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Software Visualizations to Analyze Memory Consumption: A Literature Review
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Understanding and optimizing memory usage of software applications is a difficult task, usually involving the analysis of large amounts
of memory-related complex data. Over the years, numerous software visualizations have been proposed to help developers analyze the
memory usage information of their programs.

This paper reports a systematic literature review of published works centered on software visualizations for analyzing the memory
consumption of programs. We have systematically selected 46 articles and categorized them based on the tasks supported, data
collected, visualization techniques, evaluations conducted, and prototype availability. As a result, we introduce a taxonomy based
on these five dimensions to identify the main challenges of visualizing memory consumption and opportunities for improvement.
Despite the effort to evaluate visualizations, we also find that most articles lack evidence regarding how these visualizations perform
in practice. We also highlight that few articles are available for developers willing to adopt a visualization for memory consumption
analysis. Additionally, we describe a number of research areas that are worth exploring.

CCS Concepts: •Human-centered computing→ Empirical studies in visualization;Visualization systems and tools;Visualization
techniques; Empirical studies in visualization; • General and reference → Surveys and overviews; Performance.

Additional Key Words and Phrases: systematic literature review, software visualization, memory consumption
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1 INTRODUCTION

Software development often involves deep and intricate technical aspects. Execution time and memory consumption
are two primary resources to consider in software engineering [86, 88]. Keeping the amount of memory consumed by a
software system under control is an example of such a programming challenge.

Understanding software execution.Manually understanding and addressing memory issues is challenging since it
usually involves analyzing several metrics at once and requires a thorough analysis of the respective code [9, 13]. To
assist developers in this activity, software development environments provide tools to monitor and report resource
usage during software execution. An example of such tools is the execution profiler, designed to report information
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about the behavior exhibited of a target program during its execution. Profilers help developers evaluate how well
programs perform based on a set of dynamic aspects, including memory consumption, garbage collections, execution
time, and frequency of function calls [3, 7, 47]. These metrics are usually displayed through full-text reports or textual
tables, affecting the process and leading to actionable conclusions.

Visualizing memory consumption. Over the years, the research community of software visualization has proposed a
variety of visualizations to support software comprehension [25, 43]. It has also been shown that interactive visualization
reinforces the cognition that facilitates human interaction to explore and understand data [94]. Due to this, software
visualizations enriched with interaction mechanisms become a powerful alternative for displaying profiler reports to
support developers in understanding and addressing memory-related issues. Each one of these visualizations provides a
wide spectrum of metrics (e.g., number of created objects [34, 62], memory access [31]), and data representations (e.g.,
call graphs [34, 98] and call context trees [9]).

This paper presents a systematic literature review of software visualizations to analyze memory consumption. We
initially used keyword searches against three popular scientific databases and complemented it with a bi-directional
snowballing and a manual search of relevant venues. As a result, we found 420 articles published without counting
duplicates. From these, we selected 46 articles based on inclusion/exclusion criteria and quality assessment. In this way,
we included only the studies centered on visualizations to analyze the memory consumption of a software program. As
a consequence, we excluded articles that only focus on memory issues without visualization, articles that analyze the
memory used by the visualization per se, and articles that focus on other performance metrics excluding memory usage.
In summary, our systematic review focuses on published works centered on visualizations that assist practitioners in
examining memory usage to identify optimizations opportunities.

Section 2 presents the methodology we followed in this study. Section 3 displays the main findings by answering
the questions defined in Section 2.1. Section 4 provides the open challenges for the new visualizations centered on
analyzing memory usage. Section 6 discusses the state-of-art. Section 5 discusses the threats to validity of this study,
and Section 7 exposes the future work and the conclusions.

2 METHODOLOGY

Overview. This literature review follows a systematic and rigorous methodology to identify and categorize literature
related to memory consumption visualization. We use a seven high-level steps methodology inspired by well-recognized
software engineering guidelines for systematic reviews [41, 42]. Our steps are:

(1) Define Research Questions
(2) Develop a Search strategy
(3) Define Inclusion and Exclusion Criteria
(4) Screen and Select Studies for Inclusion
(5) Quality Assessment
(6) Data Extraction
(7) Analysis

We describe each one of these steps in the following sections.

Manuscript submitted to ACM
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Software Visualizations to Analyze Memory Consumption: A Literature Review 3

2.1 ResearchQuestions

The purpose of this literature review is to inspect, analyze, and discuss the state-of-art regarding software visualizations
focused on helping developers to understand memory consumption. In particular, we are interested in addressing the
research questions described in Table 1. We believe that answering these research questions (RQ) will assist future
researchers in creating new visualizations focused on supporting developers during memory consumption analysis.

Table 1. ResearchQuestions

Research Question Dimension & Rationale

RQ1: Which tasks are supported by the software
visualizations to help users with the analysis of
memory consumption?

Problem Domain: Identify the tasks that software visualization tar-
gets to facilitate during the memory consumption analysis. For
instance, identify bottlenecks or detect memory leaks.

RQ2:What aspects of the software are abstracted
by the software visualizations to help users with
the analysis of memory consumption?

Data: Software visualizations display large amounts of data (e.g.,
memory allocations, memory accesses) extracted from the execution
or code of software applications. This information allows developers
to understand the memory consumption of a program.

RQ3: Which software visualizations have been
proposed to help users with the analysis of mem-
ory consumption?

Visual Representation: The use of different visual techniques to ab-
stract complex and related data is an important topic. The way on
which visual elements are rendered and presented to the user is
also relevant because it may impact how the user interacts and
perceives the visualization. In particular, we are interested in re-
viewing: RQ3.1: Which visual techniques are used?, RQ3.2: Which
interaction tasks are supported?, and RQ3.3: Where are the visual
elements rendered?

RQ4: How are software visualizations to help
users with the analysis of memory consumption
evaluated?

Evaluation: Analyzing how software visualization is evaluated pro-
vides (i) an overview of the proposed visualization’s effectiveness
and usefulness and (ii) a better understanding of conducted evalua-
tion strategies.

RQ5: What software visualization tools or proto-
types are available to help users with the analysis
of memory consumption?

Availability: The availability of a prototype or tool is an opportu-
nity (i) for practitioners to benefit from the approach and (ii) for
researchers to replicate the results or complementing the associated
research articles.

Dimensions. Our research questions focus on five dimensions: problem domain, data, visual representation, evaluation,
and artifact. The research questions and their dimensions were inspired by six surveys [46, 49, 51, 64, 65, 74]. These
studies present a number of relevant dimensions to give an enriched overview of software visualizations. Table 2
shows the six surveys mentioned previously with their respective dimensions and how they are related to our research
questions.

RQ1 centers on software engineering tasks supported by the visualization. RQ1 was inspired by three previous
studies: Price et al. [64, 65] provide taxonomies with a minor summary about the intention of the visualizations on their
Purpose dimension. Maletic et al. [49], and Merino et al. [51] consider general tasks of software engineering like reverse
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Table 2. An overview to the relations between our dimensions and the dimensions proposed by some works of the state-of-art.

Survey RQ1 RQ2 RQ3 RQ4 RQ5

Price et al. [64, 65] Purpose Scope and
content

Form, method, interaction and
effectiveness

Empirical
evaluation

-

Roman et al. [74] - Scope and
abstraction

Specification, method,
interface and presentation

- -

Maletic et al. [46] Task Target Representation and medium - -

Merino et al. [51] Task Data source Representation and medium - Tool

engineering, maintenance, and testing. Compared to these works, our Problem Domain dimension focuses on detailed
software engineering tasks related to memory usage.

In the case of RQ2 and RQ3, the surveys mentioned previously present detailed information for these dimensions,
providing an analysis of the collected data and how this data is abstracted visually to the user. In this literature review,
our Data dimension describes the metrics considered for the analysis of memory usage, and the Visual Representation
dimension reports the visual encodings, interactions, and medium used by the approaches.

Our study also includes two dimensions: RQ4 and RQ5 corresponding to evaluation and availability. RQ4 was only
covered by Price et al. [64, 65], and RQ5 by Merino et al. [51]. We include both dimensions since they are relevant in
the research community to understand how the visualizations were evaluated and if they may be replicable.

2.2 Search Strategy

Initial manual search. According to the Systematic Literature Review guidelines [42, 106], before performing an
automatic search phrase and defining an inclusion/exclusion criteria, it is necessary to search for an initial set of relevant
articles. To do this, we manually reviewed the articles published between 2017 and 2020 in the following scientific
venues:

• IEEE International Working Conference on Software Visualization (VISSOFT)

• International Symposium on Memory Management (ISMM)

We selected these conferences because the articles dedicated to software visualization and memory management
present a sound corpus for our study. Besides, these conferences are classified respectively in the good (B) and excellent
(A) category according to CORE rankings1, which determines conference rankings based on a mix of indicators (e.g.,
citation rates, paper submission, acceptance rates). The result of our initial manual search ends up with five articles
[9, 11, 31, 77, 102]. We used these papers as a base to define our search strategy by extracting search terms derived from
the research questions.

Search phrase development. We extracted the search terms that fit our scope of the title, abstract, and keywords
from the articles found at the initial manual search. Furthermore, we expanded these search terms with synonyms and
alternatives as shown on Table 3.

To find potential articles considered for our study, we combined these terms into a query as it follows:

1https://www.core.edu.au/conference-portal
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Software Visualizations to Analyze Memory Consumption: A Literature Review 5

Table 3. Search terms and alternatives of spelling

Term Alternatives

Memory* memory heap, memory allocation, memory consume, memory consumption, memory usage, memory
management, memory issues, memory issue, memory bloats, memory leaks, memory access, memory
address

Visual* visualize, visualization, visualisation, visual, visuals, visualizations, visualisations

Software* software, program, application

Memory* AND Visual* AND Software*

The previous query represents the condition that an article should meet to be considered in our study. We executed
the query against the abstract. We did not limit the search based on publication date to find the most significant number
of relevant articles for our study. We performed the search over three digital libraries:

• ACM Digital Library

• IEEE Xplore

• Scopus

As a result, we found 533 papers that meet these criteria, including our initial set of five papers. The latter gives a
level of certainty that we could find any article that proposes a visualization to assist developers with memory usage
analysis. However, we may have a number of false positives that we detected in the following steps. Additionally,
appendix A presents the search strings used for each digital library mentioned before.

Additional manual paper selection. In the previous phase, we found articles that contain the keywords used in the
query search. As a result, we located articles that may be useful and representative. However, we may have missed some
relevant articles. For instance, articles that use more particular memory-related keywords (e.g., cache, fragmentation)
may or may not be considered by our query. Therefore, in order to not miss any related paper, we also performed a
manual search on the last ten editions (2010-2020) from the following venues:

• IEEE International Working Conference on Software Visualization (VISSOFT), the continue of IEEE International

Workshop on Visualizing Software for Understanding and Analysis (VISSOFT) and ACM Symposia on Software

Visualization (SOFTVIS)

• International Symposium on Memory Management (ISMM)

We selected these conferences because we noticed that most of the articles resulting from our automatic phrase search
were published in them. We also reviewed only articles published in the last ten issues due to our time and human
resources. In total, around 305 articles were published in these venues over the last ten editions. We manually reviewed
each article based on its title and abstract. Consequently, we found ten articles that fall within the scope of this literature
review. However, seven articles were found in the earlier phases. Therefore, we identified three additional articles
during this phase.

Bi-directional snowballing.We performed a backward and forward snowballing over the ten articles found in the
previous phase to complete our search. The snowballing procedure consists of identifying additional studies using the
system of references between articles [105]. For this reason, we checked the references in each article, and we reviewed

Manuscript submitted to ACM
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the list of articles that reference any article of our selection. Thus, we could add relevant research published after or
before the publication date of our selection set by performing several iterations until non-relevant papers are referenced.
We then selected Google Scholar to perform the forward snowballing due to the facilities provided to select the papers
that cite a specific one. On the other hand, the backward snowballing was performed manually. Consequently, over two
iterations, we found 56 additional articles that could be considered in this study, collecting a total of 420 papers without
counting duplicated articles.

2.3 Inclusion & Exclusion Criteria

We elaborated inclusion and exclusion criteria based on the scope of this study. Table 4 details the inclusion and exclusion
criteria. In particular, we are interested in papers that use visualization techniques to help developers understand and
address memory issues.

Table 4. Inclusion and Exclusion Criteria

Inclusion Criteria

• I1: Papers published in a peer reviewed journal, conference or workshop
on data visualization, computer science, or computer engineering.

• I2: Papers written in English.

Exclusion Criteria

• E1: Papers that focus on other performance metrics (e.g., execution
time).

• E2: Papers that only study memory issues or visualization issues.
• E3: Posters, keynotes, challenges and previous papers that only intro-

duce the idea of most recent full papers (e.g., short papers).

The three authors of this study performed a revision of 420 articles based on inclusion/exclusion criteria. The three
authors independently read and analyzed the title, abstract, keywords, and venue to decide if an article is excluded or
not. However, if an author did not have enough information to decide, the author should read the introduction and
conclusions of the article. Next, each author responds independently if an article should be included or not using a
spreadsheet that lists the 420 articles.

Then, we examined the spreadsheet responses to calculate the kappa of Fleiss for the inter-rater reliability [28]. As a
result, we got 0.72 for the Kappa Fleiss analysis, which is generally considered a good agreement beyond chance [29].
We also identified 38 articles on which we have discrepancies in the spreadsheet responses. Most of these differences
were related to E1 and E2 criteria. For instance, some articles focus on using a software visualization to understand the
trace execution of programs, but not explicitly center on memory consumption. On the other hand, other articles are
dedicated to analyzing memory problems, but not primarily with software visualizations.

To resolve all conflicts, the three authors conducted a second review of the 38 articles, analyzing the full content
of each article. The authors then had a discussion session to develop an agreement based on the responses from the
second review. As a result, a total of 49 articles are candidates to be included in our study.
Manuscript submitted to ACM
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2.4 Quality Assessment

This phase involves the selection of the papers based on their quality [42, 63]. To exclude the articles with insufficient
information to contribute to this study, we examine the theoretical contribution, and the experimental evaluation with
the checklist used in software engineering surveys [61, 95] detailed in Table 5.

Table 5. Quality assessment adopted from [95]

# Questions

Theorical contribution

1 Is at least one of the research questions addressed?
2 Was the study designed to address some of the research questions?
3 Is a problem description for the research explicitly provided?
4 Is the problem description for the research supported by references to other work?
5 Are the contributions of the research clearly described?
6 Are the assumptions, if any, clearly stated?
7 Is there sufficient evidence to support the claims of the research?

Experimental evaluation

8 Is the research design, or the way the research was organized, clearly described?
9 Is a prototype, simulation or empirical study presented?
10 Is the experimental setup clearly described?
11 Are results from multiple different experiments included?
12 Are results from multiple runs of each experiment included?
13 Are the experimental results compared with other approaches?
14 Are negative results, if any, presented?
15 Is the statistical significance of the results assessed?
16 Are the limitations or threats to validity clearly stated?
17 Are the links between data, interpretation and conclusions clear?

In this step, the three authors assess the quality of each paper based on the checklist mentioned before. Each author
assigns a score to every question in the checklist. The score has a numeric scale of three levels: yes (2 points), partial (1
point), and no (0 points). The final score of a paper is measured by summing up the score of all questions. Since the
form has 17 questions, the total score of the articles varies from 0 to 34.

Additionally, we follow the criteria of Usman et al. [95] by using the lower quartile (34/4 = 8.5) as the limit point for
including an article based on quality. As a result, all the articles with a score above 8.5 points were considered relevant
hence they present enough information to address our research questions.

In total, 35 articles met the quality assessment with the approval of three authors, while 14 articles were detected
as discrepancies. Consequently, a second pass was made over these 14 articles. At the second pass, each reviewer
independently read and examined the quality assessment of each article again. We then moved on to a discussion
session between the three reviewers to resolve conflicts by consensus. Finally, with the second pass, a total of 46 articles
were selected to be included in the literature review.

2.5 Data Extraction

To extract the necessary data, the first author of this survey was in charge of examining each of the 46 articles. From
each article, she collected general information (e.g., title, publication year, venue) and information according to the
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dimensions and rationale of the research questions. Although the data extractor reviewed the entire document, she
focused on many particular sections in order to answer the research questions:

• RQ1 – Problem Domain: Abstract, introduction, evaluation, conclusion.
• RQ2 – Data: Data collection, data extraction, profiling information.
• RQ3 – Visual Representation: Visualization, detailed view, visual design, display.
• RQ4 – Evaluation: Evaluation, case study, applications, usage scenario.
• RQ5 – Availability: Visualization, implementation, conclusion.

The data extractor was also careful to search for data to respond RQ5 because sometimes artifacts or data sets are
placed as a reference or footnotes.

In order to validate the data extraction, the other two authors of this study checked the data to confirm that extraction
was correct. The three authors discussed and resolved any disagreements by reviewing the articles and data extraction
forms. We then recorded the final data value for data analysis.

We noticed that some articles do not present information to respond to all the research questions during this phase.
For example, some articles lack information about the interactions supported, the medium used, or the evaluation
conducted. We discussed the data synthesis of these cases in Section 2.6 and Section 3.

2.6 Data Analysis

This section describes the data analysis methods conducted to answer our research questions.

Thematic analysis. We opted to conduct a thematic analysis [90] for RQ1 and RQ2 since we noted that the proposed
classification schemes from previous software visualization surveys were general for helping us answer these research
questions. In order to create a classification scheme, the first author conducted the thematic analysis following a number
of specific steps:

• Familiarization. Extracted data is read and reread to have an overview of the information.
• Generating codes. The author in charge of the analysis assigned codes that reflect relevant features to answer

the research questions. For example, the author assigned the code “Detection of memory fragmentation” for the
text: “To help the user find potential memory fragmentation problems, we display memory blocks that have
been freed exactly one time and not reused” [73]. Additionally, continuous reviews were conducted to refine
codes and determine if they were assigned correctly. The latter requires comparing two text segments assigned
to the same code to inspect if they reflect the same feature.

• Constructing initial themes. All codes are compiled with their associated data into coherent groups to identify
initial themes (broader patterns) that help address the respective research questions. The codes that seem to not
belong to a specific theme were grouped as miscellaneous and analyzed in the next step.

• Reviewing themes. Initial themes were checked against the associated data (e.g., segments of text) and refined to
create a final set of themes.

• Defining and naming themes. Each theme of the final set was defined with a detailed description and an
informative name. For instance, the themes for RQ2 are generated based on the source of the data abstracted
(e.g., data from program execution, data from source code, data from versions).

Finally, the remaining two authors checked the process by reviewing the consistency of codes and themes against
the associated data and examining if the themes created respond to RQ1 and RQ2. Three meetings were held involving
Manuscript submitted to ACM
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the three authors to discuss the disagreements or potential issues of the generated codes and themes. As a consequence,
we minimized potential inconsistencies in the coding process.

Content analysis. We conducted a deductive content analysis [22, 27] to answer RQ3.1, RQ3.2, and RQ4 since the data
synthesis was performed based on defined classification schemes from previous studies shown in Table 6.

Table 6. Classification scheme

ID Dimension Classification scheme Proposed by

RQ3.1 Visual techniques Geometrically-transformed displays, iconic
displays, dense pixel displays, stacked displays
and standard 2D/3D displays

Keim [38]

RQ3.2 Interactions Select, explore, reconfigure, encode, abstrac-
t/elaborate, filter and connect

Yi and colleagues [107]

RQ4 Evaluation No explicit evaluation, empirical, theoretical Merino and colleagues [50]

For RQ3.2, we classified only the articles that present information to answer the research question. We exposed
the number of articles that lack data to answer these research questions. For RQ4, Merino and colleagues proposed a
category of “No explicit evaluation” for these cases.

The classification of articles for RQ3.1, RQ3.2, and RQ4 was performed by two authors independently. Each author
filled a spreadsheet to classify the articles based on a detailed description of the predetermined categories. Later, to check
the agreement between reviewers, we calculated metrics for reliability (Cohen kappa [99], percentage of agreement). As
a result, we noticed that reviewers present a “substantial agreement” (kappa > 0.61) and a percentage agreement above
80% at classifying the articles for most categories. However, we noted disagreements on the classification based on the
interactions supported and the evaluations conducted (case study vs. usage scenario). We discussed the disagreements
in meetings by exposing the data and examining the description of the categories. Consequently, we resolved the
discrepancies and advanced to expose the results to answer the research questions.

Finally, to respond to RQ3.3 we only reviewed the medium employed. And for RQ5, we listed the link for the prototype
and the additional information (video, sample data) provided in the link.

3 RESULTS

3.1 Overview

Table 7 summarizes the results of all steps in our systematic search methodology. It shows different stages of the process
for search and selected relevant articles. Unique columns show the number of non-duplicated articles. As a result, we
found that 32.27% of the articles found in the search phase over digital libraries were duplicated articles.

We also noticed that 11.66% of the articles found during the search phases were selected based on the inclusion/ex-
clusion criteria.

In the end, Table 8 and Table 9 display the 46 articles that passed our inclusion/exclusion criteria and satisfied the
criteria of our quality assessment. A set of collected data from the 46 articles is available online2.

2https://www.dropbox.com/s/7srvxiacftg2pm1/ArticleClassification.csv?dl=0
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Table 7. Systematic Search Results

Source Date Search
Results

Unique Inclusion/Exclusion
Criteria

Quality As-
sessment

Included

ACM DL March 18, 2021 209

IEEE March 18, 2021 72

SCOPUS March 18, 2021 252

Search phrase 533 361 27 24 24

Additional
manual search

3 3 3 3 3

Bi-directional
snowballing

56 56 19 19 19

Total 46

Publication year. During the search phase in digital libraries, we do not limit the search based on publication dates.
We also do not exclude articles based on their publication date during the selection phase. However, we noted that the
articles considered by our study were published between 1996 and 2020. Furthermore, we detected that the number of
published articles increases over time with high picks (4 articles published) in 2002, 2010, and 2018.

Venues. Regarding the distribution of articles based on the venue, we identified 27 different venues where the papers were
published. Most of the venues are related to software visualizations, software maintenance and software comprehension.
Furthermore, we observed that 32.60% of selected studies were published in software visualization conferences (VISSOFT
and SOFTVIS). We also noticed that 17.39% of the articles were published in journals usually involved with computer
graphics and visualizations (e.g., Computer Graphics Forum, IEEE TVCG). Finally, the remaining articles were published
in various conferences and workshops, usually related to software maintenance and software comprehension (e.g.,
ISMM, ICSME).

3.2 RQ1: Problems domain

Selected articles propose software visualizations that usually target to help developers perform debugging and per-
formance tasks. We performed thematic analysis to find patterns over the data to provide details of which tasks are
supported by these visualizations. As a result, we detected themes that help users adopt a suitable software visualization
according to their requirements. We classified the visualizations based on (i) focus point analysis and (ii) issue detection.
Table 10 shows the distribution of papers based on this classification. According to our classification, a visualization
could focus on analyzing a specific point and detecting multiple memory issues. As a result, a visualization could belong
to multiple categories.

Focus point analysis. Articles explain why the proposed visualization is helpful in different sections. During our
thematic analysis, we noticed that a number of articles present a general description by specifying that the proposed
visualization has a general purpose in helping developers understand andmonitor an application’s memory consumption.
On the other hand, we found articles that propose dedicated visualizations that allow users to analyze specific points
(e.g., data structure, cache behavior). We classified the articles based on the focus point analysis described below.
Manuscript submitted to ACM
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Table 8. The included papers in the study (S1-S29)

ID Title Venue Year Ref.

S1 Evaluating an Interactive Memory Analysis Tool: Findings from a
Cognitive Walkthrough and a User Study

PACMHCI 2020 [101]

S2 Memory Cities: Visualizing Heap Memory Evolution Using the
Software City Metaphor

VISSOFT 2020 [102]

S3 PVC.js: visualizing C programs on web browsers for novices Heliyon 2020 [35]
S4 Enhancing Commit Graphs with Visual Runtime Clues VISSOFT 2019 [77]
S5 Visual performance analysis of memory behavior in a task-based

runtime on hybrid platforms
CCGRID 2019 [59]

S6 Detailed heap profiling ISMM 2018 [11]
S7 Effective visualization of object allocation sites VISSOFT 2018 [9]
S8 NumaMMA: NUMA MeMory Analyzer ICPP 2018 [93]
S9 Memaxes: Visualization and analytics for characterizing complex

memory performance behaviors
TVCG 2018 [30]

S10 Atlantis: Improving the analysis and visualization of large assembly
execution traces

ICSME 2017 [33]

S11 Visual exploration of memory traces and call stacks VISSOFT 2017 [31]
S12 Leveraging Managed Runtime Systems to Build, Analyze, and

Optimize Memory Graphs
VEE 2016 [85]

S13 Interactive visualization of cross-layer performance anomalies in
dynamic task-parallel applications and systems

ISPASS 2016 [24]

S14 Efficiently identifying object production sites SANER 2015 [34]
S15 TABARNAC: Visualizing and resolving memory access issues on

NUMA architectures
VPA 2015 [6]

S16 Visualization of memory access behavior on hierarchical NUMA
architectures

VPA 2014 [104]

S17 A visual approach to investigating shared and global memory
behavior of CUDA kernels

Comput Graph Forum 2013 [75]

S18 Visualizing the allocation and death of objects VISSOFT 2013 [98]
S19 Abstracting runtime heaps for program understanding IEEE TSE 2012 [48]
S20 Topological analysis and visualization of cyclical behavior inmemory

reference traces
PacificVis 2012 [17]

S21 Vasco: A visual approach to explore object churn in
framework-intensive applications

ICSM 2012 [26]

S22 Abstract visualization of runtime memory behavior VISSOFT 2011 [16]
S23 A map of the heap: Revealing design abstractions in runtime

structures
SOFTVIS 2010 [58]

S24 Allocray: Memory allocation visualization for unmanaged languages SOFTVIS 2010 [73]
S25 Automated construction of memory diagrams for program

comprehension
ACM SE 2010 [19]

S26 Heapviz: interactive heap visualization for program understanding
and debugging

SOFTVIS 2010 [1]

S27 Making Sense of Large Heaps ECOOP 2009 [53]
S28 Visualizing the Java heap to detect memory problems VISSOFT 2009 [71]
S29 Hdpv: Interactive, faithful, in-vivo runtime state visualization for

C/C++ and Java
SOFTVIS 2008 [87]
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Table 9. The included papers in the study (S30-S46)

ID Title Venue Year Ref.

S30 Interactive Visualization for Memory Reference Traces Comput Graph Forum 2008 [15]
S31 Visualizing dynamic memory allocations VISSOFT 2007 [55]
S32 Visualising dynamic memory allocators ISMM 2006 [12]
S33 Jove: Java as it happens SOFTVIS 2005 [72]
S34 YACO: A User Conducted Visualization Tool for Supporting Cache

Optimization
HPCC 2005 [69]

S35 Interactive locality optimization on numa architectures SOFTVIS 2003 [56]
S36 Visualizing Java in action SOFTVIS 2003 [70]
S37 GCspy: an adaptable heap visualisation framework OOPSLA 2002 [68]
S38 Visualising the train garbage collector ISMM 2002 [67]
S39 Visualizing memory graphs Software Visualization 2002 [111]
S40 Visualizing the execution of Java programs Software Visualization 2002 [20]
S41 Visualizing the impact of the cache on program execution ICIV 2001 [108]
S42 Visualizing the memory access behavior of shared memory

applications on NUMA architectures
ICCS 2001 [89]

S43 Visualizing reference patterns for solving memory leaks in Java ECOOP 1999 [21]
S44 A cache visualization tool Computer vol. 30 1997 [96]
S45 DDD — a free graphical front-end for Unix debuggers SIGPLAN Not. 1996 [110]
S46 Monitoring data-structure evolution in distributed message-passing

programs
HICSS 1996 [78]

Table 10. Classification of articles based on the tasks

Problem domain References Total

Focus point analysis Specific architectures S5, S8-S9, S12-S13, S15-S17, S35, S42, S46 11
Data structure S3, S19, S23, S25-S29, S33, S36, S39-S40, S43, S45 14
Cache performance S22, S30, S34, S41, S44 5
Memory regression S4 1
General S1-S2, S6-S7, S10-S11, S14, S18, S20-S21, S24, S31-S32,

S37-S38
15

Issue detection Memory leak S1, S2, S24, S26-S29, S40, S43, S46 10
Memory bloat S1, S4, S6-S7, S14, S18-S19, S27-S28 9
Memory churn S1, S21, S24, S28-S29, S38 6
Memory fragmentation S5, S24, S31-S32, S37-S38 6

• Specific architecture. We found 23.91% articles dedicated to analyzing the memory consumption of applications
with specific architectures (HPC, parallel, embedded, distributed). These articles usually propose visualizations
that display how the data is accessed and used by multiple threads and multiple processors. For example, article
S35 [56] allow developers to understand the memory access behavior of parallel NUMA applications. This
article proposes a visualization that helps developers identify which nodes perform the memory accesses and
detect an opportunity to reduce remote memory accesses.
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• Data structure. According to Cormen et al. [18], a data structure is a way to store, manage and organize data to
facilitate access and modifications. There is a variety of data structures employed in software applications (e.g.,
lists, dictionaries). However, the inefficient usage of data structure and its operations (e.g., adding, removing
elements) generates memory issues that affect the performance. For this reason, data structure analysis is a
prevalent task during software development. We detected that 30.46% of visualizations support developers in
analyzing and inspecting data structures. For instance, article S26 [1] propose Heapviz that allows developers
to identify large data structures and which objects are shared by several data structures. Heapviz displays a
node-link diagram to visualize the references between objects and locate the nodes using a radial layout to use
screen space efficiently.

• Cache performance. Cache stores data so that future requests for that data can be responded more quickly.
Tracking the cache activity in a software application helps developers understand memory performance at a
fine-grained level. Accordingly, developers may require and analyze memory access and cache performance;
hence, the cache activity’s analysis influences detecting memory access anomalies. We found that 10.86% of
visualizations support developers in analyzing cache performance. For example, article S34 [69] propose YACO
to help users with the analysis of access patterns and cache misses. YACO present multiple views to display
statistics related to cache performance and allow developers to find data that frequently enter and leave the
cache.

• Memory regression. Source code changes may impact the performance of an application [3]. Only article S4 [77]
allows developers to analyze the memory variations between code changes. This article proposes Spark Circle
that enables users to compare two commits based on the number of allocated objects, the execution time, and the
number of modified methods. As a consequence, a developer can identify the growth or reduction of allocated
objects between commits.

• General. As we mentioned before, we found 32.60% of the articles do not focus on a specific point. These articles
determine that the goal of the proposed visualization is to analyze memory consumption. Therefore we could
not find specific analysis points such as analysis of data structures or cache behavior. During the generation of
codes, we detected that these articles usually display memory access or heap usage. Furthermore, most of these
articles are useful for detecting memory issues.

Issue detection. We found that 47.82% of the articles propose visualizations that allow developers to identify memory
issues. Additionally, we detected several articles that claim to present helpful visualizations to address memory anomalies
but do not specify which kind of anomalies or particular situations can be addressed with the proposed visualization.
Consequently, we only classified the articles that present a detailed description of the memory issues addressed and
how developers could employ the visualization to find these anomalies. We described the memory issues that were
found below.

• Memory leak. A memory leak is an issue deeply related to improper memory management [10, 54]. A memory
leak occurs when an unused memory allocation cannot be released from memory [21]. The latter usually
happens because there are allocations that reference an unused allocation. As a consequence, the application
can run out of memory and crash. We found that 21.73% of the visualizations help developers in detecting
memory leaks. For instance, article S40 [20] presents a node-link diagram to display the references between the
objects not reclaimed by the garbage collector. This visualization allows developers to identify memory leaks
by exploring which objects are no longer used but are referenced by other objects.
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• Memory bloat. Memory bloat exposes inefficient use of memory by a program [101]. A memory overhead
significantly affects software applications by reducing their scalability and usability. Developers should notice
that an application may be free of memory leaks, but could require excessive memory to operate correctly.
According to LaToza et al. [44], developers usually ask, “How big is this in memory?” and “How many of these

objects get created?” These questions are related to distinguish memory growth. Addressing memory bloats
impacts the application behavior, making it more usable and faster in some cases [37]. We detected that 19.56%
of visualizations support developers in identifying excessive memory consumption. For example, article S1
[101] allows developers to explore and observe memory consumption over time by using multiple views with
AntTracks. As a result, AntTracks assists developers in detecting memory growth and explore suspicious objects
allocated over time.

• Memory churn. This issue occurs when an application allocates and releases a large number of short-living
objects [26]. For example, memory churn can happen if a program allocates several new objects in the middle of
nested loops. As a result, the time spent on allocating objects in a heap and the number of garbage collections
increases. Thus the application decreases its performance due to frequent garbage collection. We detected that
13.04% of the visualizations help developers in detecting memory churn. For example, article S21 [26] proposes
Vasco, a visualization that allows developers to identify where and when an object is allocated and no longer
used. The authors of Vasco described how they use visualization to reuse some objects and reduce the number
of allocations and garbage collections.

• Memory fragmentation. This issue related to a failure at reusing memory that has been released. Furthermore,
excessive fragmentation over memory may lead to more costly performance behavior. We found that 13.04% of
the visualizations help developers identify memory fragmentation. For instance, article S31 [55] allows users to
analyze the behavior of a memory allocator by displaying the memory accesses through time. This visualization
enables developers to identify unnecessary fragmentation since free memory blocks can be detected quickly.

We also noticed that selected articles usually define the roles of users of visualizations. We detected that 13.04% of the
visualizations help students or novice developers analyze memory consumption. For example, article S3 [35] presents
PVC to support students with understanding the program execution status and behavior. The authors of this article
experimented with 35 university students to evaluate the usability of PVC. Furthermore, most of the visualizations
(89.13%) assist developers and software engineers. Some of these articles determine that proposed visualizations
are suitable for supporting developers with experience in software engineering and with knowledge of memory
management.

3.3 RQ2: Data

Monitoring and analyzing memory usage is a complex task for developers since it is necessary to collect and examine
different software aspects. The selected articles usually present detailed sections to describe the data collection. We
noticed that several articles implement a profiler to gather information. Other studies use dedicated tools for this
purpose, such as Pin [45], Jinsight [20], DynamoRIO 3, etc. Nonetheless, some studies only describe the information
visualized, but do not explicitly mention how they collect the data.

3http://dynamorio.org
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We defined the classification scheme according to the sources from which various data were collected. As a result,
the articles are categorized based on three sources: (i) program execution, (ii) source code, and (ii) version control
systems. In this classification, software visualizations can belong to multiple categories.

Table 11. Classification of articles based on the data source

Data source Data References Total

Program execution Memory allocations S4, S7, S14, S19, S21, S23, S25-S27, S33, S39, S45 12
Memory allocations and
release

S1-S2, S12, S18, S28-S29, S31-S32, S36-S38, S40, S43 13

Memory accesses S3, S5-S6, S8-S11, S13, S15-S17, S20, S22, S24, S30, S34-
S35, S41-S42, S44, S46

21

Relationships between
functions/methods

S1, S6-S7, S10-S11, S14, S21, S40 8

Variable references S1-S3, S12, S19, S23, S25-S29, S39-S40, S43, S45 15
Time S4-S6, S11, S16, S30-S31, S33, S36, S40-S41, S44 12
Threads S5, S6, S8, S10, S13, S15-S17, S24, S33, S36, S40 12
Data shared between
computational units

S5, S8-S9, S13, S15-S17, S35, S42, S46 10

Source code Line of code S3, S5-S6, S10, S17, S20, S22, S24, S29, S33, S45-S46 12
Class S1-S2, S7, S11, S14, S18, S21, S28, S36, S40 10
Structural component S1, S10-S11, S36 4

Version control system Code changes S4 1

Program execution. This category involves the articles that collect or calculate data from program execution. This
information facilitates the understanding of the behavior of a program. All the articles extract various data from program
execution to support developers with memory consumption analysis. However, we noticed that the information selected
varies in different aspects.

During the program execution, a large number of memory events occur. Articles regularly mention that memory
traces are collected. However, the concept of memory trace could be too general, so we focused on the details of the
memory traces collected. We considered three memory events: (i) data is allocated in sections of memory (allocations),
(ii) data allocated is used (read and write), and (iii) the occupied memory that is not needed anymore should be released
(deallocation).

• Memory allocations.We detected that 26.08% of the articles describe extracting data related to memory allocations
but do not consider when the memory is released due to the difficulty of extracting this kind of information [72].
These articles usually provide visualizations that display the objects allocated during the program execution to
identify objects that consume more memory and distinguish how these objects are related. However, according
to our previous research [9], this information could be insufficient at helping developers detect optimization
opportunities and address memory issues quickly.

• Memory allocations and release.We found that 28.26% of the articles determine gathering data from memory
allocations and memory release by tracking specific instructions (e.g., free, delete) or based on garbage collection
events. For example, articles S1 [101], and S2 [102] abstract the heap memory evolution through time to assist
developers in quickly detecting memory issues (e.g., memory leaks, memory bloats).
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• Memory accesses. A total of 45.65% articles collect data from all memory events described previously. Some of
these articles present visualizations to support students or developers with understanding memory consumption.
For example, article S6 [11] proposes Memoro, a profiler with a visualization that shows how a program uses
the memory. Memoro calculates useful metrics (lifetime, usage, useful lifetime) based on the data extracted
(e.g., number of reads, number of writes) from the memory accesses. These defined metrics allow developers to
detect inefficient use of memory quickly. On the other hand, other articles propose visualizations for specific
aspects, such as cache performance analysis or memory analysis in HPC applications.

Furthermore, articles usually specify collecting metrics (e.g., memory address, size) involved with each memory
event. Additionally, some articles describe gathering additional information described below to assist developers with
memory consumption analysis.

• Relationships between functions/methods. Extracting the calling relationships is a common strategy to assist
developers with control-flow analysis [44]. Commercial tools (e.g., JProfiler4, Yourkit5) display this information
using a tree structure as shown in Figure 1.

Fig. 1. JProfiler displaying the methods executed with a Calling Context Tree.

We found that 17.39% of the articles describe collecting this information to determine how functions are related
to memory events and track specific functions. To exemplify, article S11 [31] helps developers understand
memory consumption by extracting the memory accesses and the call stack. The visualization connects a dense
scatter plot for memory accesses and a flame graph for the call stack. As a result, this visualization allows
developers to explore through the memory accesses and determine which functions are involved.

• References between variables. Some articles proposed visualizations to support developers with data flow analysis.
For this reason, 32.60% of the articles specify the extraction of references between variables. The articles focused
on analyzing the memory consumption in object-oriented programming languages, which usually display the
allocated objects and the references between these objects. For instance, article S2 [102] proposes Memory

cities, a visualization to inspect memory growth and reference patterns over objects. Weninger and colleagues
employed Memory cities to identify memory leaks by examining reference patterns.

• Time.We found that 26.08% of the articles explicitly describe collecting how much time is spent executing some
instruction or when a memory event occurs to facilitate the program understanding.

4https://www.ej-technologies.com/products/jprofiler/overview.html
5https://www.yourkit.com
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• Threads. For 26.08% of the articles specify extracting which threads are involved in memory events. Article
S33 [72] describe that showing the threads created, destroyed and what each thread is doing is fundamental to
show programmers detailed information about the program’s behavior.

• Data shared between computational units.We detect that 21.73% of the articles describe gathering information
related to how memory resources are shared among processors. These articles present visualizations to assist
developers in understanding the memory management between multiple processors.

Source code. The articles that present static aspects, which are inferred without executing the program belong to this
category. We found that 47.82% of articles usually extract static information to help developers map data collected from
program execution to source code. The latter benefits developers by identifying and proposing changes on the source
code that reduce memory consumption or repair memory issues.

• Line of code. We detected that 26.08% of articles extract the file and line of code corresponding to memory
events. These articles usually propose visualizations with interaction mechanisms to provide the line of code or
a highlighted piece of source code for relating the data from program execution to source code quickly.
Class. We found that 21.74% of articles collect information at the level of class. As a result, developers can
pinpoint classes with specific issues. For example, article S18 [98] highlights classes that contain methods
involved with several allocations or several deallocations.

• Structural component.We found that 8.69% of articles gather information about which package or module is
involved with memory events. These articles usually present visualizations that group visual elements based on
a structural component. For instance, article S11 [31] displays the functions executed through visual elements
and assigns the color of these visual elements based on the module.

Version control systems. Only article S4 [77] describes extracting data from commits or changes on source code
between versions. This article proposes a graph of glyphs to identify memory regressions between consecutive commits.

3.4 RQ3: Representation

This section covers the analysis and categorization of the selected papers based on three relevant aspects in the software
visualization field: visual techniques, interactions, and medium.

Table 12. Classification of articles based on the visual technique

Visual techniques References Total

Geometrically-transformed S1-S3, S5, S7, S10, S14, S16-S20, S22-S23, S25-S27, S29, S33, S39, S40, S43, S45 23
Iconic S2, S4-S5, S7, S14, S22, S25, S28, S33, S36, S40, S43 12
Dense Pixel S8, S11, S13, S15, S24, S30, S31-S32, S35, S37-S38, S41 12
Stacked S2, S6, S9, S11, S12, S21, S28, S29, S33, S36, S40 11
Standard 2D/3D S1, S5-S6, S9-S10, S14-S15, S34, S42, S44, S46 11

3.4.1 Visual techniques. Authors proposing a software visualization employ different visual techniques to explore the
information collected from a software application. We categorize the articles according to the classification scheme
proposed by Keim [38]. As a result, Table 12 illustrates the distribution of articles based on five categories. In the
following, we describe the results of these categories.
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• Geometrically transformed. According to Keim [38] geometrically transformed techniques transform multi-
dimensional data into low dimensional data. This transformation involves mapping an object to a set of points
and lines in 2D or 3D (e.g., node-link diagrams, parallel coordinates).
Half of the selected articles (50%) employ geometrically transformed techniques. This category is the most
frequent since several authors propose node-link diagrams to represent relationships, such as object references
or the relationships between functions. For instance, article S26 [1] proposes Heapviz to explore and identify
primary data structures. Heapviz displays a node-link diagram where the nodes represent object instances, and
the edges denote the references between objects as shown in Figure 2. Heapviz allows developers to identify
populated data structures, data structures containing other data structures, and objects referenced by several
data structures.

Figure 3: A Heapviz visualization of a HashSet containing 100 objects. The graph on the left is unsummarized,
and the one on the right is summarized. The supplemental video demonstrates the interactive capabilities of
our system using this visualization example.

demonstrates how the user can interact with Heapviz. Be-
cause our work relies on the user’s being able to explore the
graph interactively, we recommend that the reader view the
video to have a better understanding of how Heapviz works
and how it can be used.

5.3.1 Canvas Movement
The user is able to pan the view around the visualization,

zoom in and out by arbitrary distances, and zoom the dis-
play to fit the entire graph. Additionally, the graph can be
laid out relative to a node of the user’s choosing, recentering
the view on that node and bringing the entire graph back
towards the new center.

5.3.2 Selection and Dragging
Nodes may be added to or removed from the current se-

lection set either individually or by subtrees (as defined by
the dominance tree). Once nodes are selected they can be
dragged. By default, dragged nodes maintain their distance
from the root node of the layout; however, the user may
enable free movement of nodes.

5.3.3 Search
Heapviz provides the user with a search bar that per-

forms an incremental search (search-as-you-type) over the
names, member variable names, and member variable val-
ues of nodes. Nodes that fulfill the query are highlighted
as they are found, a feature that reveals patterns of where
particular objects or values may be found in the heap. Al-
ternatively, searching can help the user quickly identify a
particular node he or she would like to investigate.

5.3.4 Field View
Nodes in the graph have a variety of attributes that can

be displayed to the user: member variable names, member
variable values, number of instances (for summarized nodes)
and size in bytes. When the user selects a node, Heapviz
displays all node attributes that apply to the selected node.
This allows the user to inspect the instance values of any
Java object.

5.3.5 Expanding and Collapsing
The user can interactively collapse and expand nodes in

the Heapviz graph. Only nodes that have children in the
dominance tree can be expanded or collapsed. A node that
dominates an entire subtree can be said to represent that
subtree; the ability to expand (show) or collapse (hide) that
subtree behind the dominating node offers the user a way
both to reduce unwanted visual clutter and to conceptually
simplify the graph.

5.3.6 Edge Visibility Toggles
The user is able to individually enable or disable the dis-

play of the two edge sets via a set of toggles. Dominance
edges can provide revealing information about conceptual
connections between data structures when the user is un-
familiar with the program; pointer edges show the actual
structure of the object graph, and thus are useful for both
program understanding and debugging.

6. CASE STUDIES
We now present the results of visualizing data structures

in several Java programs and use these as a basis for discus-
sion of Heapviz’s strengths and weaknesses. First, we show
two constructed examples (micro-benchmarks) built using
standard container classes. Second, we explore two real-
world benchmarks, 209 db [27] and SPEC JBB 2000 [28].

6.1 Constructed Examples
We first consider two examples constructed from standard

data structures from the Java class library. In both cases,
Heapviz can help users understand how a data structure is
implemented without looking at the source code.

6.1.1 HashSet
Consider a set data structure: a collection that contains

no duplicate elements and no ordering. One can implement
a set using a hash table, which maps keys to values. The
keys of the hash table are the elements of the set; the values
are irrelevant but must be present. The Java class library

57

Fig. 2. Heapviz [1] presents an interactive visualization to support the analysis of data structures. ©Republished with permission
of ACM (Association for Computing Machinery), from “Heapviz: interactive heap visualization for program understanding and
debugging”, by Edward E. Aftandilian, Sean Kelley, Connor Gramazio, Nathan Ricci, Sara L. Su, and Samuel Z. Guyer. 2010. Permission
conveyed through Copyright Clearance Center, Inc.

• Iconic displays. This category involves visual techniques, which map the multidimensional data attributes to
icon features (e.g., tile bars, star icons). As a result, iconic techniques display icons whose characteristics vary
concerning the data attributes.
Of the selected articles, 26.08% employ iconic techniques. For example, S4 [77] introduced the glyph called
Spark Circle to analyze the variations of metrics (objects allocation variation, number of changed methods,
execution time variation) between consecutive commits in a commit-graph visualization as shown in Figure 3.
In this visualization, each spark circle has three segments, the pink segment for the number of changed methods,
the orange segment for the objects allocation variation, and the blue segment for execution time variation.
The height of each segment is proportional to the absolute value of the respective metric, and the border is
black if any metric increases. As a result, the authors of this visualization detected performance and memory
regressions.

• Dense pixel. This category includes techniques that represent data values as pixels and group them based on
their dimension in specific areas (e.g., matrix visualizations).
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IV. APPLICATION EXAMPLES

We developed an initial prototype to analyze the evolution of
two open source projects: XMLSupport and Roassal. Roassal
is a visualization engine [12], [13] and XMLSupport is a
XML parser, both are written in the Pharo programming
language [14].

Data Collection. We developed a script to collect the source
code and runtime metrics automatically.

• Number of Changed Methods. We use static analysis to
automatically compare two consecutive commits ci and
ci−1. We use the method signature to detect if a method
was added, deleted, or modified. A method is added if it
exists at ci but not at ci−1; a method is deleted if it exists
at ci−1 but not at ci; a method is modified if a method
with the same signature exists in both ci and ci−1 but
their source code is different.

• Execution Time. We used benchmarks produced by the
developers of Roassal and XMLSupport. To measure
steady-state performance we first execute a warm up
session where we run the benchmark twice; then, we run
the benchmarks 25 times while measuring the execution
time. As a result, we get 25 time measurements and
average them to compare the execution times.

• Object Allocations. We use instrumentation to count how
many objects are created during the benchmark execution.
Since the instrumentation may affect the benchmark
execution time, we measure this metric on a separate
run, apart from the execution time measurements.

XMLSupport. Figure 6 renders 13 commit versions in the
XMLSupport main branch. Commits tagged with letters A, B,
and D suffer performance regressions while having a small
number of changes only. Due to the size of the blue bar, we
conclude that the regression is relatively small. Figure 6 also
shows that the commit tagged with C reduces the number
of allocated objects, by 66.5%. The pink bar in this commit
reveals also that a few changes were done.

Roassal. Figure 7 renders commits done in Roassal. Glyphs
tagged with A, B, D, and E show that these commits introduce
a small performance regression in the project. Pink bars give
an overview of how many method changes were done in such
versions. Figure 7 shows two branches. Commits tagged with
A and C merge left branches with the main branch (the one on
the right side). In case of commits that merge two branches,
the execution time and object variations is computed using the
previous version of the main branch. For instance, the glyph at
A shows that the program is slower regarding commit B, and
the glyph at C shows that the execution time of the program
remains similar to commit D. Note that commit D introduces
a performance regression, which remains in commit C.

V. RELATED WORK

A diverse body of research work focuses on helping devel-
opers understand the evolution of source code through the use

A
B

C

D

Newer versions

Older versions

Fig. 6. XMLSupport commit graph visualization. Commits are sorted
chronologically, where the newest commit is at the top, and the oldest one at
the bottom

A
B

C
D
E

Newer versions

Older versions

Fig. 7. Roassal commit graph visualization. Commits are sorted chrono-
logically, where the newest commit is at the top, and the oldest one at the
bottom

��

Authorized licensed use limited to: Universidad de chile. Downloaded on April 01,2021 at 20:19:33 UTC from IEEE Xplore.  Restrictions apply. 

Fig. 3. Visualization proposed by Sandoval [77] to analyze variations between commits. ©2019 Year IEEE. Reprinted, with permission,
from “Enhancing Commit Graphs with Visual Runtime Clues” by Juan Pablo Sandoval Alcocer, 2019.

In total, 26.08% of the selected articles use dense pixel techniques to represent a large amount of data (e.g.,
memory accesses). For example, article S31 [55] proposes a visualization tool shown in Figure 4 to analyze the
behavior of memory allocators in C programs. The main view presents an orthogonal dense pixel layout of
time versus memory addresses, which displays hundreds of thousands of allocation events without wasting
screen space. The rectangular sizes represent the lifetime and size of blocks, and the color displays the allocation
process. This visualization allows developers to analyze memory allocators to optimize their functionality for
reducing fragmentation.

Main visualization

Time axis

Memory axis

Occupancy bar

Block detail view

Context view

Figure 1. Interactive tool for visualizing dynamic memory allocations

memory. Following the x axis, we can see what happens
over a given memory range in time. Following the y axis,
we see a snapshot of the memory at a given moment. Rect-
angle sizes show the lifetime and size of blocks. This layout
is fast and straightforward to compute. We color every rect-
angle to show a data attribute ai

j via a suitable color map-
ping scheme.

time (seconds)

memory (KB)

{zoom in

highly dynamic period

first phase second phase third phase

list
allocations

Figure 2. Visualizing allocations in one bin
Figure 2 illustrates the basic idea for a memory alloca-

tion log dataset containing 119932 allocations spanning a
period of 4 minutes done by 54 concurrent processes. Color
shows the allocating process ID1. This image shows sev-
eral facts: The ”blue” process allocates the most memory.
Since the y axis maps to the address space, the long rectan-
gles at the image bottom show that the ”blue” process allo-
cates memory early and frees it as last. After start, almost
no extra memory is allocated in the first third of the mon-
itored period. Next, the ”green” process rapidly allocates
many equal-sized blocks, all at one moment, and frees them
quickly after, as shown by the thin vertical green stripes.
We discovered that this pattern of same-lifetime blocks is
typical for container objects such as lists. These lists use
about a third of the free memory (y axis), so they are quite
important. The second third of the period shows a high fre-
quency allocation-freeing pattern which almost fills up the
entire memory at some points. In the last third, there are
few allocations. All memory is freed in the end.
Figure 1 shows an actual snapshot of our visualiza-

tion tool. The main view shows the memory dynamics in
the currently selected bin. The view can be zoomed and
scrolled along the vertical (memory) axis, which is useful
when visualizing very large memory spaces (megabytes) or
bins with very small block sizes (few kilobytes). To the
right of the main view, a context view acts like a scrollbar:
The complete memory range is visualized, and the user can
drag a slider (the red frame) to scroll the view to the area
of interest. Under the main view, an occupancy bar is dis-

1We strongly recommend viewing all figures in full color

33

Fig. 4. Visualization proposed by Moreta and Telea [55] to analyze memory allocations behavior. ©2007 Year IEEE. Reprinted, with
permission, from “Visualizing Dynamic Memory Allocations” by Sergio Moreta, 2007.
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• Stacked displays. This category includes visual techniques that show data with a hierarchy structure (e.g.,
treemaps [82], hierarchical stacking). Of the articles, 23.91% employ stacked displays to represent hierarchical
partitioning. To illustrate, Figure 5 shows Vasco, an interactive visualization to explore object churn proposed
in article S21 [26]. Vasco represents the calling relationships between functions by employing a sunburst. Vasco
allows users to detect problematical functions by mapping the color and angle to different metrics (e.g., number
of allocated objects, number of captured objects). As a result, users can explore functions that allocate many
objects that are eventually released and which functions release them. The authors of Vasco demonstrated how
to employ their visualization to find and solve memory churn.

(a) Initial view (b) Refined view (c) Details for all invocations of the
getAllModelURIs method

Figure 5. JAZZ

(a) Initial view (b) Captures view (c) Details for the hasConnectAccess method

(d) Details for the hasConnectAccess method

Figure 6. CDMS

Figure 6c shows the same view with all previously
identified sources of churn removed (by using the “Se-
lect other invocations of this method” option followed
by “Remove selection”). The threshold for the metric
has also been adjusted to show more capturing loca-
tions. In the figure, the mouse pointer is located on
the SecurityServer.hasConnectAccess method,
which captures a large number of temporaries. As the
information panel indicates Figure 6d, this node captures
300 temporaries of 8 different types. Its region captures
an additional 700 temporaries. Interestingly, an inspection
of the immediate sibling of this node in the view re-
veals exactly the same local capture behavior. Selecting
the “Show allocating methods” option for either of these
nodes reveals another clue. The hasConnectAccess
method was invoked 20 times in the trace, and it created 20
SecurityDescriptor structures (one per invocation).

Each security descriptor is created and initialized by dese-
rializing a stream of bytes, resulting in 1000 temporaries
being created in the process.

A manual inspection of the code reveals that each
SecurityDescriptor instance is created for a specific
Id instance. Caching SecurityDescriptors within
their associated Id objects would therefore prevent most
of these temporaries from being repeatedly created. It is
also worth noting that hasConnectAccess is guarded
by a global flag that determines whether security checks are
enabled. During performance testing, it is conceivable that
such checks could be disabled, thus leading to very different
performance characteristics.

V. RELATED WORK

Visualizing execution data. A large body of existing
work proposes visualization techniques to help with program

Fig. 5. Vasco [26], an interactive visualization to explore object churn. ©2012 Year IEEE. Reprinted, with permission, from “Vasco: A
visual approach to explore object churn in framework-intensive applications” by Fleur Duseau, 2012.

• Standard 2D/3D. The articles which describe techniques such as plots of two or three dimensions (x-axis, y-axis,
and z-axis) belong to this category. In total, 23.91% of the selected papers present standard 2D/3D displays (e.g.,
bar charts, pie charts). For instance, article S34 [69] employs standard techniques to analyze cache behavior.
YACO support developer on understanding cache performance by displaying several bar charts and pie charts
to present the statistics on cache hits and misses.

Finally, we found that 39.13% of the selected studies employ more than one visual technique. Consequently, the most
popular combination of visual techniques involves the geometrically-transformed display with iconic display.

Views. All the visualizations display the information in one or more views. Commonly, the use of well-integrated
multiple views facilitates the exploration of distinct aspects of the data. To illustrate the number of views used on the
selected papers, we reviewed the visualization description provided in each one. We found that 47.82% of the studies
describe using a single view to display all the information. Most of these papers enrich their visualizations by combining
two or more visual techniques, as we described previously. We also noticed that 39.13% of the articles report employing
between two to four views. Finally, we detected that 13.04% of the articles adopt more than four views, usually to
display other aspects through visualizations with standard 2D/3D techniques.
Manuscript submitted to ACM
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3.4.2 Interactions. Some visualizations increased their effectiveness by providing interaction options to the users.
Usually, a practitioner has the intention of performing some actions over the graphics to facilitate information analysis.
However, few articles explicitly describe the supported interactions. This information is usually mixed with the
visualization description or a section on usage scenarios. In a number of cases this information was placed in some
footnotes. In order to analyze the interaction options that proposed visualizations support, we resorted to classifying
only articles that explicitly specify the supported interactions. This classification was based on the taxonomy proposed
by Yi and colleagues [107]:

• Select: mark something as interesting. Distinguish visual elements of interest is relevant for dense visualiza-
tions. We found that 60.86% of the visualizations support this interaction. For example, article S2 [102] presents
Memory cities, a visualization to analyze heap evolution using the software city metaphor. In this visualization,
the buildings are colored using a gradient ranging from gray to red. Memory cities allow the user to highlight a
building in blue and thus facilitate its tracking over evolution.

• Explore: show me something else. A user can view a limited amount of graphic elements due to a large
amount of data and the screen space used to display them. Users usually are interested in seeking out something
new bymoving the camera across a scene. This category includes interaction techniques (e.g., panning) that allow
users to explore different sub-collections of data. We observed that 54.34% of the articles provided exploration
techniques. For instance, article S2 [102] allows moving the camera to view the visualization from above, with
a perspective as though the observer were a bird for facilitating inspection of visual elements.

• Reconfigure: show me a different arrangement. The arrangement of elements on the screen helps analyze
data. We noticed that 17.39% of the visualizations support this task, like article S7 [9] presents a node-link
diagram that allows users to modify the layout by dragging nodes.

• Encode: show me a different representation. This category involves the interactions that enable a user
to modify the visual representation. We found that 10.86% of the visualizations support metric selection like
article S21 [26] presents Vasco that provides a menu bar to change the metrics for color or size of arcs.

• Abstract/Elaborate: show me more or less detail. To examine the details of an element of interest is a
primary task. Therefore, this category includes details-on-demand interactions. According to Yi and colleagues,
the interactions in this category allows developers to adjust the level of abstraction of a data representation. This
category is the most frequent in visualizations (60.86%). Usually, the visualizations provide pop-up windows or
provide panels with detailed information.

• Filter: show me something conditionally. Filtering according to criteria allows users to focus on specific
elements quickly. We detected that 32.60% of visualizations enable users to hide elements that do not satisfy a
condition. For example, article S7 [9] presents a menu for excluding methods based on the type of objects that
they allocate.

• Connect: show me related items. Users focusing on an element of interest will typically explore its rela-
tionships with other elements. We found that 21.74% of the visualizations provide interactions to support the
navigation through the related elements. For instance, article S7 [9] facilitate this task by highlighting the edges
and nodes related to a selected node.

Additionally, we found that 28.26% of the articles do not explicitly describe the interaction mechanisms provided or
specify the intentions of users when they interact with visualizations. We also noticed that the visualization mantra
“Overview first, zoom and filter, then details on demand” [83] is not always considered by the proposed visualizations.
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3.4.3 Medium. Advanced technology provides users different ways to interact with 3D or 2D visualizations. Maletic and
colleagues [46] explained that mediums (e.g., single monitor, wall displays, immersive virtual reality environments) might
improve visual representations since they present distinct characteristics. Although monitoring resource consumption
may involve some dedicated devices [52], most of the selected visualizations are rendered on a standard monitor of a
desktop computer or laptop. Some articles do not explicitly provide the medium, but we inferred that visualizations
are rendered on a standard computer screen. As a result, we found that no study exploited the medium to enhance
visualizations dedicated to supporting memory consumption analysis tasks.

3.5 RQ4: Evaluation

This section describes the distinct evaluation strategies to validate the effectiveness of the selected software visualizations.
We classify the selected studies in three categories based on the work of Merino et al. [50]: theoretical, empirical and no
explicit evaluation. Table 13 illustrates the distribution of articles based on the strategies used to evaluate visualizations.

Table 13. Classification of articles based on the strategies used to evaluate visualizations

Categories Strategy References Total

Empirical Usage scenario S2, S4-S6, S8-S13, S15, S17, S19-S23, S25-S27, S29-S31, S35, S38, S41 26
Anecdotal evidence S14, S19, S24, S28, S43 5
Experiment S1, S3, S7 3

No explicit
evaluation

S16, S18, S32-S34, S36-S37, S39-S40, S42, S44-S46 13

We found that 28.26% of the articles do not provide an evaluation, while the remaining present an empirical evaluation.
These empirical evaluations are divided into subcategories described below.

• Usage scenario. Of the selected studies, 56.52% only provide application examples. These usage scenarios
provide an extended description of how to address memory issues or analyze memory usage with the proposed
software visualization. The authors highlight the interactions and the advantages of their visualizations by
analyzing popular benchmarks likeDaCapo suite [8],DB suite, Reptile [100],GCOld [66], Paraffins, or open-source
projects. Half of the papers in this category presented usage scenarios as case studies. Nonetheless, they do not
explicitly describe that professional developers in the industry context with real-world applications employ the
visualization. Most of the authors usually give an extended description to demonstrate the effectiveness of their
visualization in different cases. However, this description is limited to providing the article authors’ experience
in using their tool, bearing the risk of biased conclusions according to different articles [106, 109].

• Anecdotal evidence. We found that four articles present a short section, usually with the title “industrial
experience”, where they informally describe the use of the visualization on software companies with professional
engineers. In this way, they claim the effectiveness of the visualization, but they do not present data of formal
interviews or questionaries. For example, article S24 [73] collects information from an informal interview to
four programmers with the think-aloud method. The goal of this interview is to collect information about how
developers employ Allocray to detect memory leaks. This research summarizes the usability observations and
the feedback of the participants during the interview.
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• Experiment. Three articles present experiments with participants over software applications. For instance,
paper S7 [9] carries out a user study to evaluate their visualization. The authors explain with details the
interviews with eight participants, who use the tool to achieve some tasks. This study describes the results and
observations during the work sessions and gathered feedback from the participants.

Finally, none of the selected articles evaluate their visualizations with professional developers and real-world software
applications in the context of the software industry. As we mentioned in the category of use scenarios, 28.26% of the
articles present sections titled “Case studies”, however the users involved in the evaluation are the authors of the articles.
According to Merino and colleagues [50], a study that provides an evaluation with authors instead of independent
developers, is considered a “Usage Scenario”.

3.6 RQ5: Availability

This section lists the selected software visualizations that are available. Most of the software visualizations support a
group of people to address a problem of a particular context, this group of people is commonly called audience [46].
Having an available tool benefits the target audience to perform software engineering tasks over real-world applications.
Also, researchers can conduct how their approach works compared with other visualization proposals by using controlled
experiments.

We extracted from the selected articles the tool’s name and the links from which the visualization tool is available.
However, only 21.73% of the articles provide an existing link, and 6.52% of the articles present a non-existing link.
Additionally, we performed web searches based on the article’s title, the authors, and the tool’s name to find visualization
tools available for the remaining articles. As a result, we identified links to visualization tools for 23.91% of the articles
due to web search. Table 14 details the information of available software visualizations tools. Table 14 presents the
tool’s name, where the link was found (article content or web search), the link, and extra information presented aside
from the article to install and use the software visualization.

Extra information. We focused on the variety of information that could be available to enrich the experience and
facilitate the use of the visualization. Therefore, we detected the presence of the following information:

• Video. Some links provide a video explaining features of the visualization. In this case, five links present a video
showing the use of the visualization as supplemental material.

• Sample data. Some conferences promote the release of datasets to gain public data and the possibility of
replicability. Six links provide a list of sample data, which reference the data collected from the applications
used in the article as examples.

4 DISCUSSION AND OPEN CHALLENGES

The results described previously provide a general overview of the state-of-art software visualizations centered on
the analysis of memory consumption. We have described distinct features and categorized the selected software
visualizations to answer our research questions. In this section, we discuss some findings and open challenges for
our proposed dimensions. Also, we provide recommendations to practitioners and researchers based on our research
questions.

Problem domain. Software visualizations presented in this study attempt to facilitate the analysis and solution of
several memory issues (e.g.,memory bloat or fragmentation). The design of these visualizations is based on assumptions
of developers’ needs about the memory issue to be addressed. However, to the best of our knowledge, developer
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Table 14. Visualization tools and additional information from the selected articles. Verified on 18/05/2021

ID Ref. Tool Location Link Video Sample Data

S1 [101] AntTracks Article http://mevss.jku.at/?page_id=1592
S2 [102] Memory

Cities
Article https://doi.org/10.5281/zenodo.3991785 ✓ ✓

S3 [35] PVC Article https://github.com/RYOSKATE/
PlayVisualizerC.js

✓

S6 [11] Memoro Article https://github.com/epfl-vlsc/memoro
S7 [9] – Article http://dx.doi.org/10.5281/zenodo.1311787 ✓
S8 [93] NumaMMA Article https://github.com/numamma/numamma ✓
S9 [30] MemAxes Web search https://github.com/LLNL/MemAxes ✓
S13 [24] Aftermath Web search https://www.aftermath-tracing.com/

installation/
✓

S14 [34] Memory
blueprint

Web search http://smalltalkhub.com/ainfante/
MemoryProfiler/

S15 [6] Tabarnac Article https://github.com/dbeniamine/Tabarnac
S19 [48] HeapDbg Article http://heapdbg.codeplex.com
S21 [26] Vasco Web search http://geodes.iro.umontreal.ca/en/projects/

vasco/
✓

S26 [1] Heapviz Web search https://github.com/eaftan/heapviz
S28 [71] Dyvise Article ftp://ftp.cs.brown.edu/u/spr/dyvise.tar.gz
S31 [55] – Web search http://www.staff.science.uu.nl/~telea001/

uploads/Software/MemoView/
S33 [72] Jove Web search http://cs.brown.edu/~spr/research/visjove.

html
✓

S36 [70] Jive Web search http://cs.brown.edu/~spr/research/vizjive.
html

✓

S37 [68] GCspy Web search https://www.cs.kent.ac.uk/projects/gc/gcspy/
S39 [111] Memory

graphs
Article http://www.st.cs.uni-sb.de/memgraphs/ ✓

S41 [108] – Web search http://www.cs.toronto.edu/~yijun/cacheviz.
guide.html

S45 [110] DDD Web search https://www.gnu.org/software/ddd/

design requirements or needs for each particular memory issue has not been fully researched yet. In the past, several
studies have analyzed what developers asked during software development [44, 84], revealing a number of needs to
be addressed. However, no study provides detailed questions related to memory consumption analysis. Having solid
knowledge about developers’ needs while addressing these issues may help improve the design and effectiveness of the
proposed visualization tools.

Section 3.2 details the classification of articles based on the provided tasks to support programmers over the analysis
of memory usage. According to our findings, various visualizations help developers with memory consumption analysis
by focusing on different aspects. More than half of the visualizations in General and Data structure are available.
However, few visualizations are available to assist developers in analyzing applications with specific architectures, and
one visualization is available for analyzing cache behavior. The unique visualization to analyze memory regression is not
available. We also detected that at least two visualizations are available to detect each type of memory issue. However,
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the number of visualizations available is reduced. Domain-specific memory analysis, memory issue identification, and
memory regression analysis are not fully explored yet, leaving an open opportunity.

Data. Section 3.3 describes the aspects of the software involved in the analysis of memory consumption. According to
our findings, a set of articles develop a strategy to gather information, while others use dedicated tools, and the data
extracted by these tools are from different projects. The variety of analyzed projects, tools, and data collection strategies
makes it difficult to compare proposed visualizations. However, creating a baseline of project set (i.e., projects with
particular memory issues) and collection strategies may offer developers and future researchers a guide to successfully
gathering specific data and baselines to contrast their tools with state of the art.

Regarding the aspects extracted, we found that most visualizations dismiss mapping the information from program
execution with information from source code, like lines of code or classes. Consequently, developers may deal with
problems detecting which part of the code is causing or participating in a memory issue. Relating memory metrics with
source code is still an open area for further research.

Visual representation. Section 3.4 details the visual techniques used, the interaction options supported, and the
medium where the visualization is displayed. We found specific trends in visualizations when using some visual
techniques depending on the domain of the problem. For example, most visualizations that assist developers with data
structure analysis employ geometrically transformed techniques. However, there is no evidence of the advantages of
using a particular visual representation for a single problem domain. In addition, we found that most of the articles
present multiple views to display the information. In the same way, we do not observe if using a single view presents
better, similar, or worse results than using multiple views.

Finally, we detected that most of the studies employ a single monitor screen to render the visualization. We encourage
researchers to analyze the impact of the medium on the effectiveness of visualizations centered on support memory
consumption analysis by employing different mediums to render the visualization, like wall-display, multi-touch tables,
or a 3D immersive environment.

Evaluation. Section 3.5 summarizes the evaluation strategies used by the selected articles. We found that most articles
lack robust empirical evaluation that involves software developers. For instance, we detected that only three articles
present evaluations with users of the target audience and expose the comments and observations during the work
sessions. We also observed usage scenarios presented as case studies, which detail the author’s experience in employing
the proposed visualization to analyze memory consumption.

Conducting experiments could be difficult because the nature of the problem domain may require expert developers
with a high level of knowledge regarding memory management. Besides, designing and conducting robust experiments
is an aspect that memory visualization articles need to improve.

Availability. Actually, only 21.73% of the articles present a valid link where the software visualization tool is available.
We detected three articles published between 2002 and 1997 that provide no valid links. Additionally, we found links
with software visualization tools for 23.91% of the articles by performing a search on the web that could be tedious, as
we explain in Section 3.6. We must highlight that we did not try to install the tool nor verify whether it works. However,
we enlisted the additional information (videos that show how to use it correctly or a data sample) that the link presents
to support users with the visualization tool.

Unfortunately, around 54.36% of the visualization tools are not available. As a consequence, developers may fail to
adopt visualizations to perform tasks related to memory consumption analysis.
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5 THREATS OF VALIDITY

Search of articles. A threat to the validity of this study may be not cover all the relevant articles. We performed a sys-
tematic search to find articles that propose visualization centered on supporting developers with memory consumption
analysis. We developed our search query based on keywords from articles that belong to our scope published between
2017 and 2020 in the most cited venues dedicated to software visualization or memory management. However, our
search query is biased by the specific keywords of this set of articles. We decided to decrease this threat by performing
an additional manual search and bi-directional snowballing. These two phases assisted in our finding of missing relevant
studies.

Selection of articles. A relevant article may be excluded during the selection phase and vice versa. We defined
inclusion/exclusion criteria and a quality assessment to reduce bias in selecting articles. During the selection of
inclusion/exclusion criteria, the three authors independently review the title and the abstract to consider if an article
should be included or not. We calculated the kappa of Fleiss for the inter-rater reliability, and the result was 0,72%, which
is generally considered a good agreement. The disagreements were discussed and resolved during meetings among the
authors. For the quality assessment, we adopted a checklist to examine the quality of papers. The discrepancies found
were reviewed again in a second iteration, and discussion sessions were carried out to reach a consensus.

Data extraction. Another threat to consider is that the data extraction process could be biased. We mitigated this
threat by establishing a protocol to extract the data for each paper. An author managed a spreadsheet to keep records of
relevant text segments and identify irregularities like missing information. The other two authors of this study review
if the data extracted was correct.

Data analysis. During the data analysis, we performed thematic analysis and content analysis to answer our research
questions. One author performed a systematic process to conduct a thematic analysis for RQ1 and RQ2. This process
includes generating codes and defining themes (patterns) that help answer the research questions. The codes and
themes generated vary depending on the coder’s experience, point of view, and level of abstraction. For example, to
respond to RQ1, we detected visualizations focused on analyzing specific points. However, some articles were too
general at determining their objectives, so we decided to consider these articles as a general-purpose group since no
specific pattern was found. We tried to reduce this threat by checking the consistency of the process. Due to this, the
other two authors examined the description of themes and the data coding. We carried out three discussion meetings to
analyze the codes and the themes generated. As a result, we solve the differences among the three authors.

To answer RQ3.1, RQ3.2, and RQ4, we conducted a content analysis. We selected classification schemes proposed in
previous studies. We code the data based on these schemes and measure the agreement between the three authors. We
detected some specific discrepancies that were discussed and solved during a meeting.

6 RELATEDWORK

To the best of our knowledge, this work is the first literature review of software visualizations focused on supporting
the user to comprehend memory consumption. Nevertheless, relevant work was published in the software visualization
field covering different aspects over the years [64, 65, 74].

Scope. Focus on software visualizations over a general context: these surveys [4, 64, 65, 74, 92], systematic literature
reviews [40, 49, 51, 57, 91, 97], taxonomies or classifications [23, 46] generate findings of how visualizations support users
on software engineering tasks. In addition, a number of studies cover visualizations supporting specific aspects of the
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software engineering field. For example, there are literature reviews [39, 81, 103] that focus on software visualizations to
support the analysis software architecture design. These studies analyze how software architecture is visually represented
to examine the design based on features like complexity, cohesion, etc. Another popular domain is software evolution.
For this domain, Novais et al. [60] and Salameh et al. [76] published systematic studies centered on visualizations to
display how certain software elements (e.g., source code, dependencies) change over time.

In addition, several studies [2, 32, 36] focus on the use of software visualization in educational programming. These
studies examine the benefits of using visualizations to improve and facilitate the learning process of students. The
studies take into account the effectiveness of software visualization to engage students in the field of education. Our
study detected six articles that propose software visualizations to help students or novice developers analyze memory
consumption.

Furthermore, Bedu et al. [5] presented a tertiary systematic literature review on software visualization. This article
identifies topic (e.g., architecture, education) trends of surveys focused on software visualizations and issues related to
software visualizations (e.g., scalability, validation).

Dimensions. Furthermore, most of the surveys and systematic literature reviews [46, 49, 51, 64, 65, 74] cover the tasks
that are supported, the gathered information, and the visual techniques used to display the information. The main
variation is the scope of our survey, and consequently, the tasks supported and the collected information are more
specific than in prior works. For example, we discussed that our visualizations under study help developers analyze the
program behavior and support debugging tasks following the classification scheme of prior work. However, our findings
show various focus points (e.g., data structures, cache behavior) to analyze and different memory issues (e.g., memory
leak, memory bloat) to address. We also provided which data (e.g., threads, time) and which information sources (e.g.,
program execution, source code) are collected, similar to the study of Merino et al. [51]. However, we considered how
the extracted data from different sources is related to help developers with memory consumption analysis.

Furthermore, a minor number of the studies mentioned in this section cover the evaluation and availability dimension.
However, there are systematic reviews that focus explicitly on how software visualizations are evaluated. The cases by
Merino et al. [50], Sensalire et al. [79], and Seriai et al. [80] examine the different evaluation strategies to validate certain
features of a software visualization study (e.g., effectiveness, usability). These studies provide guidelines to produce
enough evidence to evaluate software visualizations and describe some challenges in the field. They also explain the
weak empirical evidence among software visualizations and detail the inconsistencies in the studies. Our findings
expose that 73.91% of the articles present empirical evaluations, mostly usage scenarios. However, the number of studies
that describe experiments and case studies is minor. Our results confirm that few articles evaluate visualizations with
developers and real-world applications as prior work details.

We noticed that few studies [14, 51] examine the availability of software visualizations. However, our study does not
limit publications’ data and focuses on visualizations that support memory consumption. Consequently, we provide
links to visualization tools not considered by the prior work.

Methodology. As mentioned, most of the relevant prior work focuses on reviewing the state-of-art in the software
visualization field. These studies also follow the steps proposed on distinct guidelines for systematic reviews [42, 63],
however they present differences with our work in some steps. For example, the construction of the search string could
be less complex due to the scope of the studies. Therefore, the number of articles resulting from searching over digital
databases and the number of selected papers tends to be higher than ours.
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7 CONCLUSION

Our study summarizes the software visualizations to support users with the analysis and improvement of memory
consumption. Consequently, we present the supported tasks, data extracted, visual techniques employed, interactions
supported, the medium used, evaluations conducted, and a list of visualization tools available.

According to the previous sections, most studies support data structure analysis and memory analysis over ap-
plications with specific architectures (e.g., high-performance computing). We detected that visualizations also help
developers detect memory issues (e.g., memory bloat, memory leak).

Regarding the data extracted, several articles propose a strategy to gather information or use dedicated tools,
such as Pin [45], Jinsight [20], DynamoRIO 6, etc. Furthermore, most visualizations dismiss mapping the information
from program execution with information from source code, like lines of code or classes. We consider that collecting
information from both sources reduces the effort of practitioners to analyze memory consumption.

Additionally, most authors employ more than one visual technique for the software visualizations. We also detected
that geometrically transformed display is the most frequent technique because articles propose node-link diagrams to
represent relationships between elements. Also, most of the papers use a standard monitor to display the visualization.
We consider that visualizations could be implemented to use other mediums such as tactile devices or 3D environments.

Regarding the evaluations conducted, most of the articles present usage scenarios that highlight the visualization
features to support users’ understanding of memory consumption. Furthermore, most of the applications used in this
study are popular benchmarks like DaCapo suite [8], DB suite, Reptile [100], GCOld [66], Paraffins, or open-source
projects. However, only three papers conducted experiments to evaluate the visualization with users. Finally, we
detected few visualizations available, and as a consequence, we consider the lack of availability is one of the main weak
points in the field.
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A SEARCH STRING FOR DIGITAL LIBRARIES

Table 15 shows the search queries used for the three digital libraries.

Table 15. Search query for the three digital libraries

Digital library Search query

ACM Abstract: ((software OR program OR application) AND (visualize OR visualization OR visual-
isation OR visualizations OR visualisations OR visuals OR visual) AND ("memory heap" OR
"memory allocation" OR "memory consume" OR "memory consumption" OR "memory usage" OR
"memory management" OR "memory issues" OR "memory issue" "memory bloats" OR "memory
leaks" OR "memory access" OR "memory address"))

IEEE Xplore ("Abstract": "software" OR "Abstract": "program" OR "Abstract": "application") AND ("Abstract":
"visualize" OR "Abstract": "visualization" OR "Abstract": "visualisation" OR "Abstract": "visual-
izations" OR "Abstract": "visualisations" OR "Abstract": "visuals" OR "Abstract": "visual") AND
("Abstract": "memory heap" OR "Abstract": "memory allocation" OR "Abstract": "memory con-
sume" OR "Abstract": "memory consumption" OR "Abstract": "memory usage" OR "Abstract":
"memory management" OR "Abstract": "memory issues" OR "Abstract": "memory bloats" OR
"Abstract": "memory leaks" OR "Abstract": "memory access" OR "Abstract": "memory address")

Scopus ABS ( ( software OR program OR application ) AND ( visualize OR visualization OR visualisation
OR visualizations OR visualisations OR visuals OR visual ) AND ( "memory heap" OR "memory
allocation" OR "memory consume" OR "memory consumption" OR "memory usage" OR "memory
management" OR "memory issues" OR "memory issue" OR "memory bloats" OR "memory leaks"
OR "memory access" OR "memory address" ) ) AND ( LIMIT-TO ( SUBJAREA , "COMP" ) ) AND (
LIMIT-TO ( DOCTYPE , "cp" ) OR LIMIT-TO ( DOCTYPE , "ar" ) ) AND ( LIMIT-TO ( LANGUAGE
, "English" ) )
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