
Visualizing Memory Consumption with Vismep
Alison Fernandez Blanco∗, Alexandre Bergel‡, Juan Pablo Sandoval Alcocer†, Araceli Queirolo Córdova∗

∗DCC, University of Chile
‡RelationalAI, Switzerland – https://bergel.eu

†Department of Computer Science, School of Engineering, Pontificia Universidad Católica de Chile

Abstract—Detecting and repairing memory issues is still a
challenging task. One reason is that understanding a program’s
memory usage involves a diverse and related set of dynamic
and static aspects. Over the years, multiple tools have been
proposed to assist practitioners in these activities. However,
detailed information about how a tool helps users when analyzing
memory usage is missing.

This article introduces Vismep, an interactive visualization
prototype to help programmers analyze Python applications’
memory usage, and presents an exploratory study to understand
the behavior and perception of users when using Vismep. As
a result, we reported five information needs when participants
analyze memory consumption and how they use Vismep to satisfy
these needs. Besides, participants positively perceived Vismep due
to their valuable views and high overall usability.

I. INTRODUCTION

Monitoring and understanding an application’s memory
usage help programmers discover anomalies. Such anomalies
may be non-trivial and possible outcomes include crashes and
performance degradation [1], [2], [3]. To assist programmers
in identifying memory anomalies and evaluate how well
programs perform based on multiple aspects (e.g., memory
usage, memory allocations, memory access), numerous memory
profiling tools have been proposed [4], [5], [6]. Typically,
these tools report the information related to memory usage
through full-text reports or tables. Moreover, several software
visualizations with interaction mechanisms were considered
suitable alternatives for helping programmers in examining and
addressing memory issues [7], [8], [9], [10] since visualizations
are known to be adequate at supporting practitioners in software
comprehension [11], [12].

Although various tools are provided, programmers usually
need substantial time to understand memory usage, detect
anomalies, and repair issues [13], [14]. For example, it has been
reported that users employ different tools to address memory
issues in popular Python packages (e.g., pandas1, scikit-learn2).
However, the discussions indicate that users struggle to under-
stand the information provided by those tools. Furthermore,
little is known about what information programmers need when
analyzing memory and how programmers employ tools to find
this information [22].

This paper introduces Vismep, an interactive visualization
prototype to help programmers analyze Python application
memory usage. Vismep gathers and reports information (e.g.,
calls between functions, memory usage) using polymetric

1https://github.com/pandas-dev/pandas/pull/45489
2https://github.com/scikit-learn/scikit-learn/issues/19774

views [15]. In order to explore and analyze the behavior
and perception of programmers when employing Vismep, we
conducted an exploratory study with eleven participants who
analyzed their software’s memory consumption using Vismep.
We carefully monitored which information programmers usually
look for when analyzing memory usage, how they use Vismep
to obtain this information, and how they perceive Vismep.

Our findings indicate that programmers look for dynamic
and static information to (a) identify relevant code - the
functions/methods involved in implementing specific behavior
or belonging to particular modules, (b) locate allocation
hotspots - the functions/methods or code lines that allocate
most memory, (c) inspect circumstances, rationale, and events
of selected functions/methods - the circumstances in which
functions/methods are executed, their rationale and the memory
events (allocation, access, release) related, (d) detect memory
anomalies - code involved with excessive or inefficient memory
usage, and (e) trace the cause of anomalies - how memory
anomalies affect memory usage behavior. Additionally, pro-
grammers used a wide range of Vismep features to perform
previously mentioned activities. Furthermore, we found missing
information and opportunities for improvement that could guide
the design and implementation of Vismep and other tools.
We also noticed that Vismep is positively perceived since
participants indicated a low to moderate mental workload effort
when using it and considered that Vismep offers high overall
usability.

Contributions. In summary, this paper makes the following
contributions:

• An interactive visualization prototype, Vismep that sup-
ports programmers in analyzing memory consumption
over Python applications.

• The information needs - relevant code, allocation hotspots,
circumstances, rationale, and events, memory anomalies,
and cause of anomalies - that programmers have when
analyzing memory consumption.

• A detailed report that summarizes how programmers
employ Vismep to obtain the required information and
how programmers perceive Vismep.

Paper structure. Section II summarizes the prior work. In
Section III, we describe in detail Vismep. Section IV presents
the methodology to evaluate Vismep. Section V describes the
results. Section VI discusses the threats to validity. Finally,
Section VI concludes and outlines future work.

1

https://bergel.eu
https://github.com/pandas-dev/pandas/pull/45489
https://github.com/scikit-learn/scikit-learn/issues/19774


II. PRIOR WORK

This section highlights some of the most relevant prior works.

Software visualization for memory usage analysis. Soft-
ware visualization employs multiple techniques to display
a variety of information and support programmers when
analyzing memory usage. Several studies show the calls
between functions/methods with a memory footprint (e.g.,
memory allocations, memory accesses, memory releases) using
node-link diagrams or stacked displays [8], [9], [10], [16],
[17], [18]. These visualizations help programmers explore and
locate functions/methods related to problematic memory events
(allocations, accesses, releases), leading to memory anomalies
(e.g., memory bloat, memory leak). Other studies propose
visualizations to represent references between objects and assist
programmers in memory leak detection by highlighting objects
not reclaimed by the garbage collector [16], [19], [20]. Also,
showing this information is helpful for data structure analysis
by locating objects shared by data structures [21]. Although
Vismep does not introduce a novel visualization technique, it
adequately combines demonstrated techniques. Also, it connects
the source code with information from program execution,
something that most visualizations dismiss [22]. Furthermore,
Vismep supports visualizations of Python applications, which
despite Python’s popularity, it is not often supported by
proposed visualizations.

Software visualization evaluation. Software visualizations
that assist programmers with memory consumption analysis
are difficult to evaluate. Most studies usually evaluate these
software visualization approaches through usage scenarios [8],
[10], [17], [23], [24], showing the benefits of approaches.
Nevertheless, little is known about how diverse programmers
use and perceive visualizations to inspect applications’ mem-
ory usage. According to Fernandez et al. [22], evaluating
visualizations with developers could be challenging since it
may require participants experienced in memory monitoring.
In addition, providing detailed evidence as to whether an
approach is adequate to support some programmers’ needs
in this problem domain is problematic since these needs are
not thoroughly researched yet. Consequently, few software
visualizations are evaluated through user studies [9], [16], [25].
Among them, most focus on task completion and correctness.
We consider analyzing other variables to recognize the effect
that visualizations have in this context. Therefore, we (i)
identified the information required by programmers when
analyzing memory usage using Vismep, (ii) explored how
programmers employ Vismep to obtain this information, and
(iii) analyzed how programmers perceive Vismep.

III. VISMEP

Vismep is an interactive visualization prototype designed
to help programmers in analyzing the memory usage of
Python applications. Vismep collects memory traces during
program execution and displays the information through four
complementary views.

Vismep profiler. To extract multiple aspects of the program
execution, we designed a profiler for Vismep. This profiler is
based on two popular python modules, memory profiler3 and
trace4. The Vismep profiler collects the following data:

• A set of invoked functions/methods with detailed infor-
mation (name, file, number of lines of code, number of
executions) during program execution.

• A memory footprint (memory consumed, memory used
per code line) for each invoked function/method.

• The calling relationships between invoked functions/meth-
ods.

After gathering the data with Vismep profiler, we employed
polymetric views [12] to illustrate the information obtained.
Vismep implementation and the learning material are available5.

A. In a Nutshell

To illustrate Vismep, we analyzed a memory issue reported in
the pandas package6. Pandas is a flexible and powerful package
for supporting programmers in data science/data analysis and
machine learning tasks. The issue reported was reproducible
with the piece of code illustrated at the right of Figure 1 (SC).
The code essentially creates a dictionary (data) in line 2, and
between lines 3 and 5, a dataframe object is created based
on data and converts it into a JSON string several times.

Figure 1 gives an overview of Vismep. The left view (CG)
is the Call graph view that displays the calling relationships
between the invoked functions/methods. In the Call graph view,
the export_dataframe function that consumes 728.474
MB is selected. Consequently, the Source code view (SC) is
displayed on the right-hand side to show the source code of
the selected function (export_dataframe). Figure 4 and
Figure 3 illustrate the alternative views of Call graph view
and Source code view respectively. Figure 4 shows the Scatter
plot view that presents a graph to assist the user in quickly
noting the relationship between the memory consumed and
the number of executions of the functions/methods invoked.
Figure 3 displays the Sub call graph view that indicates the
callers and callees of a particular function, in this case the
to_json function.

B. Call Graph View

This view helps users understand how the program runs and
uses memory. It shows a node-link diagram commonly used
to illustrate the calling relationships between functions/meth-
ods [22]. It also displays the memory footprint and additional
information (e.g., name, number of executions, size) for each
executed function/method.
Nodes. As Figure 2 illustrates, each node is a function/method
invoked during the program execution. The visual mapping of
a node is the following:

• The width represents the average memory consumed (MB)
by a function/method.

3https://github.com/pythonprofilers/memory profiler
4https://github.com/python/cpython/blob/3.10/Lib/trace.py
5https://github.com/Balison/Vismep
6https://github.com/pandas-dev/pandas/pull/45489

2

https://github.com/pythonprofilers/memory_profiler
https://github.com/python/cpython/blob/3.10/Lib/trace.py
https://github.com/Balison/Vismep


CG

SC

CG

SC

CG

SC

Fig. 1: Illustrating a memory issue of pandas with Vismep. Call Graph view (CG) shows the memory usage along the execution
path. Each node denotes an executed function, and the edges indicate the calling relationships. The width node shows a
function’s average memory, and the height denotes the times a function is executed. When a function is selected, its border turns
orange, and its source code is displayed in Source Code view (SC). Each line background from the source code denotes the
memory usage increment from gray (low increase) to orange (high increase). If there is no increase, the background is white.

Function/
Method

#Executions

#Memory

HighLow

#Lines of 
code

Black border for function/method of external libraries.

B

A

Edge width proportional to the number of times that 
the calling relationship occurs.

C

Fig. 2: On the right, an example with Call graph view, where A
function is executed few times and consumes a lot of memory.
A calls first B (a few times) and then C (several times). On
the left, the visual mapping for Call graph view and Sub call
graph view.

• The height denotes how many times the function/method
is executed.

• The color indicates the number of lines of code used to
define the function/method. The color varies from light to
dark green, the darker the node the greater the number of
lines of code. However if the source code (e.g., defined in
native C sources) cannot be retrieved by inspect package7,
the color is gray.

• The border shows if the function/method belongs to an

7https://docs.python.org/3/library/inspect.html

external library (e.g., pandas, random).
For instance, export_dataframe function is the widest

node and has the least height of the nodes in the view since it
consumes around 728 MB with a single execution in Figure 1.
Edges. Edges between functions/methods indicate the calling
relationships. The edge’s arrow indicates the direction of the
calling relationship to help users distinguish a caller from a
callee. The edge’s width denotes the number of times the calling
relationship occurs during program execution. For example,
Figure 2 shows that A function calls to B function and C
function. Also, displays that A function calls more times to C
function than to B function, due to the width of edges.
Layout. The functions/methods are located in the view using a
vertical tree layout. As a result, the roots that usually include
main function are located at the top, and leaves are placed
at the bottom. Additionally, the functions/methods are sorted
based on the invocation order from right to left.

C. Source Code View

When a function/method is selected, a Source code view
is built at the right, as shown in Figure 1 (SC). This view
displays the source code of the selected function/method and
highlights the background code lines based on the memory
used. The background fades from light gray (i.e., little memory
usage) to orange (i.e., high memory usage) depending on
how much memory consumption increased after executing that
line. A white background indicates that the memory did not
increase. Consequently, this view connects dynamic aspects

3

https://docs.python.org/3/library/inspect.html


with source code, so users can easily identify the code piece
that allocates most memory or anomalies [22]. To illustrate, in
Figure 1, we observe that line 5 allocates the highest amount
of memory when df is converted to a JSON string, thus,
export_dataframe function calls to to_json function.

Fig. 3: Overview of Sub call graph view.

D. Sub Call Graph View

Vismep assists the user in quickly identifying the execution
path of a particular node that she/he would like to investigate.
When selecting the Callgraph tab at the top of the Source
code view, the Sub call graph view is shown instead of the
source code. Figure 3 illustrates the Sub call graph view that
presents a summarized call graph based on a function/method. It
visualizes the callers and callees of a selected function/method,
where the callers and callees are located at the left and right
of the selected function/method, respectively. For example,
we can observe in Figure 3 that to_json function is called
by export_dataframe function 500 times. For each time
that to_json function is called, to_json function calls to
other three functions: to_json, is_nonnegative_int,
and _handle_fromlist (part of a C library). Node labels
are placed behind nodes to not clutter the visualization. The
effect is to favor an unobstructed layout of nodes. A label is
temporarily moved to the foreground when the mouse hovers
a node, as illustrated in Figure 3.

E. Scatter Plot View

Vismep supports users in determining the relationship
between the total memory consumed (sum of memory allo-
cated per execution) and the number of executions of the
functions/methods invoked. Scatter plot view represents each
function/method as a point (e,m) where e is the number of
times the function/method is executed (X-axis), and m the
amount of memory allocated by the function/method (Y-axis).
The color of each point ranges from light to intense green to
indicate the size in terms of lines of code. Figure 4 shows
that _write function allocates most total memory (around
3077 MB) and it is executed 500 times. This function is called
indirectly in line 5 at the export_dataframe function

(Figure 1), and focuses on converting the df to a JSON
string. More specifically, _write function allocates around
6 MB each time it is executed. Figure 4 also illustrates some
functions/methods in which the total memory used is negative.
The latter indicates that during some execution or executions
of a function/method, the garbage collector is activated, and
several blocks of memory are released. Functions releasing
memory have a negative memory allocation.

Fig. 4: Overview of Scatter plot view.

F. Interactions
Vismep provides a number of interactions to facilitate the

exploration of the Python application under analysis.
Canvas movement. The user can pan the view around the
different visualizations, zoom in and out by arbitrary distances,
and zoom the display to fit the entire visualization.
Mouse hovering. As Figure 1 and Figure 3 shows, when the
user hovers the mouse cursor above an invoked function/method,
a popup window appears with information about the respective
function/method, such as the name, the number of executions,
and the average amount of memory consumed. If the user
performs this action over an invoked function/method in the
Call graph view (Figure 1) and the Sub call graph view
(Figure 3), the incoming and outgoing edges are highlighted
in red and blue, respectively.
Drag. The user can select a function/method node and drag the
node with all its callee nodes to change the position of nodes
in the Call graph view and Sub call graph view. Manually
dragging it is useful to cluster nodes in an ad-hoc fashion.
Search. Vismep offers the user a search button at the top of
the Call graph view (Figure 1) that performs a search over
the name of an invoked function/method. The user should
select the desired function/method from a window that enlists
the functions/methods that fulfill the query. Consequently, the
selected function/method is highlighted.
Drill down. Vismep provides the user an option to obtain
detailed data about a particular invoked function/method.
Clicking a function/method shows two views: Source code
view (Figure 1) and Sub call graph view (Figure 3).

4



IV. METHODOLOGY

We designed and conducted an exploratory study to un-
derstand how programmers employ Vismep when analyzing
memory usage of Python applications. The following subsec-
tions explain the steps of our study.

A. Research Questions

Our study is designed to answer the following research
questions (RQ):

• RQ1: How does Vismep support programmers when
analyzing memory consumption?
– RQ1.1: What information do programmers look for

when analyzing memory consumption using Vismep?
– RQ1.2: How do programmers employ Vismep to obtain

this information?
• RQ2: How do programmers perceive Vismep when

analyzing memory consumption?
– RQ2.1: How does Vismep impact the cognitive load?
– RQ2.2: How useful do programmers consider Vismep?
– RQ2.3: What are the perceptions of the programmers

on the current features of Vismep?
To respond RQ1, we examined the behavior of programmers

and the actions made with Vismep during memory consumption
analysis. To answer RQ2, we collected impressions of the
cognitive load and the usability perceived by programmers
when employing Vismep. We also extracted the participant’s
feedback from the features offered by Vismep.

B. Participants and Applications

We invited students and bachelors from our university and
members of Python communities to participate in our study.

We selected eleven programmers who freely opted to partici-
pate, all familiar with Python programming. Their average age
was 27 years old (std. dev. 1.9). Participants were from diverse
fields of study; three participants have or are pursuing a degree
in Computer Science, and the remaining in other fields (e.g.,
Geology, Electrical). Two participants were from the industry,
three were in research centers, three pursued a master’s degree,
and the rest were bachelors.

Participants exhibited various levels of experience in Python
programming. Their average experience in Python was 4.6 years
(std. dev. 2.5). Participants also self-assessed their expertise
using a Likert scale of five steps i.e., 1 (no experience) to 5
(expert). The average experience in Python programming was
3.4 (std. dev. 0.8).
Experience in memory usage analysis. Eight participants
showed experience examining memory usage and addressing
memory issues. We asked experienced participants how they
usually monitor memory consumption or manage memory
anomalies in Python applications, and we detected some
strategies used:

• Manual. Five participants usually trace the code execution
to identify a piece of code (e.g., unused data, allocation
sites) with the risk of causing memory anomalies (e.g.,
memory bloat, memory leak).

• Logs. Two participants usually insert events (e.g., print
messages) at the functions or methods they consider prone
to memory issues. For instance, they print a message when
a specific data structure is created, modified or accessed.

• Web search. One participant prefers to perform a web
search with the characteristics involved with a memory
issue to repair it.

Projects under study. We described explicitly in the invitation
that the study focused on understanding how programmers
analyze memory consumption in Python applications. We also
specified that volunteers who decide to participate in this study
must themselves choose a Python application that they find
interesting to examine in terms of memory usage. Consequently,
participants selected different programs (e.g., data analysis, IA,
ML) that they thought might be interesting in terms of memory
consumption and with which they were familiar.

C. Procedure

The study consisted of carrying out a work session for
each participant with her/his selected application. A work
session begins with the moderator presenting the objective
and the characteristics of the study described in the invitation
to programmers who agreed to participate. The moderator also
asked the participant to use the think-aloud technique [26]
during the session.

Additionally, each work session is structured as follows:

1) Background and expectations. The participant answered
general questions to gather demographic data such as their
age, gender, level of experience in Python programming,
and addressing memory issues. The moderator then asked
the participant for an opinion about the memory consumed
by her/his application. The participant also explains
which elements (e.g., functions, methods, allocations) may
produce a memory anomaly (e.g., memory bloat, memory
leak) during program execution.

2) Exploration. The participant reads the learning material
of Vismep and had an exploration phase to familiarize
herself/himself with the visualization tool.

3) Tasks. The participant employed Vismep to analyze the
memory usage of her/his application and responds to the
questions listed in Table I.

4) Online forms. The participant filled out two online forms to
measure the mental workload (NASA-TLX) [27] and the
perceived usability of Vismep (SUS) [28]. These two self-
assessments techniques are hugely popular in empirical
studies and are applicable in our case.

5) Post-study questionnaire. Finally, the participant answered
verbally and informally open questions regarding their
observations, perceptions, and desired improvements of
Vismep.

We observed, tracked, and monitored the participants’ in-
teractions with Vismep throughout work sessions. We also
recorded a video of the screen and the audio of the laptop used
by the participants.

5



Category Question Rationale

Characterizing
memory usage

Q1: Can you characterize the memory consumption
of your application?

The participant identifies and describes the information relevant to the memory
usage analysis (e.g., allocation sites, allocations made).

Understanding
memory usage

Q2: What have you learned from your application?
Do you find anything surprising (e.g., anomalies)?

The participant contrasts the information provided by Vismep with her/his
assumptions. Also, she/he explains if Vismep provides additional and unknown
information and which potential issues may exist in her/his program.

Optimizing
memory usage

Q3: Do you find an opportunity to decrease memory
consumption?

The participant localizes and explains which parts of the code may be modified
to reduce the memory usage of her/his program.

Q4: If you find an opportunity to decrease memory
usage, can you improve it and run the profiler
again?

The participant modifies the code’s parts that are assumed to be the root cause
of a memory anomaly. Also, she/he employs Vismep over the changed program
to verify the impact of the changes in memory usage.

TABLE I: Questions made to the participant.

D. Data Collection

We collected a variety of data to answer our research
questions. Next, we discuss the data collection process.
Interactions extraction. To answer RQ1, we collected the
actions made by participants when using Vismep to answer the
questions in Table I. We reviewed and checked the tracking logs
and video recordings from sessions to generate spreadsheets
that summarize the work sessions. Each spreadsheet presents
(i) the question asked by the moderator, (ii) the verbalized
thoughts of participants, (iii) the corresponding period of time
in the video records, (iv) the actions made by the participants,
and (v) the Vismep views used. To minimize biases during this
process, one author generated the spreadsheets, and another
author checked if the data was consistent with the audio, video
records, and tracking logs.
User experience extraction. To respond to RQ2, we gathered
the answers from the following online forms:

• NASA-TLX. It is widely used to measure subjective mental
workload [27]. NASA-TLX derives an overall workload
score based on six workload dimensions: mental demand,
physical demand, temporal demand, performance, effort,
and level of frustration.

• SUS. The System Usability Scale is a reliable and standard
technique to evaluate the usability of a system [28].
This questionnaire contains ten statements to measure
the perceived usability of a system.

Next, we transferred the results of NASA-TLX and SUS
questionnaires into a spreadsheet for computational purpose. We
also collected the responses of the participants corresponding
to the post-study questionnaire. Besides, we checked the
verbalized thoughts of participants to extract information related
to the perception of Vismep features.

E. Data Analysis

This section illustrates the methods used to analyze the
gathered data.
Interactions analysis. One author analyzed the spreadsheets
using open and descriptive coding [29] to identify themes
(activities) related to the information required by participants,
similar to the study of Velez and colleagues [30] (RQ1.1).
Another author checked the consistency of codes and observa-
tions to minimize biases during this process. Next, based on

the generated codes, an author checked which actions were
performed to obtain the data required using Vismep (RQ1.2).
User experience analysis. We calculated and examined the
NASA-TLX and SUS scores reported by eleven participants to
respond to RQ2.1 and RQ2.2. To answer RQ2.3, we followed
the open coding method [31] to analyze the answers to the post-
study questionnaire. First, we detected concepts and keywords
in the collected data. We then grouped the concepts to generate
coherent groups (categories) that highlight broader patterns.

V. RESULTS

This section details the results to answer the two research
questions proposed in the study.

A. RQ1.1: Information needs

We identified that participants looked for dynamic and static
information for five themes to answer questions (Table I).
Table II lists the themes and the number of participants that
looked for each theme. We next detailed what information
participants searched to respond to the questions based on the
following categories.
Characterizing memory usage. When participants characterized
the memory used in their applications, all of them identified
relevant code; the functions/methods considered vital for
the program functionality based on participants’ knowledge
about the program under analysis. Also, all participants
searched for allocation hotspots; the functions/methods or code
lines that allocate most memory. After participants detected
functions/methods from relevant code or allocation hotspots,
they often expanded their information by understanding their
circumstances, rationale, and events. More specifically, as the
participants knew which functions/methods were interesting to
them (relevant code, allocation hotspots), participants wanted
detailed information about (i) the circumstances that caused
their execution, (ii) the intention behind their implementation
(i.e., rationale), and (iii) the memory events (allocations,
accesses, releases) related with them.
Understanding memory usage. To understand the memory used
by their applications, participants located relevant code and
allocation hotspots. Participants then contrasted the memory
consumed by those functions/methods with the assumptions
that participants held.

6



Theme Information need for Freq. Actions Explored views Freq.

Relevant code Detect code that is involved in
implementing certain behavior or
belonging to particular modules, files.

11/11 Search functions/methods based on name.
Search functions/methods based on module. Call graph view 11/11

Inspect the functions/methods source code. Source code view 4/11

Allocation
hotspots

Detect code that allocates most memory. 11/11 Discover and compare memory usage of function-
s/methods.

Call graph view
Scatter plot view
Sub call graph view

11/11
9/11
2/11

Discover and compare memory usage of code lines. Source code view 11/11

Circumstances,
rationale and
events

Understand under what circumstances
functions/methods are executed, their
rationale and the memory events
related.

11/11 Inspect the functions/methods callers, callees and
execution path.

Call graph view
Sub call graph view

11/11
7/11

Inspect functions/methods rationale.
Inspect functions/methods memory events (alloca-
tions, accesses, releases)

Source code view 11/11

Memory
anomalies

Locate code involved with excessive or
inefficient memory usage.

11/11 Analyze memory usage of allocation hotspots or
relevant code.

Call graph view
Scatter plot view

11/11
3/11

Inspect the circumstances, rationale and events of
allocation hotspots or relevant code.

Call graph view
Source code view

7/11
5/11

Anomalies
cause

Locate the root cause of an anomaly. 7/11 Inspect the circumstances, rationale and events of
memory anomalies.
Analyze how memory anomalies affect the memory
usage and functionality of relevant code

Call graph view
Source code view

7/11
4/11

TABLE II: Information needs, actions, and views explored in Vismep to analyze Python applications.

Participants also tried to locate memory anomalies; code
involved with excessive or inefficient memory usage. When
detecting memory anomalies, participants mostly attempted
to identify unexpected memory usage behavior in relevant
code and allocation hotspots and determine if the memory
consumed was necessary or not for the proper functionality of
the program.

Optimizing memory usage. When participants tried to reduce
the memory consumed by their application, most traced the
anomalies cause; the root cause responsible for excessive or
inefficient memory usage (memory anomalies). Then, these
participants analyzed how to address the memory anomalies
based on the anomalies’ cause.

Other participants considered that their applications do not
contain a memory anomaly. Consequently, they located allo-
cation hotspots and tried to comprehend their circumstances,
rationale, and events for locating an optimization opportunity.

RQ1.1: Programmers looked for dynamic and static
information to (a) identify relevant code; code involved
in implementing certain behavior or that belongs to
particular modules, (b) locate allocation hotspots; code
that allocate most memory, (c) inspect circumstances,
rationale, and events of selected functions/methods; the
circumstances in which functions/methods are executed,
their rationale and the memory events (allocation,
access, release) related, (d) detect memory anomalies;
code involved with excessive or inefficient memory
usage, and (e) trace the cause of anomalies; how
memory anomalies affect memory usage behavior.

B. RQ1.2: Use of Vismep

Table II lists the actions that participants performed to look
for each theme, the Vismep views used to execute the actions,
and the number of participants that performed those actions
per view. We described how participants employed Vismep
to get the information needed for the identified themes in the
following.

Characterizing memory usage. All the participants charac-
terized the memory used by their application using Vismep.
Consequently, participants located relevant code, detected
allocation hotspots and explored the circumstances, rationale,
and events of functions/methods of interest.

When looking for relevant code, participants searched in
the Call graph view functions/methods based on their name
or the module to which they belong. Some participants were
unsure about the rationale behind a function/method based only
on these aspects. Thus, they inspected the code with Source
code view to confirm that the function/methods provide certain
functionality.

To detect the allocation hotspots, participants discovered the
memory usage of functions/methods and compared the visual
cues of nodes in Call graph view and Sub call graph view.
However, participants sometimes struggle to identify allocation
hotspots in Call graph view due to the presence of several
nodes. For this reason, participants usually employed Scatter
plot view to quickly found the allocation hotspots or confirm the
expected allocation hotspots located previously. All participants
also determined the code lines that allocated the most memory
with Source code view by comparing the highlighted lines.

Moreover, when inspecting the circumstances, rationale, and
events of selected functions/methods, participants used three

7



views. Participants employed Call graph view and Sub call
graph view to explore the callers, callees, and the execution path
of a particular function/method. Some participants mentioned
that Sub call graph view was more suitable for detecting
the situations involved in the execution of a function/method
and navigating quickly and iteratively through the calling
relationships compared to the Call graph view.

To comprehend the rationale and identify the memory events
(allocations, accesses, releases) related to some functions/meth-
ods, participants explored the Source code view. Therefore,
participants quickly discovered memory allocations following
the highlighted lines. They also profoundly examined the code
to identify and understand the memory accesses and releases
since Vismep does not support these activities.

Understanding memory usage. All participants understood
the memory consumed by their applications. They inspected
the memory used of allocation hotspots and relevant code by
hovering the cursor over the respective nodes in Call graph
view and Scatter plot view. Next, they verified if the memory
consumed by those functions/methods was the expected. Con-
sequently, some participants detected (i) unexpected allocation
hotspots, (ii) relevant code that consume more or less memory
than anticipated, and (iii) that most allocation hotspots are
involved with external libraries (e.g., pandas, numpy).

When looking for memory anomalies, participants first
located the allocation hotspots and relevant code in the Call
graph view and Scatter plot view. Next, participants analyzed
the memory used by those functions/methods to determine if the
memory consumed was excessive or unnecessary, considering
the correct program functionality. Four participants did not
detect any memory anomaly since most allocation hotspots
belong to external libraries, and the memory used was con-
sidered not excessive. The remaining participants checked the
circumstances, rationale, and events of the allocation hotspots
and relevant code to locate any unnecessary and unexcepted
memory behavior. Thus, participants analyzed the number of
executions, memory usage, and under what circumstances those
functions/methods are executed using the Call graph view.
Additionally, some participants examined the rationale and
memory events in the Source code view to estimate if the
memory usage is reasonable and if the memory allocations are
essential.

Optimizing memory usage. Participants reduced or tried
to reduce memory usage by analyzing the circumstances,
rationale, and events of memory anomalies or allocation
hotspots. Participants employed Call graph view to inspect the
circumstances in which these functions/methods are executed.
Besides, some participants explored the Source code view to
analyze the memory events and how changing some code lines
could affect memory usage and functionality of relevant code.

Furthermore, four participants did not locate any memory
anomaly and could not find any optimization opportunity. These
participants mentioned that to reduce the memory consumption,
they required more knowledge and time to fully comprehend the
circumstances, rationale, and events about allocation hotspots

that belong to external libraries.
Seven participants identified anomalies cause. As a result,

they found (i) the use of unsuitable data structure, (ii)
unnecessary memory allocations, and (iii) the presence of
temporary allocations (allocations created and released from
memory several times). We must mention that participants
did not modify their code using Vismep since this activity
is not supported yet. As a result, they changed the source
code program using an IDE or a text editor. However, only
four successfully modified the code with the information
from anomalies cause. These participants used Vismep again
to inspect the memory usage of the allocation hotspots or
relevant code using Call graph view or Scatter plot view.
The remaining participants had problems programming the
optimizations since these changes negatively impacted the
application’s functionality.

RQ1.2: Overall, programmers used various views to
obtain information about memory usage. To detect
relevant code and allocation hotspots, participants
explored the Call graph view. Besides, they used the
Scatter plot view to confirm the allocation hotspots
found in other views. To inspect the circumstances,
rationale, and events of particular functions/methods,
most participants used the Call graph view, but some
of them indicated that Sub call graph view was more
suitable for this activity. To locate memory anomalies,
participants looked for the information previously
mentioned via the Call graph view and Source code
view. Finally, participants detected anomalies cause by
inspecting the calling relationships in Call graph view
and analyzing how anomalies affect the functionality
with the Source code view.

C. RQ2.1: Cognitive load

Table III shows ranges and mean values of the overall and
dimensions TLX scores over Vismep. NASA-TLX score ranges
from 0 (low mental workload) to 100 (high mental workload).
The average task load index reported by participants using
Vismep for memory consumption analysis is 29.69 (std. dev.
14.07). According to Grier [32] and Hertzum [33], this indicates
a low to moderate effort.

Min Max Mean SD

Overall TLX 11.66 56.66 29.69 14.07

Dimensions
Mental demand 10 80 44.54 26.21
Physical demand 0 70 14.54 20.67
Temporal demand 10 70 42.72 17.93
Performance 0 50 16.36 15.66
Effort 20 80 43.63 23.77
Frustration 0 40 16.36 16.89

TABLE III: Ranges and means of overall workload and
dimensions TLX scores.

8



The score for dimensions varies from 0 (low demand) to 100
(high demand), except for the performance, which ranges from
0 (high overall performance) to 100 (low overall performance).
We identified that mental demand, temporal demand, and effort
means are the highest among all dimensions. We consider
that these scores reflect the issues that some participants
mentioned when locating allocation hotspots and inspecting
the circumstances, rationale, and events in a Call graph view
with several functions/methods (mostly from external libraries).
It also points out that although Vismep indicates useful
information and satisfies some needs, one factor that negatively
impacts practitioners is Vismep’s performance mentioned in
Section V-E.

RQ2.1: Participants often perceive a low to moderate
mental workload effort using Vismep. Besides, the
mental demand, temporal demand, and effort could be
reduced by improving the profiler and Vismep support
for specific activities.

D. RQ2.2: Perception of usability

Table IV illustrates ranges and mean values of the SUS score
and components of SUS scores associated with Vismep. SUS
score varies from 0 (worst imaginable) to 100 (excellent). The
average SUS score calculated from the participant’s answers
is 72.5 (std. dev. 7.98). According to Sauro [34] Vismep is
graded “C+” which indicates a “good” usability score.

Min Max Mean SD

Overall SUS 60 82.5 72.5 7.98

Usability aspects
Q1: Willing to use the tool 3 5 3.91 0.53
Q2: Complexity of the tool 1 3 1.90 0.53
Q3: Ease of use 3 5 4 0.45
Q4: Need of support to use 2 5 3.09 1.13
Q5: Integrity of functions 3 5 4 0.45
Q6: Inconsistency 1 3 1.91 0.83
Q7: Intuitiveness 2 5 3.82 0.98
Q8: Cumbersomeness to use 1 4 1.63 0.92
Q9: Feeling confident to use 2 5 3.73 0.90
Q10: Required learning-effort 1 3 1.90 0.70

TABLE IV: Ranges and means of overall SUS and components
of SUS scores.

We detailed the scores for the components of SUS to
understand the participant’s perception of the different aspects
of usability. The score for components ranges from 1 to 5.
These components represent positive aspects (i.e., Q1, Q3, Q5,
Q7, and Q9) and negative aspects (i.e., Q2, Q4, Q6, Q8, and
Q10) of usability. We detected that Vismep achieved higher
scores in positive aspects and lower scores for negative aspects
(except for the need of support to use Vismep). Section V-E
details that most programmers need support to use Vismep
because they were unsure about (i) how to run the profiler and
(ii) the state of the profiler (e.g., still running or stopped for
an issue).

RQ2.2: Participants perceived that Vismep provides
high overall usability considered “good”. Improving
the profiler and the learning material could reduce the
requirement of support when a user employs Vismep.

E. RQ2.3: Perception of Vismep features

We identified nine general themes by using grounded
theory [31] to process the feedback. Each theme is presented
with its name and the format [O/P ], where O indicates the
number of times a theme occurs in the sessions and P denotes
the number of participants who explicitly expressed it. First,
we consider the following themes as positive:

• Useful views and interactions. [24/11] Participants men-
tioned that Vismep provides useful views and interactions
to analyze the memory consumed by their applications.
They described that some views were suitable for quickly
locating relevant code (Call graph view), allocation
hotspots (Scatter plot view), among others. Additionally,
the views assist programmers in comprehending diverse
aspects (e.g., memory usage, number of executions, calls
between functions/methods), as well as locating memory
anomalies or unexpected behaviors. Participants also
navigated over various views iteratively was helpful to
inspect circumstances, rationale, and events of relevant
code and allocation hotspots quickly and trace anomalies
cause.

• Visual aspects. [11/8] Participants highlighted some pos-
itive points over the visual cues. They indicated that
visualizations were intuitive and easy to use due to
the visual mapping. For instance, some programmers
mentioned that the Call graph view offers a good overview
of the application. Additionally, they emphasized that the
Source code view and Sub call graph view provided visual
cues that support the inspection of circumstances, rationale,
and events of selected functions/methods.

• Connection with source code. [10/7] Participants indicated
that connecting the dynamic aspects with the source
code helped them comprehend program behavior, memory
events associated with a function/method, and discover
memory anomalies. Participants highlighted the facilities
over navigating between the Source code view and other
views.

• Usability. [6/5] Participants said that Vismep was easy to
use, intuitive, and useful for analyzing memory usage. As
a result, some participants indicated that they would like
to use the prototype daily.

We also detected themes that we considered negative points
of Vismep:

• Opportunities for improvement. [27/10] Most participants
made suggestions on various aspects of Vismep. To
illustrate, eight participants indicated that filtering function-
s/methods based on criteria (e.g., module, memory usage)
would facilitate the navigation in Call graph view and
locating allocation hotspots and relevant code. On the other

9



hand, three participants said that adding a message to show
the profiler progress and improving the tutorial would
reduce the need for support in using the prototype. Besides,
they commented that improving Vismep’s performance
would help reduce temporal demand.

• Missing information. [10/6] Participants indicated that
it would be helpful to provide information regarding
(i) distribution of memory over the function/methods,
(ii) memory evolution over time, and (iii) allocations made
over time and their memory usage.

• Bugs. [6/4] Participants also detected some bugs. For
example, three participants identified issues in Vismep
when the source code of functions/methods from external
libraries were displayed. Also, two participants mentioned
problems with some interactions (e.g., static highlighted
nodes).

• Metric selection. [4/3] Participants suggested that letting
users modify the visual mapping, scales, and displayed
metrics could be very useful for quickly locating the
information required.

• Integration with IDE. [2/2] Participants suggested that
it would be useful to present Vismep features integrated
with a programming environment.

RQ2.3: Overall, participants appreciated the views and
usability offered by Vismep. We also located some
opportunities to improve Vismep, such as (i) adding new
interactions, (ii) considering new information (memory
usage over time), and (ii) fixing bugs.

VI. THREATS TO VALIDITY

We identified and organized some threats to our research’s
validity based on the work of Wohlin et al. [35].

Conclusion Validity. The individual differences among par-
ticipants, the sample size and the use of Vismep could
impact our conclusion. Therefore, our conclusion might not
be representative. Consequently, our results could be different
given other tools or participants. We try to reduce this threat
by selecting programmers with different backgrounds and
experience levels. However, an additional study that involves
more people and other tools may mitigate this threat.

Internal Validity. Participants were not familiar with Vismep
prior to the study. The latter may restrict participants’ effective
use of Vismep for memory usage analysis, causing a low SUS
score and a high mental workload. The exploration period was
part of the study to mitigate this threat. However, the score for
question 4 in SUS form (Table IV) indicates a need for help
when using Vismep.

Regarding data collection and analysis for RQ1, an author
generated the spreadsheets and identified the information needs.
Another author checked if the spreadsheets and the information
needs detected were consistent with the audio, video records,
and tracking logs to minimize biases during the process.

Construct Validity. We voluntarily centered on the Python
programming language. Participants selected applications under
analysis with which they were familiar. Data from each work
session was carefully examined and collected using records,
logs and observation while participants tackled a particular
question.

VII. CONCLUSION AND FUTURE WORK

This study introduces Vismep, an interactive visualization
prototype that helps programmers analyze the memory usage of
Python applications, and presents an exploratory study involv-
ing eleven participants that used Vismep to analyze the memory
usage of their projects. Our results show that programmers
need to explore dynamic and static information to (a) locate
relevant code, (b) identify allocation hotspots, (c) inspect the
circumstances, rationale, and events of functions/methods, (d)
infer memory anomalies, and (e) trace the cause of anomalies.

We also noticed that participants used different Vismep views
or combined some of them to perform previously mentioned
activities. Some participants explained that some views are
more suitable for some activities, such as Scatter plot view
to identify functions that allocate most memory (allocation
hotspots) or Sub call graph view to explore the control flow
(circumstances). Additionally, we reported when participants
struggled using Vismep to perform the activities. We detected
missing information that users required and possibilities to
improve the design of Vismep and other tools. Finally, we
noted that Vismep is positively perceived because participants
indicated a low to moderate mental workload effort when using
it and estimated that Vismep offers high overall usability.
Limitations and future work. Since Vismep profiler is based
on two popular modules, the profiler could present some
issues involving these modules (i.e., execution time, accuracy
of memory usage). Thus, we plan to modify our profiler to
decrease the execution time and extract more detailed data
about memory events. We also plan to improve the design
of the visualizations based on the information collected at
Section V-B and Section V-E.

Furthermore, we presented this exploratory study to show
how programmers use Vismep to inspect applications. As future
work, we plan to conduct a study to compare the performance
of participants who use Vismep with the performance of those
who employ other tools.

ACKNOWLEDGE

Alison Fernandez Blanco is supported by a Ph.D. scholar-
ship from CONICYT, Chile. CONICYT-PFCHA/Doctorado
Nacional/2019-21191851. Alexandre Bergel is grateful to
the ANID FONDECYT Regular project 1200067 for having
partially sponsored the work presented in this article. Juan
Pablo Sandoval Alcocer thanks ANID FONDECYT Iniciación
Folio 11220885 for supporting this article.

REFERENCES

[1] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, C. Zhai, Bug characteristics
in open source software, Empirical Software Engineering 19 (6) (2014)
1665–1705. doi:10.1007/s10664-013-9258-8.
URL https://doi.org/10.1007/s10664-013-9258-8

10

https://doi.org/10.1007/s10664-013-9258-8
https://doi.org/10.1007/s10664-013-9258-8
https://doi.org/10.1007/s10664-013-9258-8
https://doi.org/10.1007/s10664-013-9258-8


[2] M. Ghanavati, D. Costa, J. Seboek, D. Lo, A. Andrzejak, Memory
and resource leak defects and their repairs in java projects, Empiri-
cal Software Engineering 25 (1) (2020) 678–718. doi:10.1007/
s10664-019-09731-8.
URL https://doi.org/10.1007/s10664-019-09731-8

[3] N. Mitchell, G. Sevitsky, The causes of bloat, the limits of health,
SIGPLAN Not. 42 (10) (2007) 245–260. doi:10.1145/1297105.
1297046.
URL https://doi.org/10.1145/1297105.1297046

[4] M. Weninger, E. Gander, H. Mössenböck, Analyzing data structure growth
over time to facilitate memory leak detection, in: Proceedings of the
2019 ACM/SPEC International Conference on Performance Engineering,
ICPE ’19, Association for Computing Machinery, New York, NY, USA,
2019, p. 273–284. doi:10.1145/3297663.3310297.
URL https://doi.org/10.1145/3297663.3310297

[5] N. Nethercote, J. Seward, Valgrind: A framework for heavyweight
dynamic binary instrumentation, SIGPLAN Not. 42 (6) (2007) 89–100.
doi:10.1145/1273442.1250746.
URL https://doi.org/10.1145/1273442.1250746

[6] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi, K. Hazelwood, Pin: Building customized program analysis
tools with dynamic instrumentation, SIGPLAN Not. 40 (6) (2005)
190–200. doi:10.1145/1064978.1065034.
URL https://doi.org/10.1145/1064978.1065034

[7] M. Weninger, L. Makor, H. Mossenbock, Memory cities: Visualizing
heap memory evolution using the software city metaphor, in: 2020
Working Conference on Software Visualization (VISSOFT), IEEE
Computer Society, Los Alamitos, CA, USA, 2020, pp. 110–121.
doi:10.1109/VISSOFT51673.2020.00017.
URL https://doi.ieeecomputersociety.org/10.1109/VISSOFT51673.2020.
00017

[8] S. Byma, J. R. Larus, Detailed heap profiling, SIGPLAN Not. 53 (5)
(2018) 1–13. doi:10.1145/3299706.3210564.
URL https://doi.org/10.1145/3299706.3210564

[9] A. Fernandez Blanco, J. P. S. Alcocer, A. Bergel, Effective visualization
of object allocation sites, in: 2018 IEEE Working Conference on Software
Visualization (VISSOFT), 2018, pp. 43–53. doi:10.1109/VISSOFT.
2018.00013.

[10] P. Gralka, C. Schulz, G. Reina, D. Weiskopf, T. Ertl, Visual exploration
of memory traces and call stacks, in: 2017 IEEE Working Conference on
Software Visualization (VISSOFT), 2017, pp. 54–63. doi:10.1109/
VISSOFT.2017.15.

[11] M. Lanza, S. Ducasse, Polymetric views - a lightweight visual approach
to reverse engineering, IEEE Transactions on Software Engineering 29 (9)
(2003) 782–795. doi:10.1109/TSE.2003.1232284.

[12] S. Ducasse, M. Lanza, R. Bertuli, High-level polymetric views of
condensed run-time information, in: Eighth European Conference on Soft-
ware Maintenance and Reengineering, 2004. CSMR 2004. Proceedings.,
2004, pp. 309–318. doi:10.1109/CSMR.2004.1281433.

[13] G. Xu, A. Rountev, Precise memory leak detection for java software
using container profiling, ACM Trans. Softw. Eng. Methodol. 22 (3) (jul
2013). doi:10.1145/2491509.2491511.
URL https://doi.org/10.1145/2491509.2491511

[14] D. Lo, N. Nagappan, T. Zimmermann, How practitioners perceive the
relevance of software engineering research, in: Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2015, Association for Computing Machinery, New York, NY, USA, 2015,
p. 415–425. doi:10.1145/2786805.2786809.
URL https://doi.org/10.1145/2786805.2786809

[15] M. Lanza, S. Ducasse, Polymetric views—a lightweight visual approach
to reverse engineering, Transactions on Software Engineering (TSE)
29 (9) (2003) 782–795. doi:10.1109/TSE.2003.1232284.
URL http://scg.unibe.ch/archive/papers/Lanz03dTSEPolymetric.pdf

[16] M. Weninger, P. Grünbacher, E. Gander, A. Schörgenhumer, Evaluating an
interactive memory analysis tool: Findings from a cognitive walkthrough
and a user study, Proc. ACM Hum.-Comput. Interact. 4 (EICS) (jun
2020). doi:10.1145/3394977.
URL https://doi.org/10.1145/3394977

[17] F. Duseau, B. Dufour, H. Sahraoui, Vasco: A visual approach to explore
object churn in framework-intensive applications, in: 2012 28th IEEE
International Conference on Software Maintenance (ICSM), 2012, pp.
15–24. doi:10.1109/ICSM.2012.6405248.

[18] S. Moreta, A. Telea, Visualizing dynamic memory allocations, in:
2007 4th IEEE International Workshop on Visualizing Software for

Understanding and Analysis, 2007, pp. 31–38. doi:10.1109/
VISSOF.2007.4290697.

[19] W. De Pauw, E. Jensen, N. Mitchell, G. Sevitsky, J. Vlissides, J. Yang,
Visualizing the execution of java programs, in: S. Diehl (Ed.), Software
Visualization, Springer Berlin Heidelberg, Berlin, Heidelberg, 2002, pp.
151–162.

[20] W. De Pauw, G. Sevitsky, Visualizing reference patterns for solving
memory leaks in java, in: R. Guerraoui (Ed.), ECOOP’ 99 — Object-
Oriented Programming, Springer Berlin Heidelberg, Berlin, Heidelberg,
1999, pp. 116–134.

[21] E. E. Aftandilian, S. Kelley, C. Gramazio, N. Ricci, S. L. Su, S. Z.
Guyer, Heapviz: Interactive heap visualization for program understanding
and debugging, in: Proceedings of the 5th International Symposium
on Software Visualization, SOFTVIS ’10, Association for Computing
Machinery, New York, NY, USA, 2010, p. 53–62. doi:10.1145/
1879211.1879222.
URL https://doi.org/10.1145/1879211.1879222

[22] A. F. Blanco, A. Bergel, J. P. S. Alcocer, Software visualizations to
analyze memory consumption: A literature review, ACM Comput. Surv.
55 (1) (jan 2022). doi:10.1145/3485134.
URL https://doi.org/10.1145/3485134

[23] J. P. Sandoval Alcocer, H. Camacho Jaimes, D. Costa, A. Bergel, F. Beck,
Enhancing commit graphs with visual runtime clues, in: 2019 Working
Conference on Software Visualization (VISSOFT), 2019, pp. 28–32.
doi:10.1109/VISSOFT.2019.00012.

[24] A. N. M. I. Choudhury, P. Rosen, Abstract visualization of runtime
memory behavior, in: 2011 6th International Workshop on Visualizing
Software for Understanding and Analysis (VISSOFT), 2011, pp. 1–8.
doi:10.1109/VISSOF.2011.6069452.

[25] R. Ishizue, K. Sakamoto, H. Washizaki, Y. Fukazawa, Pvc.js: visualizing
c programs on web browsers for novices, Heliyon 6 (4) (2020)
e03806. doi:https://doi.org/10.1016/j.heliyon.2020.
e03806.
URL https://www.sciencedirect.com/science/article/pii/
S2405844020306514

[26] A. Holzinger, Usability engineering methods for software developers,
Commun. ACM 48 (1) (2005) 71–74. doi:10.1145/1039539.
1039541.
URL https://doi.org/10.1145/1039539.1039541

[27] S. G. Hart, L. E. Staveland, Development of nasa-tlx (task load index):
Results of empirical and theoretical research, in: Advances in psychology,
Vol. 52, Elsevier, 1988, pp. 139–183.

[28] A. Bangor, P. T. Kortum, J. T. Miller, An empirical evaluation of the
system usability scale, International Journal of Human–Computer Interac-
tion 24 (6) (2008) 574–594. doi:10.1080/10447310802205776.
URL https://doi.org/10.1080/10447310802205776

[29] J. Saldana, The Coding Manual for Qualitative Researchers, Core
textbook, SAGE Publications, 2021.
URL https://books.google.cl/books?id=RwcVEAAAQBAJ

[30] M. Velez, P. Jamshidi, N. Siegmund, S. Apel, C. Kästner, On debugging
the performance of configurable software systems: Developer needs and
tailored tool support, arXiv preprint arXiv:2203.10356 (2022).

[31] J. M. Corbin, A. C. Strauss, Basics of qualitative research, 3rd Edition,
SAGE Publications, Thousand Oaks, CA, 2008.

[32] R. A. Grier, How high is high? a meta-analysis of nasa-tlx global
workload scores, Proceedings of the Human Factors and Ergonomics
Society Annual Meeting 59 (1) (2015) 1727–1731. doi:10.1177/
1541931215591373.
URL https://doi.org/10.1177/1541931215591373

[33] M. Hertzum, Reference values and subscale patterns for the task load
index (tlx): a meta-analytic review, Ergonomics 64 (7) (2021) 869–878.
doi:10.1080/00140139.2021.1876927.
URL https://doi.org/10.1080/00140139.2021.1876927

[34] J. Sauro, A practical guide to the system usability scale: Background,
benchmarks & best practices, Measuring Usability LLC, 2011.

[35] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, A. Wesslén,
Experimentation in software engineering, Springer Science & Business
Media, 2012.

11

https://doi.org/10.1007/s10664-019-09731-8
https://doi.org/10.1007/s10664-019-09731-8
https://doi.org/10.1007/s10664-019-09731-8
https://doi.org/10.1007/s10664-019-09731-8
https://doi.org/10.1007/s10664-019-09731-8
https://doi.org/10.1145/1297105.1297046
https://doi.org/10.1145/1297105.1297046
https://doi.org/10.1145/1297105.1297046
https://doi.org/10.1145/1297105.1297046
https://doi.org/10.1145/3297663.3310297
https://doi.org/10.1145/3297663.3310297
https://doi.org/10.1145/3297663.3310297
https://doi.org/10.1145/3297663.3310297
https://doi.org/10.1145/1273442.1250746
https://doi.org/10.1145/1273442.1250746
https://doi.org/10.1145/1273442.1250746
https://doi.org/10.1145/1273442.1250746
https://doi.org/10.1145/1064978.1065034
https://doi.org/10.1145/1064978.1065034
https://doi.org/10.1145/1064978.1065034
https://doi.org/10.1145/1064978.1065034
https://doi.ieeecomputersociety.org/10.1109/VISSOFT51673.2020.00017
https://doi.ieeecomputersociety.org/10.1109/VISSOFT51673.2020.00017
https://doi.org/10.1109/VISSOFT51673.2020.00017
https://doi.ieeecomputersociety.org/10.1109/VISSOFT51673.2020.00017
https://doi.ieeecomputersociety.org/10.1109/VISSOFT51673.2020.00017
https://doi.org/10.1145/3299706.3210564
https://doi.org/10.1145/3299706.3210564
https://doi.org/10.1145/3299706.3210564
https://doi.org/10.1109/VISSOFT.2018.00013
https://doi.org/10.1109/VISSOFT.2018.00013
https://doi.org/10.1109/VISSOFT.2017.15
https://doi.org/10.1109/VISSOFT.2017.15
https://doi.org/10.1109/TSE.2003.1232284
https://doi.org/10.1109/CSMR.2004.1281433
https://doi.org/10.1145/2491509.2491511
https://doi.org/10.1145/2491509.2491511
https://doi.org/10.1145/2491509.2491511
https://doi.org/10.1145/2491509.2491511
https://doi.org/10.1145/2786805.2786809
https://doi.org/10.1145/2786805.2786809
https://doi.org/10.1145/2786805.2786809
https://doi.org/10.1145/2786805.2786809
http://scg.unibe.ch/archive/papers/Lanz03dTSEPolymetric.pdf
http://scg.unibe.ch/archive/papers/Lanz03dTSEPolymetric.pdf
https://doi.org/10.1109/TSE.2003.1232284
http://scg.unibe.ch/archive/papers/Lanz03dTSEPolymetric.pdf
https://doi.org/10.1145/3394977
https://doi.org/10.1145/3394977
https://doi.org/10.1145/3394977
https://doi.org/10.1145/3394977
https://doi.org/10.1145/3394977
https://doi.org/10.1109/ICSM.2012.6405248
https://doi.org/10.1109/VISSOF.2007.4290697
https://doi.org/10.1109/VISSOF.2007.4290697
https://doi.org/10.1145/1879211.1879222
https://doi.org/10.1145/1879211.1879222
https://doi.org/10.1145/1879211.1879222
https://doi.org/10.1145/1879211.1879222
https://doi.org/10.1145/1879211.1879222
https://doi.org/10.1145/3485134
https://doi.org/10.1145/3485134
https://doi.org/10.1145/3485134
https://doi.org/10.1145/3485134
https://doi.org/10.1109/VISSOFT.2019.00012
https://doi.org/10.1109/VISSOF.2011.6069452
https://www.sciencedirect.com/science/article/pii/S2405844020306514
https://www.sciencedirect.com/science/article/pii/S2405844020306514
https://doi.org/https://doi.org/10.1016/j.heliyon.2020.e03806
https://doi.org/https://doi.org/10.1016/j.heliyon.2020.e03806
https://www.sciencedirect.com/science/article/pii/S2405844020306514
https://www.sciencedirect.com/science/article/pii/S2405844020306514
https://doi.org/10.1145/1039539.1039541
https://doi.org/10.1145/1039539.1039541
https://doi.org/10.1145/1039539.1039541
https://doi.org/10.1145/1039539.1039541
https://doi.org/10.1080/10447310802205776
https://doi.org/10.1080/10447310802205776
https://doi.org/10.1080/10447310802205776
https://doi.org/10.1080/10447310802205776
https://books.google.cl/books?id=RwcVEAAAQBAJ
https://books.google.cl/books?id=RwcVEAAAQBAJ
https://doi.org/10.1177/1541931215591373
https://doi.org/10.1177/1541931215591373
https://doi.org/10.1177/1541931215591373
https://doi.org/10.1177/1541931215591373
https://doi.org/10.1177/1541931215591373
https://doi.org/10.1080/00140139.2021.1876927
https://doi.org/10.1080/00140139.2021.1876927
https://doi.org/10.1080/00140139.2021.1876927
https://doi.org/10.1080/00140139.2021.1876927

	Introduction
	Prior Work
	Vismep
	In a Nutshell
	Call Graph View
	Source Code View
	Sub Call Graph View
	Scatter Plot View
	Interactions

	Methodology
	Research Questions
	Participants and Applications
	Procedure
	Data Collection
	Data Analysis

	Results
	RQ1.1: Information needs
	RQ1.2: Use of Vismep
	RQ2.1: Cognitive load
	RQ2.2: Perception of usability
	RQ2.3: Perception of Vismep features

	Threats to validity
	Conclusion and future work
	References

