)

2
(2/0)

2
(2/0)

2
(2/0)

2
(2/0)

1
(1/0)

2
(2/0)

26
(22/4)

12. How many recursive calls happen during this
operation?

1
(1/0)

2
(1/1)

3
(2/1)

13. Which execution path is being taken in this case? 1
(0/1)

1
(1/0)

1
(1/0)

2
(2/0)

2
(1/1)

2
(1/1)

6
(5/1)

2
(1/1)

6
(4/2)

7
(7/0)

2
(2/0)

3
(2/1)

2
(2/0)

5
(2/3)

3
(3/0)

4
(4/0)

5
(4/1)

54
(42/12)

14. Under what circumstances is this method called or
exception thrown?

1
(0/1)

1
(1/0)

1
(1/0)

3
(3/0)

2
(2/0)

2
(2/0)

1
(0/1)

2
(2/0)

1
(0/1)

4
(3/1)

2
(2/0)

20
(16/4)

15. In what order are these functions executed? 1
(1/0)

1
(1/0)

1
(1/0)

3
(2/1)

6
(5/1)

Total in the category 7
(1/6)

7
(4/3)

9
(9/0)

3
(2/1)

20
(20/0)

14
(13/1)

8
(7/1)

6
(4/2)

11
(9/2)

1
(1/0)

5
(4/1)

12
(9/3)

12
(11/1)

3
(3/0)

9
(7/2)

1
(1/0)

4
(3/1)

2
(2/0)

11
(8/3)

3
(3/0)

7
(7/0)

8
(7/1)

163
(135/28)

Discovering Memory Usage at a Single Point of Time
16. How much memory does the execution of the entity
(function, instance, line of code) allocate?

3
(3/0)

2
(1/1)

5
(4/1)

1
(1/0)

2
(2/0)

14
(14/0)

3
(3/0)

2
(2/0)

4
(4/0)

1
(0/1)

3
(1/2)

3
(2/1)

1
(1/0)

2
(2/0)

46
(40/6)

17. How much memory do these parts of the code
allocate together?

3
(2/1)

3
(1/2)

4
(4/0)

1
(0/1)

3
(1/2)

5
(2/3)

3
(1/2)

1
(1/0)

1
(1/0)

4
(2/2)

4
(1/3)

1
(0/1)

1
(0/1)

2
(1/1)

3
(3/0)

5
(1/4)

1
(1/0)

1
(1/0)

46
(23/23)

18. How much memory in total is being allocated? 3
(2/1)

2
(2/0)

1
(0/1)

2
(0/2)

1
(0/1)

1
(1/0)

2
(0/2)

1
(0/1)

1
(0/1)

14
(5/9)

19. Why do these parts of code allocate this amount of
memory?

1
(0/1)

2
(1/1)

4
(4/0)

3
(2/1)

4
(3/1)

1
(1/0)

1
(1/0)

5
(3/2)

6
(3/3)

1
(1/0)

2
(0/2)

1
(0/1)

1
(1/0)

1
(0/1)

1
(1/0)

17
(4/13)

3
(0/3)

1
(0/1)

55
(25/30)

20. How does this data structure look at runtime? 1
(1/0)

3
(2/1)

4
(3/1)

Total in the category 6
(5/1)

4
(1/3)

11
(8/3)

4
(4/0)

9
(6/3)

11
(8/3)

9
(5/4)

15
(15/0)

16
(9/7)

9
(6/3)

5
(5/0)

3
(1/2)

9
(3/6)

4
(1/3)

3
(1/2)

2
(1/1)

5
(1/4)

7
(6/1)

23
(6/17)

4
(1/3)

4
(3/1)

2
(0/2)

165
(96/69)

Comparing and Contrasting Memory Usage

21. How much is the maximum memory peak? 1
(1/0)

1
(0/1)

1
(0/1)

3
(1/2)

22. How does memory usage evolve over time? 1
(1/0)

1
(0/1)

1
(1/0)

5
(3/2)

2
(0/2)

1
(0/1)

1
(0/1)

2
(0/2)

1
(0/1)

15
(5/10)

23. Which entities (functions, lines of code, instances)
allocate most memory?

9
(6/3)

5
(3/2)

6
(4/2)

5
(4/1)

7
(2/5)

11
(5/6)

5
(1/4)

12
(8/4)

3
(0/3)

7
(4/3)

3
(1/2)

2
(1/1)

5
(4/1)

3
(0/3)

3
(1/2)

3
(1/2)

7
(2/5)

6
(4/2)

14
(4/10)

4
(3/1)

7
(3/4)

3
(1/2)

130
(62/68)

24. What will be the impact in memory behavior of this
change?

1
(0/1)

1
(0/1)

3
(3/0)

1
(1/0)

2
(0/2)

1
(1/0)

3
(1/2)

1
(1/0)

1
(0/1)

2
(0/2)

1
(1/0)

2
(0/2)

8
(3/5)

3
(1/2)

30
(12/18)

25. What is the difference in memory behavior between
these similar parts of the code (e.g., between sets of
methods)?

1
(1/0)

1
(1/0)

1
(1/0)

1
(0/1)

4
(3/1)

26. What are the differences in memory behavior be-
tween this point of time and that point of time?

1
(0/1)

2
(0/2)

1
(0/1)

1
(0/1)

1
(0/1)

1
(0/1)

2
(0/2)

10
(0/10)

1
(0/1)

20
(0/20)

27. What is the difference in memory behavior between
these code executions?

2
(1/1)

1
(0/1)

2
(1/1)

1
(1/0)

2
(0/2)

1
(0/1)

1
(0/1)

10
(3/7)

28. What part (function, line of code, instance) of this
entity allocates the most memory?

1
(1/0)

1
(1/0)

2
(2/0)

3
(3/0)

2
(2/0)

1
(1/0)

1
(1/0)

1
(1/0)

2
(2/0)

1
(1/0)

2
(2/0)

1
(1/0)

6
(6/0)

2
(2/0)

3
(3/0)

1
(1/0)

30
(30/0)

Total in the category 10
(7/3)

10
(6/4)

10
(5/5)

8
(7/1)

10
(3/7)

18
(7/11)

9
(4/5)

19
(13/6)

13
(8/5)

9
(4/5)

7
(2/5)

3
(2/1)

12
(5/7)

5
(2/3)

9
(4/5)

6
(3/3)

9
(3/6)

8
(4/4)

42
(13/29)

9
(6/3)

11
(6/5)

5
(2/3)

242
(116/126)

Discovering Memory Events
29. Where in the code are memory allocations made in
this function?

6
(6/0)

2
(2/0)

1
(1/0)

1
(1/0)

1
(1/0)

4
(4/0)

7
(7/0)

1
(0/1)

2
(1/1)

1
(0/1)

26
(23/3)

30. Where are instances of this class created? 1
(1/0)

1
(1/0)

2
(2/0)

31. When are these objects garbage collected? 4
(3/1)

2
(1/1)

1
(1/0)

1
(1/0)

8
(6/2)

32. What data is being modified in this code? 1
(1/0)

2
(2/0)

1
(1/0)

1
(1/0)

1
(1/0)

1
(1/0)

7
(7/0)

33. What objects are allocated? 2
(2/0)

2
(2/0)

34. Where is this variable or data structure being
accessed?

1
(1/0)

1
(1/0)

2
(2/0)

Total in the category 6
(6/0)

1
(1/0)

0
(0/0)

3
(3/0)

9
(8/1)

2
(2/0)

1
(1/0)

1
(1/0)

3
(3/0)

2
(1/1)

0
(0/0)

0
(0/0)

8
(7/1)

0
(0/0)

0
(0/0)

2
(1/1)

0
(0/0)

0
(0/0)

1
(1/0)

7
(7/0)

1
(0/1)

0
(0/0)

47
(42/5)

Total 41
(23/18)

30
(13/17)

38
(29/9)

25
(22/3)

50
(35/15)

61
(42/19)

34
(23/11)

48
(39/9)

59
(40/19)

22
(13/9)

25
(19/6)

32
(25/7)

48
(33/15)

16
(9/7)

30
(20/10)

11
(7/4)

23
(11/12)

23
(17/6)

91
(31/60)

17
(11/6)

33
(25/8)

18
(12/6)

775
(499/276)

163 question occurrences (21%) were asked during work
sessions. The most frequent questions in this category are:

“13. Which execution path is being taken in this case?”, “12. How
many times is this entity (function or line of code) executed?”,
and “10. Which functions are called by this function?”

Similar to the first category, five of the eight questions
in this group have been reported in previous studies [22],
[23], [24], [52], [27]. Participants frequently asked questions
from this category when (i) understanding the execution
of specific code that affected memory usage (allocations,

releases, accesses) and (ii) identifying the root cause of a
memory issue.

Comprehending code execution. To better understand why
particular code parts (specific entities or allocation sites)
were executed, participants often investigated the circum-
stances that caused their execution and the relationships
between functions/methods. For instance, P12 identified a
function that allocated most memory and asked “Under what
circumstances is this __new__ function called?” P12 explored the
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relationships between functions and discovered that __new__
function was called several times to generate multiple data
frames that later are transformed into arrays using the numpy
package.

Detecting the root cause of an issue. Programmers also
centered on the control flow to detect the parts of code
responsible for excessive or inefficient memory usage. For
example, P19 located code parts that threatened memory
consumption due to a suspicious memory increment and
asked “Which execution path is being taken to allocate these
objects?” to trace the root cause of the issue and analyze if
the current code could be modified.

5.3 Discovering Memory Usage at a Single Point of Time

This category involves questions about discovering memory
usage at a single point in time. We detected five questions
and 165 question occurrences (21%) in this category. The
most frequent questions were: “19. Why do these parts of
code allocate this amount of memory?”, “16. How much memory
does the execution of the entity (function, instance, line of code)
allocate?”, and “17. How much memory do these parts of the code
allocate together?”

In contrast to previous categories, only one question
(question 20) was reported by previous studies [22], [23],
[24], [52]. Therefore, seven questions in this category were
not formally reported in the state of the art and are suitable
for memory behavior analysis. Participants asked these
questions to investigate memory behavior at a specific time
(e.g., allocations made, memory occupied), a memory activity
analysis considered relevant by other studies [15], [26], [31].
Answering these questions helps programmers understand
how certain entities impact memory behavior.

Participants usually asked for the memory behavior of
certain entities during the application’s execution. For exam-
ple, P8 asked “How much memory do the functions in charge of
plotting my figures consume?” to verify and confirm that these
functions allocated most of the memory. Also, participants
asked “19. Why do these parts of code allocate this amount of
memory?” especially when they found (i) unexpected entities
responsible for abnormal memory behavior or (ii) code
that allocated more or less memory than expected. Some
participants also look for information about the total memory
allocated at a particular time. For instance, P3 asked “How
much memory in total was allocated so far?” to analyze the
impact on memory allocated by particular code parts during
the execution. In addition, two participants asked “20. How
does this data structure look at runtime?” when exploring the
reason behind memory behavior at a certain point in more
detail.

5.4 Comparing and Contrasting Memory Usage

Questions about comparing and contrasting memory usage
belong to this category. We identified seven questions and
242 question occurrences (31%) grouped in this category.
Question “23. Which entities (functions, lines of code, instances)
allocate most memory?” is the most frequently raised by
participants.

While a number of studies consider inspecting memory
usage over time as an important memory activity [5], [15],

[26], past studies have not formally reported the questions
in this category. During our study, participants frequently
raised questions from this category when they (i) investigated
memory over time and (ii) compared memory usage between
software versions or different code executions.

Investigating memory over time. Participants focused on
how memory consumption varies during program execution.
The latter helps programmers detect abnormal memory
growth and potential leaks. For example, participants asked
questions to detect anomalies when analyzing memory
behavior over time: “21. How much is the maximum memory
peak?”, “22. How does memory usage evolve over time?”, and

“26. What are the differences in memory behavior between this point
of time and that point of time?”.

Contrasting memory usage. Participants compared the mem-
ory behavior of entities to determine which are responsible
for suspicious memory usage; thus, programmers asked “23.
Which entities (functions, lines of code, instances) allocate the most
memory?” and “28. What part (function, line of code, instance) of
this entity allocates the most memory?”. Some participants tried
to find opportunities to reduce memory usage by analyzing
the memory allocated by parts of the code (“25. What is
the difference in memory behavior between these similar parts
of the code (e.g., between sets of methods)?”) or distinct code
executions (“27. What is the difference in memory behavior
between these code executions?”). As a result, programmers
usually need to execute the code multiple times and compare
the memory usage.

Furthermore, we noticed that when programmers pro-
pose a change, they often make assumptions or want to
determine how it affects memory consumption and function-
ality (“24. What will be the impact on memory behavior of this
change?”). For example, P19 mentioned “I’m using a deep copy
when I don’t really need it; I think I could change this part and
reduce memory consumption quite a bit”, and P8 said “In this
piece of code I could remove these operations or move them so that
they are done at the end, only once, and optimize memory”.

5.5 Discovering Memory Events

Questions about discovering and locating memory events
are grouped in this category. A total of seven questions and
47 question occurrences (6%) were raised by participants and
belong to this category. The most frequent question is “29.
Where in the code are memory allocations made in this function?”

Previous studies [22], [23], [24], [52] about information
needs reported three of the six questions in this category.
Participants asked questions from this category to detect
an anomaly and optimization opportunity by exploring (i)
memory allocations, (ii) memory accesses, and (iii) memory
releases.

Exploring memory allocations. Some participants inspected
the data allocated in memory and the code responsible for
this action. Consequently, participants asked: (“29. Where in
the code are memory allocations made in this function?”, “30.
Where are instances of this class created?”, “33. What objects are
allocated?”)

Exploring memory accesses. Since the data allocated is used
in different operations (read and write). Some participants
explored how the data allocated in memory was used and
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why. As a result, participants asked: “32. What data is being
modified in this code?” and “34. Where is this variable or data
structure being accessed?”
Exploring memory releases. Some participants asked “31.
When are these objects garbage collected?” to examine if memory
occupied by data that is no longer needed was released.

RQ1: What questions do Python programmers ask
during memory behavior analysis? We identified
34 questions that programmers pose during memory
behavior analysis. These questions include grasping
source code and control flow to locate memory
anomalies and potential improvements. Participants
also explored memory behavior at specific times,
anomalies over time, and comparisons between code
versions. They delved into memory allocations, ac-
cesses, and releases. Notably, 14 of these questions
align with those from previous studies, particularly
in source code and control flow understanding. In
total, our study introduces 20 distinct questions for
memory analysis.

6 RQ2: HOW DO PYTHON PROGRAMMERS AN-
SWER THESE QUESTIONS USING MEMORY PROFILER
TOOLS?
We detected that 665 question occurrences (86%) raised by
participants were answered using features from Vismep
and Tracemalloc. Note that we only consider a question
as answered if a participant responded to this question only
using the memory analysis tool’s features, not the IDE itself.
Table 5 illustrates the features of Tracemalloc and Vismep
that participants used to answer the questions per category.
The following subsections describe in more detail the actions
performed to answer the questions.

6.1 Understanding Source Code
Participants responded to 150 question occurrences (95%
of the occurrences in category) about understanding static
structure and implementation.

Responding to question 1 (“Which entities (functions, lines
of code, instances) are involved in the implementation of this behav-
ior?” is about finding code parts to a particular functionality.
To answer this question using Vismep, participants usually
searched for a specific entity based on its name or structural
component (file or module). Participants often then check the
entity’s code to ensure it is related to specific behavior and
explore their relationships with other entities that could be
involved in the same task. Consequently, participants often
employed the Call graph view and the Source code view. For
Tracemalloc, a participant manually inspected the source
code of allocation sites based on the static information about
the file and line number reported with Display TOP to verify
if some sites were involved with the functionality that he
considered problematic.

Questions 2 “Which entities (functions, lines of code, class)
belong to this file or module?” and 3 “Is there an entity
named something like this in that unit (project, package, or
class)?” require finding entities based on their structural

component (file or module they belong to) or name. To
answer these questions with Vismep, participants often (i)
manually inspect the name and file of entities in diverse
views (Call graph view, Scatter plot view, Sub call graph view),
(ii) use the search mechanism to locate an entity with
a particular name, and (iii) explore the Source code view
of entities to ensure that they belong to a specific unit.
When participants employed Tracemalloc, they answered
question 2 by manually searching the names of files or
modules in the textual reports (Display TOP, Get traceback)
and exploring their source code.

Questions 4 “What does the declaration or definition of this
look like?” and 5 “What are the parts of this entity (function,
instance, type)?” involve inspecting the source code of entities.
Participants responded to these questions by inspecting
the source code of a given entity using Source code view
from Vismep. Also, participants explored the source code of
entities using the static information shown in diverse textual
reports (Display TOP, Compute differences, Get traceback).

Responding to question 6 “What is the behavior that these
entities (functions, lines of code, instances) provide together?”
requires understanding the task in which specific parts
of code were associated. Participants often answer this
question by exploring the source code of entities and their
relationships to understand how these entities impact the
program’s functionality. When participants used Vismep,
they focused on inspecting Source code view and exploring
the relationships using Call graph view or Sub call graph view.
In the case of Tracemalloc, participants often opened and
moved between several windows to inspect the source code
of the targeted entities and their relationship.

6.2 Understanding Control Flow
A total of 137 question occurrences (84% of the occurrences
in the category) were answered during sessions.

Questions 7 “Which entities (functions, lines of code) are the
most executed?”, 11 “How many times is this entity (function or
line of code) executed?” and 12 “How many recursive calls happen
during this operation?” is about how entities were executed.
To respond to these questions, participants used Vismep to
examine the information about the entity’s execution with the
popup windows or visual hints. For instance, participants
often used Scatter plot view to investigate the position of
entities since the X-axis in the chart represents the number of
executions. Participants also selected Call graph view or Sub
call graph view to inspect the height of nodes (proportional
to the number of executions) and look for nodes with loops
among their edges to identify recursion. Participants could
not respond to questions 11 and 12 using Tracemalloc.

Answering questions 8 “Where is this method called or
referenced?” and 10 “Which functions are called by this function?”
require examining control flow information, specifically the
relationship between functions. When participants used
Vismep, they responded to these questions by exploring the
relationships between nodes in Call graph view and Sub call
graph view. Sometimes they also inspected the code of certain
functions/methods to indicate the line of code responsible
for calling a function (Source code view). Participants could
not answer question 8 employing Tracemalloc.

Questions 9 “When during the execution is this method
called?”, 13 “Which execution path is being taken in this case?”,
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TABLE 5
Used features from Vismep and Tracemalloc to answer questions per category. Each column corresponding to a category represents the number of

answered questions of this category using a feature.

Category Feature Understanding Source
Code

Understanding
Control Flow

Discovering Memory
Usage at a Single

Point of Time

Comparing and
Contrasting Memory

Usage

Discovering Memory
Events Total

Tracemalloc Display top 39 1 38 65 2 145
Compute differences 2 1 12 31 2 48
Get traceback 5 8 5 6 0 24
Get traced 0 0 2 3 0 5
Combined reports 1 1 1 5 0 8

Vismep Call graph view 45 47 43 22 2 159
Source code view 18 2 7 27 18 72
Scatter plot view 1 8 8 10 0 27
Sub call graph view 4 29 6 10 0 49
Combined views 35 40 21 21 11 128

Total 150 137 143 200 35 665

14 “Under what circumstances is this method called or exception
thrown?” and 15 “In what order are these functions executed?”
consider understanding dynamic aspects of the control flow
or data flow in a particular context. To answer questions
13, 14, and 15 using Vismep, participants investigated and
navigated iteratively over the (i) code of functions (Source code
view) and (ii) relationships between functions (Call graph view,
Sub call graph view). When participants employed Tracemalloc,
they answered these questions by (i) analyzing the chain of
executions that lead to a particular memory allocation (Get
traceback) and (ii) searching manually for the references to
functions/methods and inspecting the respective code.

6.3 Discovering Memory Usage at a Single Point of Time
Participants responded to 143 question occurrences (87% of
the occurrences in the category) about discovering memory
usage at a point in time.

Responding to question 16 “How much memory does the
execution of the entity (function, instance, line of code) allocate?”
, and 17, “How much memory do these parts of the code allocate
together?” require exploring the memory usage of one or
multiple entities altogether. When participants answered
these questions with Vismep, they often investigated the
information about the memory usage of entities in the views
(Call graph view, Scatter plot view, Sub call graph view). For
Tracemalloc, participants used a number of function calls
to report the memory usage of lines of code (Display TOP,
Compute differences). Besides, with both tools, participants
performed mental operations with the information from each
group entity to respond to question 17.

Questions 18 “How much memory in total is being allocated?”
is about exploring the memory allocated at a point. Some
participants answered question 18 with Vismep by locating
the root function responsible for the program execution and
inspecting its memory behavior in Call graph view and Scatter
plot view.

Question 19 “Why do these parts of code allocate this amount
of memory?” considers dynamic and static aspects of the
program to understand the reasons behind memory usage.
To answer this question, participants usually focused on
code parts and explored (i) their memory usage, (ii) other
code parts associated with their execution (control flow),
and (iii) its source code to gain a better comprehension
of program behavior. Consequently, when using Vismep,

participants usually inspected the memory usage informa-
tion, the relationships between functions (Call graph view
or Sub call graph view), and the code (Source code view). For
Tracemalloc, some participants often reported the memory
used by parts of code and inspected in depth its source
code. Other participants reported the changes in memory
usage after and before executing these parts of code (Compute
differences along with the chain of code execution that caused
the memory allocations associated with them (Get traceback).

Question 20 “How does this data structure look at runtime?”
is about inspecting the state of a particular data structure in
a specific point in time; participants were unable to answer
question 20 with either tool.

6.4 Comparing and Contrasting Memory Usage
A total of 200 question occurrences (83% of the occurrences
in the category) were answered by participants.

Regarding question 21 “How much is the maximum memory
peak?”, participants could not respond to this question with
Vismep. In the case of Tracemalloc, participants selected
functions to show the total memory usage (Display TOP, Get
traced memory) and the memory peak (Get traced memory) in
the textual reports.

Responding to question 22 “How does memory usage evolve
over time?” and 26 “What are the differences in memory behavior
between this point of time and that point of time?” considers
understanding changes in memory usage over time. When
participants used Tracemalloc, they answered question 22 by
answering multiple occurrences of question 26. They often
report if the memory increased or decreased after and before
executing a function using the Compute differences feature.
Consequently, some participants obtained information about
the changes in memory usage over time by inspecting several
reports from Compute differences. Some participants did not
respond to question 22 using Vismep, and question 26 was
not asked when Vismep was used.

To answer questions 23 “Which entities (functions, lines of
code, instances) allocate most memory?”, 25 “What is the difference
in memory behavior between these similar parts of the code (e.g.,
between sets of methods)?” and 28 “What part (function, line of
code, instance) of this entity allocates the most memory?”, partici-
pants compared the memory allocated by entities and located
the code responsible for allocating most memory. For these
cases, participants often explored and manually compared



14

the visual cues of elements in diverse views of Vismep. For
example, to identify functions responsible for allocating most
memory, they searched the widest nodes in Call graph view
or the points located at the top in Scatter plot view since
the width and the position in Y-axis indicate the memory
usage. To identify code lines or instances that allocate most
memory inside a function, participants inspected the Source
code view and located the lines with a darker background. For
Tracemalloc, participants responded to these questions by
reporting with Display TOP the sites that allocate the most
memory along with the file and the line of number. In the
case of question 25, participants compared the memory usage
of code parts utilizing information from background color
in Source code view using Vismep or checking changes using
Compute differences with Tracemalloc.

Answering questions 24 “What will be the impact in
memory behavior of this change?” and 27 “What is the difference
in memory behavior between these code executions?” require
to detect changes in memory usage between versions or
executions. To respond to these questions using Tracemalloc,
participants usually reported the memory usage during
program execution through various features (Display TOP,
Get traced memory) for each version or execution. Then,
participants manually compared the information from these
reports to locate changes in memory usage based on a change
or a different input. Participants could not answer these
questions with Vismep.

6.5 Discovering Memory Events
A total of 35 question occurrences (75% of the occurrences
in the category) about discovering memory events were
answered by participants.

Questions 29 “Where in the code are memory allocations
made in this function?” is about locating the code responsible
for any memory allocation inside a function. Participants
answered question 29 by detecting code lines with a colored
background in Source code view with Vismep and inspecting
the code lines that allocate memory in reports (Display TOP,
Compute differences) of Tracemalloc.

Answering questions 30 “Where are instances of this class
created?”, 31 “When are these instances garbage collected?”
and 33 “What objects are created?” consider understanding
information about the creation and release from the memory
of instances. Participants could not answer question 30 using
Vismep, and occurrences from this question did not arise
when participants used Tracemalloc. To answer question 31,
a participant detected and inspected the points associated
with certain instances and when the memory decreased
with Compute differences from Tracemalloc. Participants could
not respond to questions 31 and 33 using Vismep, and no
occurrence from question 33 was asked by participants when
using Tracemalloc.

Question 32 “What data is being modified in this code?” and
34 “Where is this variable or data structure being accessed?” are
about exploring the state of a particular data structure or
locating the code responsible for accessing it. To answer ques-
tions 32 and 34 with Vismep, participants often examined the
source code associated with a particular data and explored
their relationships with other entities using Source code view
and Call graph view. Occurrences from questions 32 and 34
were not asked when participants used Tracemalloc.

RQ2: How do Python programmers use memory
profiler tools? Python programmers use Vismep,
especially its Call graph view and Source code view,
along with combined views, and Tracemalloc, partic-
ularly with the Display top and Get Traceback features
to understand source code and control flow. For
questions about memory behavior at a single point
in time and its evolution, they rely on Vismep’s
Call graph view and other combined views, as well
as Tracemalloc’s Display top and Compute differences
features. To answer questions regarding contrasting
memory behavior between versions and executions,
participants often manually compare multiple reports.
Additionally, Vismep’s Source code view and combined
views, along with Tracemalloc’s Display TOP and
Compute differences, partially support questions about
memory allocations and releases.

7 RQ3: WHICH TYPE OF QUESTIONS DID PYTHON
PROGRAMMERS NOT ANSWER, AND WHAT BARRIERS
DID THEY FACE?
A total of 110 question occurrences (14%), as posed by partici-
pants, either (i) cannot be addressed using the functionalities
provided by Vismep or Tracemalloc, or (ii) practitioners are
unable to derive any benefit from the memory tool features.
Table 6 summarizes the unanswered questions by category,
along with possible reasons why these questions remained
unanswered. Subsequent subsections will offer more de-
tailed insights into participants’ efforts and challenges in
addressing these questions, along with recommendations for
enhancing the design of memory analysis tools.

7.1 Understanding Source Code
A total of 8 question occurrences (5%) about understanding
source code were not answered.

A number of participants did not answer question 2
“Which entities (functions, lines of code, class) belong to this file
or module?” using Vismep because after manually exploring
several entities, they gave up due to the expensive inspection
and mental fatigue. They manually searched since Vismep
does not allow filtering entities considering the structural
component. We notice that sometimes a manual search
was also performed for question 3 “Is there an entity named
something like this in that unit (project, package, or class)?”;
however, these participants were able to answer this question
because the search was limited to finding one entity and not
groups of entities.

Regardless of the tool, participants inspected relation-
ships between several entities to better understand the
group’s functionality. However, some failed to respond to
question 6 “What is the behavior that these entities (functions,
lines of code, instances) provide together?” because the opera-
tions performed required considerable mental effort.

7.2 Understanding Control Flow
Participants did not respond to 26 question occurrences (16%)
related to understanding control flow.
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TABLE 6
Detected challenges that participants faced when trying to answer questions per category.

Category #Unanswered
Questions Challenges

Understanding Source Code 8 Filtering entities per structural component.
Inspecting relationships between groups of entities.

Understanding Control Flow 26 Fine-grained exploration of entities execution

Discovering Memory Usage at a Single Point of Time 22 Fine-grained exploration of entities memory usage.
Connecting static and dynamic information.

Comparing and Contrasting Memory Usage 42 Unadequate reports for memory evolution.
Contrasting memory behavior between code parts, versions, executions.

Discovering Memory Events 12 Insufficient information about allocations, releases and accesses.

Participants did not answer questions 9 “When during
the execution is this method called?” regardless of the tool
because it involves inspecting the context of a particular
point, and the tools used do not extract this information.
Some participants chose not to respond to questions 13
“Which execution path is being taken in this case?”, 14 “Under
what circumstances is this method called or exception thrown?”
and 15 “In what order are these functions executed?” The latter
occurs because participants considered that tools do not
report detailed information about control or data flow in a
particular context (e.g., considering cases or circumstances,
execution order). Therefore, participants could not point out
in which context certain behavior occurs. Additionally, some
participants did not answer questions 8 “Where is this method
called or referenced?”, 11 “How many times is this entity (function
or line of code) executed?” and 12 “How many recursive calls
happen during this operation?” using Tracemalloc because it
lacks features to extract this information.

7.3 Discovering Memory Usage at a Single Point of Time

A total of 22 question occurrences (13%) about discovering
memory usage at a single point were unanswered.

One participant was unable to respond to a variation of
question 16 “How much memory does this variable allocate?”
using Tracemalloc because he could not find a suitable
feature to inspect variables at that level. Furthermore, some
participants did not answer question 17 “How much memory
do these parts of the code allocate together?” when analyzing
multiple lines of code in Vismep. This stemmed from the
fact that Vismep does not provide a textual breakdown of
memory usage for each line of code but instead offers visual
cues within the background code. Consequently, participants
believed that more specific information was needed to
address this question for groups of code lines.

Participants sometimes could not answer question 19
“Why do these parts of code allocate this amount of memory?” be-
cause the navigation between dynamic information (memory
usage, program execution) and static information (source
code, structural component) was considered inadequate.
Usually, participants found suspicious memory behavior
but had difficulties better understanding the implementation
or the circumstances in which specific behavior occurs due to
the challenges mentioned in understanding the source code
and control flow. Additionally, question 20 “How does this
data structure look at runtime?” remained unanswered because

neither of the tools allowed users to inspect a data structure
at a specific moment in time.

7.4 Comparing and Contrasting Memory Usage
Participants did not respond to 42 question occurrences (17%)
about comparing and contrasting memory usage.

Questions 21 “How much is the maximum memory peak?”
and 22 “How does memory usage evolve over time?” were
not answered using Vismep. This situation occurs because
Vismep summarizes the memory footprint using a call graph
view instead of a more familiar visualization, such as a time-
series chart. Besides, participants also faced difficulties using
Tracemalloc to answer question 22. The latter occurs because
participants must manually compare the reports for each
snapshot taken. In some cases, they give up answering the
question due to the high mental demand involved.

Some participants did not answer questions 23 “Which
entities (functions, lines of code, instances) allocate most memory?”
and question 25 “What is the difference in memory behavior
between these similar parts of the code (e.g., between sets of
methods)?” using Vismep because it does not textually report
information about the memory behavior of a particular
instance. Participants often encountered difficulties manually
comparing the memory behavior in multiple reports with
both tools to answer questions 24 “What will be the impact in
memory behavior of this change?” and 27 “What is the difference
in memory behavior between these code executions?”

7.5 Discovering Memory Events
A total of 12 question occurrences (25%) about discovering
memory events were not answered.

Participants failed to answer question 30 “Where are
instances of this class created?” with Vismep because it does
not explicitly report this information as the classic list of
instances (see Section 2.1). Participants struggled to manually
identify functions responsible for creating specific instances
because it took time and effort. Most participants also did
not answer questions 31 “When are these instances garbage
collected?” and 33 “What objects are created?” using Vismep
and Tracemalloc because they only show the amount of
memory allocated or released but do not reveal the objects
involved. Furthermore, both tools do not provide enough
information to answer question 34 “Where is this variable or
data structure being accessed?”; thus, participants need more
support to answer this question.
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RQ3: Which type of questions did Python program-
mers not answer, and what barriers did they face?
Participants encountered difficulties in addressing
certain types of questions, such as those involving
filtering entities based on structural components,
examining relationships among groups of entities,
exploring fine-grained information (e.g., context dur-
ing execution, detailed memory events) about entities,
and contrasting memory behavior between different
sections of code, versions, or executions. As a result,
participants identified several issues, including a lack
of fine-grained information, limited interaction op-
tions (e.g., filtering and selection), inadequate report-
ing (e.g., connecting static and dynamic information),
and the absence of essential support features (e.g.,
contrasting memory behavior).

7.6 Recommendations

We present four recommendations based on the study results
and the participants’ answers to the post-study questionnaire.
In the following, we describe each of these recommendations.
Provide IDE integration. Standard features of IDEs support
answering questions about source code and control flow
(e.g., search entities by name, structural component) [23],
[27]. These questions were helpful when identifying memory
anomalies and detecting opportunities for improvement.
For this reason, we encourage memory tool builders to
provide integration with IDE to make an adequate connec-
tion between static and dynamic information to support
practitioners when analyzing memory behavior [6], [26].
Carefully select report presentation and interactions. As
mentioned above, how information is presented and the
techniques used for navigation and exploration impact
the comprehension of information [11], [12], [13], [14]. In
this study, participants mentioned that exploring time-
series charts when analyzing memory evolution is familiar.
Participants also pointed out that this report presentation
could reduce the mental operations to answer questions
about memory evolution with Tracemalloc and Vismep. On
the other hand, allowing metric selection could reduce the
complications when comparing entities based on the default
visual mapping [6], [15], [60].
Use interactions for fine-grained information. Extracting and
reporting a vast amount of data during program execution
could be tedious and overwhalming [15], [31]. For this
reason, we suggest that memory tool builders report fine-
grained information based on the developer’s demands and
preferences for report presentation. For instance, most partic-
ipants appreciated Vismep’s interaction mechanisms, which
allowed them to navigate through several visualizations
side by side, providing connected information. However,
Vismep could be further enhanced by incorporating features
for entity selection and filtration (e.g., based on memory
usage) and offering more detailed information on demand
(e.g., memory events within specific code lines). This would
enable users to focus on the most relevant elements [60].
Provide support for contrasting memory behavior. Our
results show that participants needed to contrast memory

behavior between different code sections, versions, and
executions. While only a few memory analysis tools currently
support these activities, we believe that these capabilities can
significantly influence research in the field, particularly when
analyzing the impact of a change on memory behavior [15].
Therefore, we recommend that tool developers provide
support for comparing elements at various levels of memory
behavior analysis.

8 DISCUSSION

We discuss our findings and contrast them with other prior
work as necessary.

8.1 Questions Asked By Participants
We found three categories centered on memory usage: (i)
discovering memory consumption at a single point in time,
(ii) comparing and contrasting memory consumption, and
(iii) discovering memory events. Although these findings
may not be surprising since they are involved with primary
activities (e.g., performance, inspection of memory anomalies)
mentioned in previous work [26], [27], we provide empirical
evidence about their relevance.

We also detected questions about understanding the
source code and the control flow. We included these ques-
tions because participants asked them to answer questions
from the rest of the categories. To illustrate, after locating
allocation sites responsable for abnormal memory behavior,
several participants asked “Why do these parts of code consume
this amount of memory?” Then, to answer this question,
participants inspected the source code of the particular
allocation sites (“What does the definition of this look like?”)
and explored the control flow to understand why that code
is executed (“Under what circumstances is this method called?”).
Our results show that programmers require support for
software comprehension when addressing a memory issue
or determining the root cause of a potential failure. For
this reason, we believe that these questions would be asked
regardless of the tools used.
Precision of questions. The questions reported were inferred
based on the questions explicitly asked by the participants or
their speech, along with the actions performed during work
sessions. Although some questions may seem very general,
they represent the programmer’s intentions. For instance,
question “24. What will be the impact on memory behavior of
this change?” was inferred considering different verbalized
thoughts (see Section 5.4). Accordingly, a “change” could
involve distinct elements; for P19 it is the elimination of a
deep copy, and for P8 it is to avoid the repetitive execution
of code lines occupying a large amount of memory.

We also note that programmers asked more global
questions due to tool features, tool limitations (see Section 4.2
and Section 7), and the open questions given during the work
sessions. Thus, the questions presented can include vague
and irrelevant elements. Based on the latter, we consider
further exploration necessary to distinguish the more precise
and essential entities. For example, conducting a study with
a specific software application with particular memory bugs.
Questions of other studies. As mentioned in Section 5,
we reported questions that were and were not reported
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in studies on developer information needs. Most questions
about discovering memory usage at a single point in time
and comparing and contrasting memory usage were not
explicitly identified by any other study. This situation may
occur due to the lack of information needs during memory
behavior analysis [15]. Consequently, our study provides
valuable information to guide researchers in designing tools
that adequately support programmers in this context.

Furthermore, most questions about understanding source
code and control flow were reported by literature focused
on programming change tasks [22], [23], [24], [52]. Sim-
ilarly, questions about discovering memory events were
classified as questions related to data flow or performance
in previous studies [22], [27]. These situations illustrate
that programmers asked common questions about software
comprehension, whether to perform programming change
tasks, fix memory issues or determine the cause of a failure.

Questions not raised but expected. Although we provide a
catalog of questions to illustrate the needs of programmers
during the analysis of memory behavior, some questions
could be missing. Several studies mentioned the relevance of
supporting memory anomaly detection (e.g., memory bloats,
memory leaks, unusual garbage collector behavior) [26],
[15], [21], [25]. Consequently, questions like “Which objects
are alive until this time?”, “Which objects are kept alive by a
given object/variable?”, “Which object did not survive during the
garbage collection?” would be expected. Even more technical
questions about garbage collection information, threading,
and the memory occupied by Python vs. native code, among
others, could arise [20], [50], [51]. Note that these questions
could be missing in our study due to tool limitations, partici-
pants’ backgrounds, and characteristics of the applications
under study. Thus, further exploration is necessary to identify
more questions and complete our catalog.

Question frequency. We divided our participants into two
groups, G1 and G2. Participants from G1 first used Vismep
(FP) and then Tracemalloc (SP), while in G2, the order of
tools was reversed. We observed that participants from
G1 usually ask more questions than participants from G2.
We also noticed that questions about discovering memory
events were asked more often in G1 than in G2. One
explanation for this difference is the applications selected
by participants and how they address issues. For example,
some participants (P6, P9) from G1 chose applications with
memory anomalies (leaks, bloats) and centered on exploring
the memory allocations and releases.

We also detected that questions from the first, second, and
last categories arose more frequently when participants used
Vismep. One reason for this difference is that programmers
considered that Vismep gives more support to answer these
questions than Tracemalloc; thus, more questions arose. In
addition, questions from the third and fourth categories
were asked more often during the first phase of both groups.
One contributing factor may be the learning effect in the
study. In other words, some participants asked questions
about the program’s memory usage during the second phase
considering the knowledge acquired from the first phase.
For instance, some participants could avoid asking about the
memory used by some entities they know are not a threat to
memory usage based on analysis from the first phase.

Learning effect. Participants analyzed the same application
with Vismep and Tracemalloc. The order for using each
tool was defined based on the participant’s group (G1
and G2). Each participant decided when to end up the
first phase to start the second phase and use another tool.
Therefore, we did not force participants to switch from one
tool to another. In the second phase, participants generally
(i) located or confirmed the information or assumptions they
had in the first phase, (ii) used the knowledge from the first
phase to analyze the code further, and (iii) detected new
information. We also noted that participants asked more or
fewer questions between phases due to the tool’s limitations
or because they had prior knowledge of the first phase. To
illustrate, participants asked more questions about memory
evolution over time using Tracemalloc due to the support
that this tool offers. In addition, as mentioned before, we
discussed that the frequency of questions might vary due to
different reasons (e.g., tool usage, application selected). Note
that our goal is not to compare Vismep and Tracemalloc or
rate the questions for relevance based on the frequency.

Furthermore, we increased the diversity and range of the
questions asked by practitioners due to dividing participants
into two groups balanced based on their study field and
observing how they analyzed the same application with both
tools in a different order. We also found that programmers
analyze memory usage and address memory issues using a
wide range of features that are not necessarily supported by
a single tool.

Study field effect. We examined if the questions asked may
vary based on the participant’s study field. We analyzed the
differences in questions between two groups of participants:
(i) group C, which contains participants in the Computer
Science field, and (ii) group N, which contains the rest of the
participants. As a result, group N participants often asked
more questions about understanding source code and control
flow. In addition, group C participants usually asked more
questions about discovering memory usage at a point in time
and comparing memory usage. These differences could be
that participants from fields distinct to Computer Science
may need to explore several entities at different levels to
understand the program’s behavior and structure.

Self-assessment expertise effect. We inspected if the questions
asked may vary based on the participant’s expertise in
Python. We analyzed the differences in questions between
two groups of participants: (i) group E, which contains
participants with self-assessment expertise above 3.2 (av-
erage), and (ii) group N, which contains the rest of the
participants. As a result, group N participants usually asked
more questions about understanding source code, control
flow, and discovering memory events. Group E participants
often asked more questions about discovering memory
usage at a point in time and comparing memory usage.
A factor that may cause these differences could be that
participants considered themselves with expertise above
regular in Python could obtain information to modify their
code, optimize memory usage and perform fewer operations
to comprehend the program’s functionality.

Students vs. professionals. We analyzed whether the ques-
tions may differ based on whether the participant is an
undergraduate or a professional. As a result, regardless of
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whether they are professionals or not, participants often ask
a similar frequency of questions about understanding control
flow, discovering memory usage at a single point in time, and
discovering memory events. In addition, professional partic-
ipants usually asked more questions about understanding
source code and comparing memory usage. This difference
could occur because professional participants may require
to inspect and compare several entities at different levels to
comprehend their application’s behavior and the impact of
some elements in memory usage.
Gender effect. Some studies [61], [62] have shown differences
between men and women when debugging. Our study
involved twenty-two participants, of which six were women.
We detected that both men and women ask questions from
the five categories. We also found that women usually ask
more questions about discovering memory events, while
in the other categories, the question frequencies are often
higher for men. However, we could not ensure that these
situations are due to gender since our study presents (i)
a small sample, which is not balanced between men and
women, and (ii) variations in sessions (e.g., applications
selected). Furthermore, any observations about the questions’
occurrences should be treated carefully as the sessions
from which the data is extracted varied in diverse ways
(e.g., different applications, presence of memory issues).
Nonetheless, studies of the gender-related issues within tasks
related to memory consumption analysis would extend this
work.

8.2 Answering Questions
We observed that Vismep and Tracemalloc could support
programmers in answering most questions inferred in this
study. However, Section 7 details that participants could
not answer some questions. Consequently, we detected
participants’ challenges during the process and made four
recommendations when designing memory analysis tools.
Support of other tools. We believe that most approaches in
Python (see Table 1) and other programming languages [15],
[26] could support most of the questions inferred in our study
due to the reported data and activities they claim to support.
To illustrate, some of the approaches of Python [50], [51] and
memory analysis tools for other programming languages
such as AntTracks [5], Yourkit [37], JProfiler [38], could
provide enough support to answer most of the questions
in the third and fourth categories by allowing analysis of
the evolution of memory usage and inspecting memory at
one point in time. On the other hand, other options [5], [46],
[47], [48] may provide adequate support for answering some
questions about memory events, specifically the creation
and release of specific objects. However, it is worth noting
that most Python analysis tools do not provide explicit
information to support the latter category. Nonetheless,
further research must be conducted with other tools to
confirm if programmers could use the information reported
to answer these questions.

Furthermore, we consider that some approaches could not
adequately support answering questions about source code
and control flow because they do not adequately connect
static and dynamic information. Consequently, we strongly
suggest proper integration with IDEs, as our study, like

previous literature [6], [26], highlights that it would facilitate
the solution of memory issues.

Learning effect. We defined that a question is answered
only if the participant demonstrates and explains how
she/he employs the corresponding tool to respond to the
question and mentions the answer. Vismep and Tracemalloc
differed in the information reported and how information is
provided and navigated. Consequently, programmers used
different strategies to manage both tools and obtain certain
information. For example, participants compared the visual
hints of elements in the Call graph view and Source code view
to identify allocation hot spots with Vismep. On the other
hand, participants used the Display TOP from Tracemalloc to
obtain the same information.

Study field effect. We observe that participants, regardless
of their study field and tool’s usage, usually answered a
similar proportion of questions for all categories except
understanding control flow. Computer science participants
tend to answer more questions about control flow. The latter
may be because these participants may be more accustomed
to performing operations to explore information on this
aspect.

Self-assessment expertise effect. We analyzed the differences
in questions between two groups of participants: (i) group E,
which contains participants with self-assessment expertise
above 3.2 (average), and (ii) group N, which contains the rest
of the participants. Participants from both groups, regardless
of the tool’s use, often answered a similar proportion of
questions for all categories except discovering memory
events. Participants from group E usually responded to more
questions about discovering memory events. One factor may
be that experienced participants could extract information by
using different features to obtain information that was not
explicitly displayed (e.g., allocations, releases).

Students vs. professionals. We detected that participants,
regardless of whether they were professionals or not, often
answered a similar proportion of questions for understand-
ing source code and discovering memory events. Profes-
sional participants tended to answer more questions about
discovering memory usage at a single point, and students
usually responded to more questions about control flow
and comparing memory usage. These differences could exist
because professional participants may perform operations
with a large amount of data, being difficult and complex to
obtain the required information to answer the questions.

Gender effect. We noticed that participants, regardless of
gender, often answered a similar proportion of questions
for all categories except discovering memory usage at a
single point and discovering memory events. Women tend to
answer more questions about discovering memory usage at a
single point and discovering memory events than men. This
situation could occur because women were found efficient
users of tinkering in previous studies [61], [62].

9 THREATS TO VALIDITY

Our study and results are subject to validity threats [63].
To carefully identify possible threats and analyze how their
impact may be mitigated, we decided the following:
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Conclusion validity. Our conclusions are founded on an
exploratory study involving programmers analyzing the
memory usage of their Python applications using memory
profilers. However, our conclusions are based on observing
only twenty-two participants, a relatively low sample. We try
to reduce this threat by selecting participants with diverse
backgrounds (e.g., study fields, experience in Python pro-
gramming). Although we had no indication that increasing
the number of participants may invalidate our result, the
frequency and precision of questions in our results may be
affected.

Internal validity. The second author performed the data
collection and transcription of each work session. Then, the
first author checked the generated spreadsheets based on the
video recordings and event logs to minimize inconsistencies.
Furthermore, the second author conducted the steps to
identify the questions asked by the participants. Identifying
concrete questions based on user behavior may be inaccurate,
as participants did not explicitly verbalize their thoughts.
Finally, the process of defining general questions may suffer
from uncertainty. For instance, it can be challenging to
distinguish question 23 ”What will be the impact in memory
behavior change?” from question 26 ”What is the difference in
memory behavior between these code executions?”. To minimize
inaccuracy in the inference process, the first author contrasted
different scenarios and events related to the same questions
and checked if the inferred questions were consistent with
the information from spreadsheets. All the authors held two
meetings to discuss any discrepancy in the inferred questions’
consistency.

Regarding the classification scheme, the first author con-
ducted a thematic analysis to organize the inferred questions
based on the information needed and the programmer’s
behavior to answer a question. The codes and themes
generated vary depending on the coder’s experience, level
of abstraction, and point of view. To mitigate this threat,
two authors checked the consistency of the process by
examining the description of themes with the associated
data. We conducted two meetings to discuss and resolve
the disagreements among generated codes and themes.
Additionally, two reviewers independently categorized the
inferred questions using the classification scheme, and a
measure of agreement between reviewers was calculated to
validate the reliability.

Construct validity. We focus on understanding how pro-
grammers analyze the memory usage of Python programs
using memory profiler tools. Therefore, we voluntarily
centered on the Python programming language. For the
study, participants chose software applications with which
they were familiar to analyze them during the sessions.
Furthermore, data from each work session was carefully
examined and collected using records, logs, and observation.

External validity. The selected memory profiler tools and
the individual differences among participants influence
the programmers’ questions and how they answer those.
Consequently, the questions could vary given a completely
distinct set of memory profiler tools, participants, or appli-
cations. The latter must be considered when interpreting or
generalizing the results. We mitigated this threat by selecting
programmers with different backgrounds and experience

levels who chose applications under study. In addition,
we opted for memory profiler tools that provide diverse
information and report presentations commonly offered by
other Python memory tools. We also discussed and analyzed
the tool support for answering questions considering the
features of other tools. As a result, we noticed that many
inferred questions were independent of whether they could
be answered with the tools. Furthermore, no new questions
were detected in the last work sessions. The latter suggests
that some of our results will likely generalize to other
tools. The selection of Vismep and Tracemalloc enables us
to identify various memory analysis questions related to
memory increments, memory releases, bottlenecks, and their
relationship with the source code. However, we plan to
explore additional tools that further enhance the scope of our
study.

Our results also need to be interpreted relative to the
programming language and the open questions used in
the study. We focused on understanding the impact of
memory profiler tools on supporting programmers during
memory consumption analysis for Python applications. The
participants selected Python applications with which they
were familiar and answered open questions to ensure that
participants looked for the information they considered
valuable. It is important to note that we did not extend
our study to encompass other programming languages or
a broader array of memory profiling tools due to the prac-
tical challenges associated with conducting such expansive
research. For instance, data collection and transcription were
resource-intensive, requiring a full day’s work per session.
Additionally, our study deliberately maintains a general
focus without specifying highly detailed tasks, such as identi-
fying five allocation hotspots. Participants were encouraged
to exercise their judgment when selecting applications, and
no restrictions were placed on project or system size or
complexity. While our study provides valuable insights
within these confines, there is room for future research to
diversify and explore various programming languages and
toolsets, thus enabling a more comprehensive understanding
of memory analysis needs in specific contexts.

As mentioned above, the sessions in our study varied
along several dimensions, and we have not thoroughly ana-
lyzed how the questions asked and the answering behavior
varied along those dimensions. Although we discussed in
Section 8 the differences between question frequencies and
the questions asked and answers by participants with diverse
backgrounds, this information is insufficient to conclude
that the study field or the programming experience affects
the questions asked and how the tools are used. Obtaining
precise information about the latter would require a study
set up with more controls on the dimensions along which
the sessions are allowed to vary.

10 CONCLUSION

We conducted an observational study to provide (i) an
empirically-based set of questions that programmers ask
during memory usage analysis and (ii) a report about how
programmers those questions with Vismep and Tracemalloc.
In our exploratory study, we observed 22 programmers ana-
lyzing the memory consumption of Python applications with
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which they were familiar using these two tools. We found 34
different questions and organized them into five categories
based on the information needed and the programmer’s
behavior: (i) understanding source code, (ii) understanding
control flow, (iii) discovering the memory usage at a single
point of time, (iv) comparing and contrasting memory usage,
and (v) discovering memory events.

Vismep and Tracemalloc generally provide good support
for answering most questions. However, participants often
encountered difficulties due to (i) the lack of fine-grained
information, (ii) omission of useful interaction options (e.g.,
filtering, selecting), (iii) inadequate reporting (e.g., failing to
connect static and dynamic information), and (iv) missing
support features (e.g., contrasting memory behavior). Con-
sequently, our research offers four key recommendations to
guide researchers and tool developers in creating, designing,
and evaluating memory analysis tools. These recommenda-
tions encompass the integration with IDE, careful selection of
report presentation and interactive mechanisms, utilization
of interactions to provide fine-grained information, and
providing support for contrasting memory behavior.

The significant implication is that there is still much to
learn about how programmers analyze memory behavior.
For this reason, we also discussed diverse aspects (e.g.,
precision of questions, support of other tools) and we point
out that multiple studies beyond this are needed to fully
understand how programmers perform these activities in
different contexts. Those insights can be leveraged to create
new tools or improve current tools to support programmers
in their development environments.
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exploration: A method for guiding novice users in interactive
memory monitoring tools,” Proc. ACM Hum.-Comput. Interact.,
vol. 5, no. EICS, may 2021. [Online]. Available: https:
//doi.org/10.1145/3461731

[6] A. F. Blanco, J. P. S. Alcocer, and A. Bergel, “Effective visualization
of object allocation sites,” in 2018 IEEE Working Conference on
Software Visualization (VISSOFT). IEEE, 2018, pp. 43–53.

[7] S. Byma and J. R. Larus, “Detailed heap profiling,” SIGPLAN
Not., vol. 53, no. 5, p. 1–13, Jun 2018. [Online]. Available:
https://doi.org/10.1145/3299706.3210564

[8] G. Xu and A. Rountev, “Precise memory leak detection for java
software using container profiling,” in Proceedings of the 30th
international conference on Software engineering, 2008, pp. 151–160.

[9] D. Lo, N. Nagappan, and T. Zimmermann, “How practitioners
perceive the relevance of software engineering research,” in
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering. ACM, Aug 2015, pp. 415–425. [Online]. Available:
https://doi.org/10.1145/2786805.2786809

[10] J. Clause and A. Orso, “Leakpoint: pinpointing the causes of
memory leaks,” in 2010 ACM/IEEE 32nd International Conference
on Software Engineering, vol. 1. ACM, 2010, p. 515. [Online].
Available: https://doi.org/10.1145/1806799.1806874

[11] Y. Park and C. Jensen, “Beyond pretty pictures: Examining
the benefits of code visualization for open source newcomers,”
in 2009 5th IEEE International Workshop on Visualizing Software
for Understanding and Analysis. IEEE, 2009, pp. 3–10. [Online].
Available: http://ieeexplore.ieee.org/document/5336433/

[12] S. Diehl, “Software visualization,” in Proceedings of the 27th interna-
tional conference on Software engineering, 2005, pp. 718–719.

[13] S. Ducasse, M. Lanza, and R. Bertuli, “High-level polymetric
views of condensed run-time information,” in Eighth European
Conference on Software Maintenance and Reengineering, 2004. CSMR
2004. Proceedings. IEEE, 2004, pp. 309–318. [Online]. Available:
http://ieeexplore.ieee.org/document/1281433/

[14] B. A. Price, R. M. Baecker, and I. S. Small, “A principled taxonomy
of software visualization,” Journal of Visual Languages & Computing,
vol. 4, no. 3, pp. 211–266, 1993. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S1045926X83710153

[15] A. F. Blanco, A. Bergel, and J. P. S. Alcocer, “Software visualizations
to analyze memory consumption: A literature review,” ACM
Comput. Surv., vol. 55, no. 1, Jan 2022. [Online]. Available:
https://doi.org/10.1145/3485134

[16] K. J. Millman and M. Aivazis, “Python for scientists and engineers,”
Computing in Science Engineering, vol. 13, no. 2, pp. 9–12,
2011. [Online]. Available: http://ieeexplore.ieee.org/document/
5725235/

[17] K. Srinath, “Python–the fastest growing programming language,”
International Research Journal of Engineering and Technology (IRJET),
vol. 4, no. 12, pp. 354–357, 2017.

[18] “Tracemalloc - trace memory allocations,” accesed: 2022-
01-27. [Online]. Available: https://docs.python.org/3/library/
tracemalloc.html

[19] “vprof: Visual profiler for python,” accesed: 2022-01-27. [Online].
Available: https://github.com/nvdv/vprof

[20] “A python memory profiler for data processing and scientific
computing applications,” accesed: 2022-01-27. [Online]. Available:
https://github.com/pythonspeed/filprofiler

[21] A. F. Blanco, A. Bergel, J. P. S. Alcocer, and A. Q. Córdova,
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