
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Software Visualizations to Analyze Memory Consumption: A Literature Review

ALISON FERNANDEZ BLANCO, ISCLab, Department of Computer Science (DCC), University of Chile, Chile

ALEXANDRE BERGEL, ISCLab, Department of Computer Science (DCC), University of Chile, Chile

JUAN PABLO SANDOVAL ALCOCER, Department of Computer Science, School of Engineering, Pontificia

Universidad Católica de Chile, Santiago, Chile

Understanding and optimizing memory usage of software applications is a difficult task, usually involving the analysis of large amounts
of memory-related complex data. Over the years, numerous software visualizations have been proposed to help developers analyze the
memory usage information of their programs.

This paper reports a systematic literature review of published works centered on software visualizations for analyzing the memory
consumption of programs. We have systematically selected 46 articles and categorized them based on the tasks supported, data
collected, visualization techniques, evaluations conducted, and prototype availability. As a result, we introduce a taxonomy based
on these five dimensions to identify the main challenges of visualizing memory consumption and opportunities for improvement.
Despite the effort to evaluate visualizations, we also find that most articles lack evidence regarding how these visualizations perform
in practice. We also highlight that few articles are available for developers willing to adopt a visualization for memory consumption
analysis. Additionally, we describe a number of research areas that are worth exploring.

CCS Concepts: •Human-centered computing→ Empirical studies in visualization;Visualization systems and tools;Visualization
techniques; Empirical studies in visualization; • General and reference → Surveys and overviews; Performance.

Additional Key Words and Phrases: systematic literature review, software visualization, memory consumption

ACM Reference Format:
Alison Fernandez Blanco, Alexandre Bergel, and Juan Pablo Sandoval Alcocer. 2021. Software Visualizations to Analyze Memory
Consumption: A Literature Review. 1, 1 (September 2021), 33 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Software development often involves deep and intricate technical aspects. Execution time and memory consumption
are two primary resources to consider in software engineering [86, 88]. Keeping the amount of memory consumed by a
software system under control is an example of such a programming challenge.

Understanding software execution.Manually understanding and addressing memory issues is challenging since it
usually involves analyzing several metrics at once and requires a thorough analysis of the respective code [9, 13]. To
assist developers in this activity, software development environments provide tools to monitor and report resource
usage during software execution. An example of such tools is the execution profiler, designed to report information

Authors’ addresses: Alison Fernandez Blanco, ISCLab, Department of Computer Science (DCC), University of Chile, Chile; Alexandre Bergel, ISCLab,
Department of Computer Science (DCC), University of Chile, Chile; Juan Pablo Sandoval Alcocer, Department of Computer Science, School of Engineering,
Pontificia Universidad Católica de Chile, Santiago, Chile.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Alison Fernandez Blanco, Alexandre Bergel, and Juan Pablo Sandoval Alcocer

about the behavior exhibited of a target program during its execution. Profilers help developers evaluate how well
programs perform based on a set of dynamic aspects, including memory consumption, garbage collections, execution
time, and frequency of function calls [3, 7, 47]. These metrics are usually displayed through full-text reports or textual
tables, affecting the process and leading to actionable conclusions.

Visualizing memory consumption. Over the years, the research community of software visualization has proposed a
variety of visualizations to support software comprehension [25, 43]. It has also been shown that interactive visualization
reinforces the cognition that facilitates human interaction to explore and understand data [94]. Due to this, software
visualizations enriched with interaction mechanisms become a powerful alternative for displaying profiler reports to
support developers in understanding and addressing memory-related issues. Each one of these visualizations provides a
wide spectrum of metrics (e.g., number of created objects [34, 62], memory access [31]), and data representations (e.g.,
call graphs [34, 98] and call context trees [9]).

This paper presents a systematic literature review of software visualizations to analyze memory consumption. We
initially used keyword searches against three popular scientific databases and complemented it with a bi-directional
snowballing and a manual search of relevant venues. As a result, we found 420 articles published without counting
duplicates. From these, we selected 46 articles based on inclusion/exclusion criteria and quality assessment. In this way,
we included only the studies centered on visualizations to analyze the memory consumption of a software program. As
a consequence, we excluded articles that only focus on memory issues without visualization, articles that analyze the
memory used by the visualization per se, and articles that focus on other performance metrics excluding memory usage.
In summary, our systematic review focuses on published works centered on visualizations that assist practitioners in
examining memory usage to identify optimizations opportunities.

Section 2 presents the methodology we followed in this study. Section 3 displays the main findings by answering
the questions defined in Section 2.1. Section 4 provides the open challenges for the new visualizations centered on
analyzing memory usage. Section 6 discusses the state-of-art. Section 5 discusses the threats to validity of this study,
and Section 7 exposes the future work and the conclusions.

2 METHODOLOGY

Overview. This literature review follows a systematic and rigorous methodology to identify and categorize literature
related to memory consumption visualization. We use a seven high-level steps methodology inspired by well-recognized
software engineering guidelines for systematic reviews [41, 42]. Our steps are:

(1) Define Research Questions
(2) Develop a Search strategy
(3) Define Inclusion and Exclusion Criteria
(4) Screen and Select Studies for Inclusion
(5) Quality Assessment
(6) Data Extraction
(7) Analysis

We describe each one of these steps in the following sections.

Manuscript submitted to ACM

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Software Visualizations to Analyze Memory Consumption: A Literature Review 3

2.1 ResearchQuestions

The purpose of this literature review is to inspect, analyze, and discuss the state-of-art regarding software visualizations
focused on helping developers to understand memory consumption. In particular, we are interested in addressing the
research questions described in Table 1. We believe that answering these research questions (RQ) will assist future
researchers in creating new visualizations focused on supporting developers during memory consumption analysis.

Table 1. ResearchQuestions

Research Question Dimension & Rationale

RQ1: Which tasks are supported by the software
visualizations to help users with the analysis of
memory consumption?

Problem Domain: Identify the tasks that software visualization tar-
gets to facilitate during the memory consumption analysis. For
instance, identify bottlenecks or detect memory leaks.

RQ2:What aspects of the software are abstracted
by the software visualizations to help users with
the analysis of memory consumption?

Data: Software visualizations display large amounts of data (e.g.,
memory allocations, memory accesses) extracted from the execution
or code of software applications. This information allows developers
to understand the memory consumption of a program.

RQ3: Which software visualizations have been
proposed to help users with the analysis of mem-
ory consumption?

Visual Representation: The use of different visual techniques to ab-
stract complex and related data is an important topic. The way on
which visual elements are rendered and presented to the user is
also relevant because it may impact how the user interacts and
perceives the visualization. In particular, we are interested in re-
viewing: RQ3.1: Which visual techniques are used?, RQ3.2: Which
interaction tasks are supported?, and RQ3.3: Where are the visual
elements rendered?

RQ4: How are software visualizations to help
users with the analysis of memory consumption
evaluated?

Evaluation: Analyzing how software visualization is evaluated pro-
vides (i) an overview of the proposed visualization’s effectiveness
and usefulness and (ii) a better understanding of conducted evalua-
tion strategies.

RQ5: What software visualization tools or proto-
types are available to help users with the analysis
of memory consumption?

Availability: The availability of a prototype or tool is an opportu-
nity (i) for practitioners to benefit from the approach and (ii) for
researchers to replicate the results or complementing the associated
research articles.

Dimensions. Our research questions focus on five dimensions: problem domain, data, visual representation, evaluation,
and artifact. The research questions and their dimensions were inspired by six surveys [46, 49, 51, 64, 65, 74]. These
studies present a number of relevant dimensions to give an enriched overview of software visualizations. Table 2
shows the six surveys mentioned previously with their respective dimensions and how they are related to our research
questions.

RQ1 centers on software engineering tasks supported by the visualization. RQ1 was inspired by three previous
studies: Price et al. [64, 65] provide taxonomies with a minor summary about the intention of the visualizations on their
Purpose dimension. Maletic et al. [49], and Merino et al. [51] consider general tasks of software engineering like reverse

Manuscript submitted to ACM

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Alison Fernandez Blanco, Alexandre Bergel, and Juan Pablo Sandoval Alcocer

Table 2. An overview to the relations between our dimensions and the dimensions proposed by some works of the state-of-art.

Survey RQ1 RQ2 RQ3 RQ4 RQ5

Price et al. [64, 65] Purpose Scope and
content

Form, method, interaction and
effectiveness

Empirical
evaluation

-

Roman et al. [74] - Scope and
abstraction

Specification, method,
interface and presentation

- -

Maletic et al. [46] Task Target Representation and medium - -

Merino et al. [51] Task Data source Representation and medium - Tool

engineering, maintenance, and testing. Compared to these works, our Problem Domain dimension focuses on detailed
software engineering tasks related to memory usage.

In the case of RQ2 and RQ3, the surveys mentioned previously present detailed information for these dimensions,
providing an analysis of the collected data and how this data is abstracted visually to the user. In this literature review,
our Data dimension describes the metrics considered for the analysis of memory usage, and the Visual Representation
dimension reports the visual encodings, interactions, and medium used by the approaches.

Our study also includes two dimensions: RQ4 and RQ5 corresponding to evaluation and availability. RQ4 was only
covered by Price et al. [64, 65], and RQ5 by Merino et al. [51]. We include both dimensions since they are relevant in
the research community to understand how the visualizations were evaluated and if they may be replicable.

2.2 Search Strategy

Initial manual search. According to the Systematic Literature Review guidelines [42, 106], before performing an
automatic search phrase and defining an inclusion/exclusion criteria, it is necessary to search for an initial set of relevant
articles. To do this, we manually reviewed the articles published between 2017 and 2020 in the following scientific
venues:

• IEEE International Working Conference on Software Visualization (VISSOFT)

• International Symposium on Memory Management (ISMM)

We selected these conferences because the articles dedicated to software visualization and memory management
present a sound corpus for our study. Besides, these conferences are classified respectively in the good (B) and excellent
(A) category according to CORE rankings1, which determines conference rankings based on a mix of indicators (e.g.,
citation rates, paper submission, acceptance rates). The result of our initial manual search ends up with five articles
[9, 11, 31, 77, 102]. We used these papers as a base to define our search strategy by extracting search terms derived from
the research questions.

Search phrase development. We extracted the search terms that fit our scope of the title, abstract, and keywords
from the articles found at the initial manual search. Furthermore, we expanded these search terms with synonyms and
alternatives as shown on Table 3.

To find potential articles considered for our study, we combined these terms into a query as it follows:

1https://www.core.edu.au/conference-portal

Manuscript submitted to ACM

https://www.core.edu.au/conference-portal

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Software Visualizations to Analyze Memory Consumption: A Literature Review 5

Table 3. Search terms and alternatives of spelling

Term Alternatives

Memory* memory heap, memory allocation, memory consume, memory consumption, memory usage, memory
management, memory issues, memory issue, memory bloats, memory leaks, memory access, memory
address

Visual* visualize, visualization, visualisation, visual, visuals, visualizations, visualisations

Software* software, program, application

Memory* AND Visual* AND Software*

The previous query represents the condition that an article should meet to be considered in our study. We executed
the query against the abstract. We did not limit the search based on publication date to find the most significant number
of relevant articles for our study. We performed the search over three digital libraries:

• ACM Digital Library

• IEEE Xplore

• Scopus

As a result, we found 533 papers that meet these criteria, including our initial set of five papers. The latter gives a
level of certainty that we could find any article that proposes a visualization to assist developers with memory usage
analysis. However, we may have a number of false positives that we detected in the following steps. Additionally,
appendix A presents the search strings used for each digital library mentioned before.

Additional manual paper selection. In the previous phase, we found articles that contain the keywords used in the
query search. As a result, we located articles that may be useful and representative. However, we may have missed some
relevant articles. For instance, articles that use more particular memory-related keywords (e.g., cache, fragmentation)
may or may not be considered by our query. Therefore, in order to not miss any related paper, we also performed a
manual search on the last ten editions (2010-2020) from the following venues:

• IEEE International Working Conference on Software Visualization (VISSOFT), the continue of IEEE International

Workshop on Visualizing Software for Understanding and Analysis (VISSOFT) and ACM Symposia on Software

Visualization (SOFTVIS)

• International Symposium on Memory Management (ISMM)

We selected these conferences because we noticed that most of the articles resulting from our automatic phrase search
were published in them. We also reviewed only articles published in the last ten issues due to our time and human
resources. In total, around 305 articles were published in these venues over the last ten editions. We manually reviewed
each article based on its title and abstract. Consequently, we found ten articles that fall within the scope of this literature
review. However, seven articles were found in the earlier phases. Therefore, we identified three additional articles
during this phase.

Bi-directional snowballing.We performed a backward and forward snowballing over the ten articles found in the
previous phase to complete our search. The snowballing procedure consists of identifying additional studies using the
system of references between articles [105]. For this reason, we checked the references in each article, and we reviewed

Manuscript submitted to ACM

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Alison Fernandez Blanco, Alexandre Bergel, and Juan Pablo Sandoval Alcocer

the list of articles that reference any article of our selection. Thus, we could add relevant research published after or
before the publication date of our selection set by performing several iterations until non-relevant papers are referenced.
We then selected Google Scholar to perform the forward snowballing due to the facilities provided to select the papers
that cite a specific one. On the other hand, the backward snowballing was performed manually. Consequently, over two
iterations, we found 56 additional articles that could be considered in this study, collecting a total of 420 papers without
counting duplicated articles.

2.3 Inclusion & Exclusion Criteria

We elaborated inclusion and exclusion criteria based on the scope of this study. Table 4 details the inclusion and exclusion
criteria. In particular, we are interested in papers that use visualization techniques to help developers understand and
address memory issues.

Table 4. Inclusion and Exclusion Criteria

Inclusion Criteria

• I1: Papers published in a peer reviewed journal, conference or workshop
on data visualization, computer science, or computer engineering.

• I2: Papers written in English.

Exclusion Criteria

• E1: Papers that focus on other performance metrics (e.g., execution
time).

• E2: Papers that only study memory issues or visualization issues.
• E3: Posters, keynotes, challenges and previous papers that only intro-

duce the idea of most recent full papers (e.g., short papers).

The three authors of this study performed a revision of 420 articles based on inclusion/exclusion criteria. The three
authors independently read and analyzed the title, abstract, keywords, and venue to decide if an article is excluded or
not. However, if an author did not have enough information to decide, the author should read the introduction and
conclusions of the article. Next, each author responds independently if an article should be included or not using a
spreadsheet that lists the 420 articles.

Then, we examined the spreadsheet responses to calculate the kappa of Fleiss for the inter-rater reliability [28]. As a
result, we got 0.72 for the Kappa Fleiss analysis, which is generally considered a good agreement beyond chance [29].
We also identified 38 articles on which we have discrepancies in the spreadsheet responses. Most of these differences
were related to E1 and E2 criteria. For instance, some articles focus on using a software visualization to understand the
trace execution of programs, but not explicitly center on memory consumption. On the other hand, other articles are
dedicated to analyzing memory problems, but not primarily with software visualizations.

To resolve all conflicts, the three authors conducted a second review of the 38 articles, analyzing the full content
of each article. The authors then had a discussion session to develop an agreement based on the responses from the
second review. As a result, a total of 49 articles are candidates to be included in our study.
Manuscript submitted to ACM

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Software Visualizations to Analyze Memory Consumption: A Literature Review 7

2.4 Quality Assessment

This phase involves the selection of the papers based on their quality [42, 63]. To exclude the articles with insufficient
information to contribute to this study, we examine the theoretical contribution, and the experimental evaluation with
the checklist used in software engineering surveys [61, 95] detailed in Table 5.

Table 5. Quality assessment adopted from [95]

Questions

Theorical contribution

1 Is at least one of the research questions addressed?
2 Was the study designed to address some of the research questions?
3 Is a problem description for the research explicitly provided?
4 Is the problem description for the research supported by references to other work?
5 Are the contributions of the research clearly described?
6 Are the assumptions, if any, clearly stated?
7 Is there sufficient evidence to support the claims of the research?

Experimental evaluation

8 Is the research design, or the way the research was organized, clearly described?
9 Is a prototype, simulation or empirical study presented?
10 Is the experimental setup clearly described?
11 Are results from multiple different experiments included?
12 Are results from multiple runs of each experiment included?
13 Are the experimental results compared with other approaches?
14 Are negative results, if any, presented?
15 Is the statistical significance of the results assessed?
16 Are the limitations or threats to validity clearly stated?
17 Are the links between data, interpretation and conclusions clear?

In this step, the three authors assess the quality of each paper based on the checklist mentioned before. Each author
assigns a score to every question in the checklist. The score has a numeric scale of three levels: yes (2 points), partial (1
point), and no (0 points). The final score of a paper is measured by summing up the score of all questions. Since the
form has 17 questions, the total score of the articles varies from 0 to 34.

Additionally, we follow the criteria of Usman et al. [95] by using the lower quartile (34/4 = 8.5) as the limit point for
including an article based on quality. As a result, all the articles with a score above 8.5 points were considered relevant
hence they present enough information to address our research questions.

In total, 35 articles met the quality assessment with the approval of three authors, while 14 articles were detected
as discrepancies. Consequently, a second pass was made over these 14 articles. At the second pass, each reviewer
independently read and examined the quality assessment of each article again. We then moved on to a discussion
session between the three reviewers to resolve conflicts by consensus. Finally, with the second pass, a total of 46 articles
were selected to be included in the literature review.

2.5 Data Extraction

To extract the necessary data, the first author of this survey was in charge of examining each of the 46 articles. From
each article, she collected general information (e.g., title, publication year, venue) and information according to the

Manuscript submitted to ACM

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Alison Fernandez Blanco, Alexandre Bergel, and Juan Pablo Sandoval Alcocer

dimensions and rationale of the research questions. Although the data extractor reviewed the entire document, she
focused on many particular sections in order to answer the research questions:

• RQ1 – Problem Domain: Abstract, introduction, evaluation, conclusion.
• RQ2 – Data: Data collection, data extraction, profiling information.
• RQ3 – Visual Representation: Visualization, detailed view, visual design, display.
• RQ4 – Evaluation: Evaluation, case study, applications, usage scenario.
• RQ5 – Availability: Visualization, implementation, conclusion.

The data extractor was also careful to search for data to respond RQ5 because sometimes artifacts or data sets are
placed as a reference or footnotes.

In order to validate the data extraction, the other two authors of this study checked the data to confirm that extraction
was correct. The three authors discussed and resolved any disagreements by reviewing the articles and data extraction
forms. We then recorded the final data value for data analysis.

We noticed that some articles do not present information to respond to all the research questions during this phase.
For example, some articles lack information about the interactions supported, the medium used, or the evaluation
conducted. We discussed the data synthesis of these cases in Section 2.6 and Section 3.

2.6 Data Analysis

This section describes the data analysis methods conducted to answer our research questions.

Thematic analysis. We opted to conduct a thematic analysis [90] for RQ1 and RQ2 since we noted that the proposed
classification schemes from previous software visualization surveys were general for helping us answer these research
questions. In order to create a classification scheme, the first author conducted the thematic analysis following a number
of specific steps:

• Familiarization. Extracted data is read and reread to have an overview of the information.
• Generating codes. The author in charge of the analysis assigned codes that reflect relevant features to answer

the research questions. For example, the author assigned the code “Detection of memory fragmentation” for the
text: “To help the user find potential memory fragmentation problems, we display memory blocks that have
been freed exactly one time and not reused” [73]. Additionally, continuous reviews were conducted to refine
codes and determine if they were assigned correctly. The latter requires comparing two text segments assigned
to the same code to inspect if they reflect the same feature.

• Constructing initial themes. All codes are compiled with their associated data into coherent groups to identify
initial themes (broader patterns) that help address the respective research questions. The codes that seem to not
belong to a specific theme were grouped as miscellaneous and analyzed in the next step.

• Reviewing themes. Initial themes were checked against the associated data (e.g., segments of text) and refined to
create a final set of themes.

• Defining and naming themes. Each theme of the final set was defined with a detailed description and an
informative name. For instance, the themes for RQ2 are generated based on the source of the data abstracted
(e.g., data from program execution, data from source code, data from versions).

Finally, the remaining two authors checked the process by reviewing the consistency of codes and themes against
the associated data and examining if the themes created respond to RQ1 and RQ2. Three meetings were held involving
Manuscript submitted to ACM

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Software Visualizations to Analyze Memory Consumption: A Literature Review 9

the three authors to discuss the disagreements or potential issues of the generated codes and themes. As a consequence,
we minimized potential inconsistencies in the coding process.

Content analysis. We conducted a deductive content analysis [22, 27] to answer RQ3.1, RQ3.2, and RQ4 since the data
synthesis was performed based on defined classification schemes from previous studies shown in Table 6.

Table 6. Classification scheme

ID Dimension Classification scheme Proposed by

RQ3.1 Visual techniques Geometrically-transformed displays, iconic
displays, dense pixel displays, stacked displays
and standard 2D/3D displays

Keim [38]

RQ3.2 Interactions Select, explore, reconfigure, encode, abstrac-
t/elaborate, filter and connect

Yi and colleagues [107]

RQ4 Evaluation No explicit evaluation, empirical, theoretical Merino and colleagues [50]

For RQ3.2, we classified only the articles that present information to answer the research question. We exposed
the number of articles that lack data to answer these research questions. For RQ4, Merino and colleagues proposed a
category of “No explicit evaluation” for these cases.

The classification of articles for RQ3.1, RQ3.2, and RQ4 was performed by two authors independently. Each author
filled a spreadsheet to classify the articles based on a detailed description of the predetermined categories. Later, to check
the agreement between reviewers, we calculated metrics for reliability (Cohen kappa [99], percentage of agreement). As
a result, we noticed that reviewers present a “substantial agreement” (kappa > 0.61) and a percentage agreement above
80% at classifying the articles for most categories. However, we noted disagreements on the classification based on the
interactions supported and the evaluations conducted (case study vs. usage scenario). We discussed the disagreements
in meetings by exposing the data and examining the description of the categories. Consequently, we resolved the
discrepancies and advanced to expose the results to answer the research questions.

Finally, to respond to RQ3.3 we only reviewed the medium employed. And for RQ5, we listed the link for the prototype
and the additional information (video, sample data) provided in the link.

3 RESULTS

3.1 Overview

Table 7 summarizes the results of all steps in our systematic search methodology. It shows different stages of the process
for search and selected relevant articles. Unique columns show the number of non-duplicated articles. As a result, we
found that 32.27% of the articles found in the search phase over digital libraries were duplicated articles.

We also noticed that 11.66% of the articles found during the search phases were selected based on the inclusion/ex-
clusion criteria.

In the end, Table 8 and Table 9 display the 46 articles that passed our inclusion/exclusion criteria and satisfied the
criteria of our quality assessment. A set of collected data from the 46 articles is available online2.

2https://www.dropbox.com/s/7srvxiacftg2pm1/ArticleClassification.csv?dl=0

Manuscript submitted to ACM

https://www.dropbox.com/s/7srvxiacftg2pm1/ArticleClassification.csv?dl=0

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Alison Fernandez Blanco, Alexandre Bergel, and Juan Pablo Sandoval Alcocer

Table 7. Systematic Search Results

Source Date Search
Results

Unique Inclusion/Exclusion
Criteria

Quality As-
sessment

Included

ACM DL March 18, 2021 209

IEEE March 18, 2021 72

SCOPUS March 18, 2021 252

Search phrase 533 361 27 24 24

Additional
manual search

3 3 3 3 3

Bi-directional
snowballing

56 56 19 19 19

Total 46

Publication year. During the search phase in digital libraries, we do not limit the search based on publication dates.
We also do not exclude articles based on their publication date during the selection phase. However, we noted that the
articles considered by our study were published between 1996 and 2020. Furthermore, we detected that the number of
published articles increases over time with high picks (4 articles published) in 2002, 2010, and 2018.

Venues. Regarding the distribution of articles based on the venue, we identified 27 different venues where the papers were
published. Most of the venues are related to software visualizations, software maintenance and software comprehension.
Furthermore, we observed that 32.60% of selected studies were published in software visualization conferences (VISSOFT
and SOFTVIS). We also noticed that 17.39% of the articles were published in journals usually involved with computer
graphics and visualizations (e.g., Computer Graphics Forum, IEEE TVCG). Finally, the remaining articles were published
in various conferences and workshops, usually related to software maintenance and software comprehension (e.g.,
ISMM, ICSME).

3.2 RQ1: Problems domain

Selected articles propose software visualizations that usually target to help developers perform debugging and per-
formance tasks. We performed thematic analysis to find patterns over the data to provide details of which tasks are
supported by these visualizations. As a result, we detected themes that help users adopt a suitable software visualization
according to their requirements. We classified the visualizations based on (i) focus point analysis and (ii) issue detection.
Table 10 shows the distribution of papers based on this classification. According to our classification, a visualization
could focus on analyzing a specific point and detecting multiple memory issues. As a result, a visualization could belong
to multiple categories.

Focus point analysis. Articles explain why the proposed visualization is helpful in different sections. During our
thematic analysis, we noticed that a number of articles present a general description by specifying that the proposed
visualization has a general purpose in helping developers understand andmonitor an application’s memory consumption.
On the other hand, we found articles that propose dedicated visualizations that allow users to analyze specific points
(e.g., data structure, cache behavior). We classified the articles based on the focus point analysis described below.
Manuscript submitted to ACM

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

Software Visualizations to Analyze Memory Consumption: A Literature Review 11

Table 8. The included papers in the study (S1-S29)

ID Title Venue Year Ref.

S1 Evaluating an Interactive Memory Analysis Tool: Findings from a
Cognitive Walkthrough and a User Study

PACMHCI 2020 [101]

S2 Memory Cities: Visualizing Heap Memory Evolution Using the
Software City Metaphor

VISSOFT 2020 [102]

S3 PVC.js: visualizing C programs on web browsers for novices Heliyon 2020 [35]
S4 Enhancing Commit Graphs with Visual Runtime Clues VISSOFT 2019 [77]
S5 Visual performance analysis of memory behavior in a task-based

runtime on hybrid platforms
CCGRID 2019 [59]

S6 Detailed heap profiling ISMM 2018 [11]
S7 Effective visualization of object allocation sites VISSOFT 2018 [9]
S8 NumaMMA: NUMA MeMory Analyzer ICPP 2018 [93]
S9 Memaxes: Visualization and analytics for characterizing complex

memory performance behaviors
TVCG 2018 [30]

S10 Atlantis: Improving the analysis and visualization of large assembly
execution traces

ICSME 2017 [33]

S11 Visual exploration of memory traces and call stacks VISSOFT 2017 [31]
S12 Leveraging Managed Runtime Systems to Build, Analyze, and

Optimize Memory Graphs
VEE 2016 [85]

S13 Interactive visualization of cross-layer performance anomalies in
dynamic task-parallel applications and systems

ISPASS 2016 [24]

S14 Efficiently identifying object production sites SANER 2015 [34]
S15 TABARNAC: Visualizing and resolving memory access issues on

NUMA architectures
VPA 2015 [6]

S16 Visualization of memory access behavior on hierarchical NUMA
architectures

VPA 2014 [104]

S17 A visual approach to investigating shared and global memory
behavior of CUDA kernels

Comput Graph Forum 2013 [75]

S18 Visualizing the allocation and death of objects VISSOFT 2013 [98]
S19 Abstracting runtime heaps for program understanding IEEE TSE 2012 [48]
S20 Topological analysis and visualization of cyclical behavior inmemory

reference traces
PacificVis 2012 [17]

S21 Vasco: A visual approach to explore object churn in
framework-intensive applications

ICSM 2012 [26]

S22 Abstract visualization of runtime memory behavior VISSOFT 2011 [16]
S23 A map of the heap: Revealing design abstractions in runtime

structures
SOFTVIS 2010 [58]

S24 Allocray: Memory allocation visualization for unmanaged languages SOFTVIS 2010 [73]
S25 Automated construction of memory diagrams for program

comprehension
ACM SE 2010 [19]

S26 Heapviz: interactive heap visualization for program understanding
and debugging

SOFTVIS 2010 [1]

S27 Making Sense of Large Heaps ECOOP 2009 [53]
S28 Visualizing the Java heap to detect memory problems VISSOFT 2009 [71]
S29 Hdpv: Interactive, faithful, in-vivo runtime state visualization for

C/C++ and Java
SOFTVIS 2008 [87]

Manuscript submitted to ACM

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Alison Fernandez Blanco, Alexandre Bergel, and Juan Pablo Sandoval Alcocer

Table 9. The included papers in the study (S30-S46)

ID Title Venue Year Ref.

S30 Interactive Visualization for Memory Reference Traces Comput Graph Forum 2008 [15]
S31 Visualizing dynamic memory allocations VISSOFT 2007 [55]
S32 Visualising dynamic memory allocators ISMM 2006 [12]
S33 Jove: Java as it happens SOFTVIS 2005 [72]
S34 YACO: A User Conducted Visualization Tool for Supporting Cache

Optimization
HPCC 2005 [69]

S35 Interactive locality optimization on numa architectures SOFTVIS 2003 [56]
S36 Visualizing Java in action SOFTVIS 2003 [70]
S37 GCspy: an adaptable heap visualisation framework OOPSLA 2002 [68]
S38 Visualising the train garbage collector ISMM 2002 [67]
S39 Visualizing memory graphs Software Visualization 2002 [111]
S40 Visualizing the execution of Java programs Software Visualization 2002 [20]
S41 Visualizing the impact of the cache on program execution ICIV 2001 [108]
S42 Visualizing the memory access behavior of shared memory

applications on NUMA architectures
ICCS 2001 [89]

S43 Visualizing reference patterns for solving memory leaks in Java ECOOP 1999 [21]
S44 A cache visualization tool Computer vol. 30 1997 [96]
S45 DDD — a free graphical front-end for Unix debuggers SIGPLAN Not. 1996 [110]
S46 Monitoring data-structure evolution in distributed message-passing

programs
HICSS 1996 [78]

Table 10. Classification of articles based on the tasks

Problem domain References Total

Focus point analysis Specific architectures S5, S8-S9, S12-S13, S15-S17, S35, S42, S46 11
Data structure S3, S19, S23, S25-S29, S33, S36, S39-S40, S43, S45 14
Cache performance S22, S30, S34, S41, S44 5
Memory regression S4 1
General S1-S2, S6-S7, S10-S11, S14, S18, S20-S21, S24, S31-S32,

S37-S38
15

Issue detection Memory leak S1, S2, S24, S26-S29, S40, S43, S46 10
Memory bloat S1, S4, S6-S7, S14, S18-S19, S27-S28 9
Memory churn S1, S21, S24, S28-S29, S38 6
Memory fragmentation S5, S24, S31-S32, S37-S38 6

• Specific architecture. We found 23.91% articles dedicated to analyzing the memory consumption of applications
with specific architectures (HPC, parallel, embedded, distributed). These articles usually propose visualizations
that display how the data is accessed and used by multiple threads and multiple processors. For example, article
S35 [56] allow developers to understand the memory access behavior of parallel NUMA applications. This
article proposes a visualization that helps developers identify which nodes perform the memory accesses and
detect an opportunity to reduce remote memory accesses.

Manuscript submitted to ACM

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

Software Visualizations to Analyze Memory Consumption: A Literature Review 13

• Data structure. According to Cormen et al. [18], a data structure is a way to store, manage and organize data to
facilitate access and modifications. There is a variety of data structures employed in software applications (e.g.,
lists, dictionaries). However, the inefficient usage of data structure and its operations (e.g., adding, removing
elements) generates memory issues that affect the performance. For this reason, data structure analysis is a
prevalent task during software development. We detected that 30.46% of visualizations support developers in
analyzing and inspecting data structures. For instance, article S26 [1] propose Heapviz that allows developers
to identify large data structures and which objects are shared by several data structures. Heapviz displays a
node-link diagram to visualize the references between objects and locate the nodes using a radial layout to use
screen space efficiently.

• Cache performance. Cache stores data so that future requests for that data can be responded more quickly.
Tracking the cache activity in a software application helps developers understand memory performance at a
fine-grained level. Accordingly, developers may require and analyze memory access and cache performance;
hence, the cache activity’s analysis influences detecting memory access anomalies. We found that 10.86% of
visualizations support developers in analyzing cache performance. For example, article S34 [69] propose YACO
to help users with the analysis of access patterns and cache misses. YACO present multiple views to display
statistics related to cache performance and allow developers to find data that frequently enter and leave the
cache.

• Memory regression. Source code changes may impact the performance of an application [3]. Only article S4 [77]
allows developers to analyze the memory variations between code changes. This article proposes Spark Circle
that enables users to compare two commits based on the number of allocated objects, the execution time, and the
number of modified methods. As a consequence, a developer can identify the growth or reduction of allocated
objects between commits.

• General. As we mentioned before, we found 32.60% of the articles do not focus on a specific point. These articles
determine that the goal of the proposed visualization is to analyze memory consumption. Therefore we could
not find specific analysis points such as analysis of data structures or cache behavior. During the generation of
codes, we detected that these articles usually display memory access or heap usage. Furthermore, most of these
articles are useful for detecting memory issues.

Issue detection. We found that 47.82% of the articles propose visualizations that allow developers to identify memory
issues. Additionally, we detected several articles that claim to present helpful visualizations to address memory anomalies
but do not specify which kind of anomalies or particular situations can be addressed with the proposed visualization.
Consequently, we only classified the articles that present a detailed description of the memory issues addressed and
how developers could employ the visualization to find these anomalies. We described the memory issues that were
found below.

• Memory leak. A memory leak is an issue deeply related to improper memory management [10, 54]. A memory
leak occurs when an unused memory allocation cannot be released from memory [21]. The latter usually
happens because there are allocations that reference an unused allocation. As a consequence, the application
can run out of memory and crash. We found that 21.73% of the visualizations help developers in detecting
memory leaks. For instance, article S40 [20] presents a node-link diagram to display the references between the
objects not reclaimed by the garbage collector. This visualization allows developers to identify memory leaks
by exploring which objects are no longer used but are referenced by other objects.

Manuscript submitted to ACM

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Alison Fernandez Blanco, Alexandre Bergel, and Juan Pablo Sandoval Alcocer

• Memory bloat. Memory bloat exposes inefficient use of memory by a program [101]. A memory overhead
significantly affects software applications by reducing their scalability and usability. Developers should notice
that an application may be free of memory leaks, but could require excessive memory to operate correctly.
According to LaToza et al. [44], developers usually ask, “How big is this in memory?” and “How many of these

objects get created?” These questions are related to distinguish memory growth. Addressing memory bloats
impacts the application behavior, making it more usable and faster in some cases [37]. We detected that 19.56%
of visualizations support developers in identifying excessive memory consumption. For example, article S1
[101] allows developers to explore and observe memory consumption over time by using multiple views with
AntTracks. As a result, AntTracks assists developers in detecting memory growth and explore suspicious objects
allocated over time.

• Memory churn. This issue occurs when an application allocates and releases a large number of short-living
objects [26]. For example, memory churn can happen if a program allocates several new objects in the middle of
nested loops. As a result, the time spent on allocating objects in a heap and the number of garbage collections
increases. Thus the application decreases its performance due to frequent garbage collection. We detected that
13.04% of the visualizations help developers in detecting memory churn. For example, article S21 [26] proposes
Vasco, a visualization that allows developers to identify where and when an object is allocated and no longer
used. The authors of Vasco described how they use visualization to reuse some objects and reduce the number
of allocations and garbage collections.

• Memory fragmentation. This issue related to a failure at reusing memory that has been released. Furthermore,
excessive fragmentation over memory may lead to more costly performance behavior. We found that 13.04% of
the visualizations help developers identify memory fragmentation. For instance, article S31 [55] allows users to
analyze the behavior of a memory allocator by displaying the memory accesses through time. This visualization
enables developers to identify unnecessary fragmentation since free memory blocks can be detected quickly.

We also noticed that selected articles usually define the roles of users of visualizations. We detected that 13.04% of the
visualizations help students or novice developers analyze memory consumption. For example, article S3 [35] presents
PVC to support students with understanding the program execution status and behavior. The authors of this article
experimented with 35 university students to evaluate the usability of PVC. Furthermore, most of the visualizations
(89.13%) assist developers and software engineers. Some of these articles determine that proposed visualizations
are suitable for supporting developers with experience in software engineering and with knowledge of memory
management.

3.3 RQ2: Data

Monitoring and analyzing memory usage is a complex task for developers since it is necessary to collect and examine
different software aspects. The selected articles usually present detailed sections to describe the data collection. We
noticed that several articles implement a profiler to gather information. Other studies use dedicated tools for this
purpose, such as Pin [45], Jinsight [20], DynamoRIO 3, etc. Nonetheless, some studies only describe the information
visualized, but do not explicitly mention how they collect the data.

3http://dynamorio.org

Manuscript submitted to ACM

http://dynamorio.org

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

Software Visualizations to Analyze Memory Consumption: A Literature Review 15

We defined the classification scheme according to the sources from which various data were collected. As a result,
the articles are categorized based on three sources: (i) program execution, (ii) source code, and (ii) version control
systems. In this classification, software visualizations can belong to multiple categories.

Table 11. Classification of articles based on the data source

Data source Data References Total

Program execution Memory allocations S4, S7, S14, S19, S21, S23, S25-S27, S33, S39, S45 12
Memory allocations and
release

S1-S2, S12, S18, S28-S29, S31-S32, S36-S38, S40, S43 13

Memory accesses S3, S5-S6, S8-S11, S13, S15-S17, S20, S22, S24, S30, S34-
S35, S41-S42, S44, S46

21

Relationships between
functions/methods

S1, S6-S7, S10-S11, S14, S21, S40 8

Variable references S1-S3, S12, S19, S23, S25-S29, S39-S40, S43, S45 15
Time S4-S6, S11, S16, S30-S31, S33, S36, S40-S41, S44 12
Threads S5, S6, S8, S10, S13, S15-S17, S24, S33, S36, S40 12
Data shared between
computational units

S5, S8-S9, S13, S15-S17, S35, S42, S46 10

Source code Line of code S3, S5-S6, S10, S17, S20, S22, S24, S29, S33, S45-S46 12
Class S1-S2, S7, S11, S14, S18, S21, S28, S36, S40 10
Structural component S1, S10-S11, S36 4

Version control system Code changes S4 1

Program execution. This category involves the articles that collect or calculate data from program execution. This
information facilitates the understanding of the behavior of a program. All the articles extract various data from program
execution to support developers with memory consumption analysis. However, we noticed that the information selected
varies in different aspects.

During the program execution, a large number of memory events occur. Articles regularly mention that memory
traces are collected. However, the concept of memory trace could be too general, so we focused on the details of the
memory traces collected. We considered three memory events: (i) data is allocated in sections of memory (allocations),
(ii) data allocated is used (read and write), and (iii) the occupied memory that is not needed anymore should be released
(deallocation).

• Memory allocations.We detected that 26.08% of the articles describe extracting data related to memory allocations
but do not consider when the memory is released due to the difficulty of extracting this kind of information [72].
These articles usually provide visualizations that display the objects allocated during the program execution to
identify objects that consume more memory and distinguish how these objects are related. However, according
to our previous research [9], this information could be insufficient at helping developers detect optimization
opportunities and address memory issues quickly.

• Memory allocations and release.We found that 28.26% of the articles determine gathering data from memory
allocations and memory release by tracking specific instructions (e.g., free, delete) or based on garbage collection
events. For example, articles S1 [101], and S2 [102] abstract the heap memory evolution through time to assist
developers in quickly detecting memory issues (e.g., memory leaks, memory bloats).

Manuscript submitted to ACM

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Alison Fernandez Blanco, Alexandre Bergel, and Juan Pablo Sandoval Alcocer

• Memory accesses. A total of 45.65% articles collect data from all memory events described previously. Some of
these articles present visualizations to support students or developers with understanding memory consumption.
For example, article S6 [11] proposes Memoro, a profiler with a visualization that shows how a program uses
the memory. Memoro calculates useful metrics (lifetime, usage, useful lifetime) based on the data extracted
(e.g., number of reads, number of writes) from the memory accesses. These defined metrics allow developers to
detect inefficient use of memory quickly. On the other hand, other articles propose visualizations for specific
aspects, such as cache performance analysis or memory analysis in HPC applications.

Furthermore, articles usually specify collecting metrics (e.g., memory address, size) involved with each memory
event. Additionally, some articles describe gathering additional information described below to assist developers with
memory consumption analysis.

• Relationships between functions/methods. Extracting the calling relationships is a common strategy to assist
developers with control-flow analysis [44]. Commercial tools (e.g., JProfiler4, Yourkit5) display this information
using a tree structure as shown in Figure 1.

Fig. 1. JProfiler displaying the methods executed with a Calling Context Tree.

We found that 17.39% of the articles describe collecting this information to determine how functions are related
to memory events and track specific functions. To exemplify, article S11 [31] helps developers understand
memory consumption by extracting the memory accesses and the call stack. The visualization connects a dense
scatter plot for memory accesses and a flame graph for the call stack. As a result, this visualization allows
developers to explore through the memory accesses and determine which functions are involved.

• References between variables. Some articles proposed visualizations to support developers with data flow analysis.
For this reason, 32.60% of the articles specify the extraction of references between variables. The articles focused
on analyzing the memory consumption in object-oriented programming languages, which usually display the
allocated objects and the references between these objects. For instance, article S2 [102] proposes Memory

cities, a visualization to inspect memory growth and reference patterns over objects. Weninger and colleagues
employed Memory cities to identify memory leaks by examining reference patterns.

• Time.We found that 26.08% of the articles explicitly describe collecting how much time is spent executing some
instruction or when a memory event occurs to facilitate the program understanding.

4https://www.ej-technologies.com/products/jprofiler/overview.html
5https://www.yourkit.com

Manuscript submitted to ACM

https://www.ej-technologies.com/products/jprofiler/overview.html
https://www.yourkit.com

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

Software Visualizations to Analyze Memory Consumption: A Literature Review 17

• Threads. For 26.08% of the articles specify extracting which threads are involved in memory events. Article
S33 [72] describe that showing the threads created, destroyed and what each thread is doing is fundamental to
show programmers detailed information about the program’s behavior.

• Data shared between computational units.We detect that 21.73% of the articles describe gathering information
related to how memory resources are shared among processors. These articles present visualizations to assist
developers in understanding the memory management between multiple processors.

Source code. The articles that present static aspects, which are inferred without executing the program belong to this
category. We found that 47.82% of articles usually extract static information to help developers map data collected from
program execution to source code. The latter benefits developers by identifying and proposing changes on the source
code that reduce memory consumption or repair memory issues.

• Line of code. We detected that 26.08% of articles extract the file and line of code corresponding to memory
events. These articles usually propose visualizations with interaction mechanisms to provide the line of code or
a highlighted piece of source code for relating the data from program execution to source code quickly.
Class. We found that 21.74% of articles collect information at the level of class. As a result, developers can
pinpoint classes with specific issues. For example, article S18 [98] highlights classes that contain methods
involved with several allocations or several deallocations.

• Structural component.We found that 8.69% of articles gather information about which package or module is
involved with memory events. These articles usually present visualizations that group visual elements based on
a structural component. For instance, article S11 [31] displays the functions executed through visual elements
and assigns the color of these visual elements based on the module.

Version control systems. Only article S4 [77] describes extracting data from commits or changes on source code
between versions. This article proposes a graph of glyphs to identify memory regressions between consecutive commits.

3.4 RQ3: Representation

This section covers the analysis and categorization of the selected papers based on three relevant aspects in the software
visualization field: visual techniques, interactions, and medium.

Table 12. Classification of articles based on the visual technique

Visual techniques References Total

Geometrically-transformed S1-S3, S5, S7, S10, S14, S16-S20, S22-S23, S25-S27, S29, S33, S39, S40, S43, S45 23
Iconic S2, S4-S5, S7, S14, S22, S25, S28, S33, S36, S40, S43 12
Dense Pixel S8, S11, S13, S15, S24, S30, S31-S32, S35, S37-S38, S41 12
Stacked S2, S6, S9, S11, S12, S21, S28, S29, S33, S36, S40 11
Standard 2D/3D S1, S5-S6, S9-S10, S14-S15, S34, S42, S44, S46 11

3.4.1 Visual techniques. Authors proposing a software visualization employ different visual techniques to explore the
information collected from a software application. We categorize the articles according to the classification scheme
proposed by Keim [38]. As a result, Table 12 illustrates the distribution of articles based on five categories. In the
following, we describe the results of these categories.

Manuscript submitted to ACM

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Alison Fernandez Blanco, Alexandre Bergel, and Juan Pablo Sandoval Alcocer

• Geometrically transformed. According to Keim [38] geometrically transformed techniques transform multi-
dimensional data into low dimensional data. This transformation involves mapping an object to a set of points
and lines in 2D or 3D (e.g., node-link diagrams, parallel coordinates).
Half of the selected articles (50%) employ geometrically transformed techniques. This category is the most
frequent since several authors propose node-link diagrams to represent relationships, such as object references
or the relationships between functions. For instance, article S26 [1] proposes Heapviz to explore and identify
primary data structures. Heapviz displays a node-link diagram where the nodes represent object instances, and
the edges denote the references between objects as shown in Figure 2. Heapviz allows developers to identify
populated data structures, data structures containing other data structures, and objects referenced by several
data structures.

Figure 3: A Heapviz visualization of a HashSet containing 100 objects. The graph on the left is unsummarized,
and the one on the right is summarized. The supplemental video demonstrates the interactive capabilities of
our system using this visualization example.

demonstrates how the user can interact with Heapviz. Be-
cause our work relies on the user’s being able to explore the
graph interactively, we recommend that the reader view the
video to have a better understanding of how Heapviz works
and how it can be used.

5.3.1 Canvas Movement
The user is able to pan the view around the visualization,

zoom in and out by arbitrary distances, and zoom the dis-
play to fit the entire graph. Additionally, the graph can be
laid out relative to a node of the user’s choosing, recentering
the view on that node and bringing the entire graph back
towards the new center.

5.3.2 Selection and Dragging
Nodes may be added to or removed from the current se-

lection set either individually or by subtrees (as defined by
the dominance tree). Once nodes are selected they can be
dragged. By default, dragged nodes maintain their distance
from the root node of the layout; however, the user may
enable free movement of nodes.

5.3.3 Search
Heapviz provides the user with a search bar that per-

forms an incremental search (search-as-you-type) over the
names, member variable names, and member variable val-
ues of nodes. Nodes that fulfill the query are highlighted
as they are found, a feature that reveals patterns of where
particular objects or values may be found in the heap. Al-
ternatively, searching can help the user quickly identify a
particular node he or she would like to investigate.

5.3.4 Field View
Nodes in the graph have a variety of attributes that can

be displayed to the user: member variable names, member
variable values, number of instances (for summarized nodes)
and size in bytes. When the user selects a node, Heapviz
displays all node attributes that apply to the selected node.
This allows the user to inspect the instance values of any
Java object.

5.3.5 Expanding and Collapsing
The user can interactively collapse and expand nodes in

the Heapviz graph. Only nodes that have children in the
dominance tree can be expanded or collapsed. A node that
dominates an entire subtree can be said to represent that
subtree; the ability to expand (show) or collapse (hide) that
subtree behind the dominating node offers the user a way
both to reduce unwanted visual clutter and to conceptually
simplify the graph.

5.3.6 Edge Visibility Toggles
The user is able to individually enable or disable the dis-

play of the two edge sets via a set of toggles. Dominance
edges can provide revealing information about conceptual
connections between data structures when the user is un-
familiar with the program; pointer edges show the actual
structure of the object graph, and thus are useful for both
program understanding and debugging.

6. CASE STUDIES
We now present the results of visualizing data structures

in several Java programs and use these as a basis for discus-
sion of Heapviz’s strengths and weaknesses. First, we show
two constructed examples (micro-benchmarks) built using
standard container classes. Second, we explore two real-
world benchmarks, 209 db [27] and SPEC JBB 2000 [28].

6.1 Constructed Examples
We first consider two examples constructed from standard

data structures from the Java class library. In both cases,
Heapviz can help users understand how a data structure is
implemented without looking at the source code.

6.1.1 HashSet
Consider a set data structure: a collection that contains

no duplicate elements and no ordering. One can implement
a set using a hash table, which maps keys to values. The
keys of the hash table are the elements of the set; the values
are irrelevant but must be present. The Java class library

57

Fig. 2. Heapviz [1] presents an interactive visualization to support the analysis of data structures. ©Republished with permission
of ACM (Association for Computing Machinery), from “Heapviz: interactive heap visualization for program understanding and
debugging”, by Edward E. Aftandilian, Sean Kelley, Connor Gramazio, Nathan Ricci, Sara L. Su, and Samuel Z. Guyer. 2010. Permission
conveyed through Copyright Clearance Center, Inc.

• Iconic displays. This category involves visual techniques, which map the multidimensional data attributes to
icon features (e.g., tile bars, star icons). As a result, iconic techniques display icons whose characteristics vary
concerning the data attributes.
Of the selected articles, 26.08% employ iconic techniques. For example, S4 [77] introduced the glyph called
Spark Circle to analyze the variations of metrics (objects allocation variation, number of changed methods,
execution time variation) between consecutive commits in a commit-graph visualization as shown in Figure 3.
In this visualization, each spark circle has three segments, the pink segment for the number of changed methods,
the orange segment for the objects allocation variation, and the blue segment for execution time variation.
The height of each segment is proportional to the absolute value of the respective metric, and the border is
black if any metric increases. As a result, the authors of this visualization detected performance and memory
regressions.

• Dense pixel. This category includes techniques that represent data values as pixels and group them based on
their dimension in specific areas (e.g., matrix visualizations).

Manuscript submitted to ACM

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

Software Visualizations to Analyze Memory Consumption: A Literature Review 19
IV. APPLICATION EXAMPLES

We developed an initial prototype to analyze the evolution of
two open source projects: XMLSupport and Roassal. Roassal
is a visualization engine [12], [13] and XMLSupport is a
XML parser, both are written in the Pharo programming
language [14].

Data Collection. We developed a script to collect the source
code and runtime metrics automatically.

• Number of Changed Methods. We use static analysis to
automatically compare two consecutive commits ci and
ci−1. We use the method signature to detect if a method
was added, deleted, or modified. A method is added if it
exists at ci but not at ci−1; a method is deleted if it exists
at ci−1 but not at ci; a method is modified if a method
with the same signature exists in both ci and ci−1 but
their source code is different.

• Execution Time. We used benchmarks produced by the
developers of Roassal and XMLSupport. To measure
steady-state performance we first execute a warm up
session where we run the benchmark twice; then, we run
the benchmarks 25 times while measuring the execution
time. As a result, we get 25 time measurements and
average them to compare the execution times.

• Object Allocations. We use instrumentation to count how
many objects are created during the benchmark execution.
Since the instrumentation may affect the benchmark
execution time, we measure this metric on a separate
run, apart from the execution time measurements.

XMLSupport. Figure 6 renders 13 commit versions in the
XMLSupport main branch. Commits tagged with letters A, B,
and D suffer performance regressions while having a small
number of changes only. Due to the size of the blue bar, we
conclude that the regression is relatively small. Figure 6 also
shows that the commit tagged with C reduces the number
of allocated objects, by 66.5%. The pink bar in this commit
reveals also that a few changes were done.

Roassal. Figure 7 renders commits done in Roassal. Glyphs
tagged with A, B, D, and E show that these commits introduce
a small performance regression in the project. Pink bars give
an overview of how many method changes were done in such
versions. Figure 7 shows two branches. Commits tagged with
A and C merge left branches with the main branch (the one on
the right side). In case of commits that merge two branches,
the execution time and object variations is computed using the
previous version of the main branch. For instance, the glyph at
A shows that the program is slower regarding commit B, and
the glyph at C shows that the execution time of the program
remains similar to commit D. Note that commit D introduces
a performance regression, which remains in commit C.

V. RELATED WORK

A diverse body of research work focuses on helping devel-
opers understand the evolution of source code through the use

A
B

C

D

Newer versions

Older versions

Fig. 6. XMLSupport commit graph visualization. Commits are sorted
chronologically, where the newest commit is at the top, and the oldest one at
the bottom

A
B

C
D
E

Newer versions

Older versions

Fig. 7. Roassal commit graph visualization. Commits are sorted chrono-
logically, where the newest commit is at the top, and the oldest one at the
bottom

��

Authorized licensed use limited to: Universidad de chile. Downloaded on April 01,2021 at 20:19:33 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Visualization proposed by Sandoval [77] to analyze variations between commits. ©2019 Year IEEE. Reprinted, with permission,
from “Enhancing Commit Graphs with Visual Runtime Clues” by Juan Pablo Sandoval Alcocer, 2019.

In total, 26.08% of the selected articles use dense pixel techniques to represent a large amount of data (e.g.,
memory accesses). For example, article S31 [55] proposes a visualization tool shown in Figure 4 to analyze the
behavior of memory allocators in C programs. The main view presents an orthogonal dense pixel layout of
time versus memory addresses, which displays hundreds of thousands of allocation events without wasting
screen space. The rectangular sizes represent the lifetime and size of blocks, and the color displays the allocation
process. This visualization allows developers to analyze memory allocators to optimize their functionality for
reducing fragmentation.

Main visualization

Time axis

Memory axis

Occupancy bar

Block detail view

Context view

Figure 1. Interactive tool for visualizing dynamic memory allocations

memory. Following the x axis, we can see what happens
over a given memory range in time. Following the y axis,
we see a snapshot of the memory at a given moment. Rect-
angle sizes show the lifetime and size of blocks. This layout
is fast and straightforward to compute. We color every rect-
angle to show a data attribute ai

j via a suitable color map-
ping scheme.

time (seconds)

memory (KB)

{zoom in

highly dynamic period

first phase second phase third phase

list
allocations

Figure 2. Visualizing allocations in one bin
Figure 2 illustrates the basic idea for a memory alloca-

tion log dataset containing 119932 allocations spanning a
period of 4 minutes done by 54 concurrent processes. Color
shows the allocating process ID1. This image shows sev-
eral facts: The ”blue” process allocates the most memory.
Since the y axis maps to the address space, the long rectan-
gles at the image bottom show that the ”blue” process allo-
cates memory early and frees it as last. After start, almost
no extra memory is allocated in the first third of the mon-
itored period. Next, the ”green” process rapidly allocates
many equal-sized blocks, all at one moment, and frees them
quickly after, as shown by the thin vertical green stripes.
We discovered that this pattern of same-lifetime blocks is
typical for container objects such as lists. These lists use
about a third of the free memory (y axis), so they are quite
important. The second third of the period shows a high fre-
quency allocation-freeing pattern which almost fills up the
entire memory at some points. In the last third, there are
few allocations. All memory is freed in the end.
Figure 1 shows an actual snapshot of our visualiza-

tion tool. The main view shows the memory dynamics in
the currently selected bin. The view can be zoomed and
scrolled along the vertical (memory) axis, which is useful
when visualizing very large memory spaces (megabytes) or
bins with very small block sizes (few kilobytes). To the
right of the main view, a context view acts like a scrollbar:
The complete memory range is visualized, and the user can
drag a slider (the red frame) to scroll the view to the area
of interest. Under the main view, an occupancy bar is dis-

1We strongly recommend viewing all figures in full color

33

Fig. 4. Visualization proposed by Moreta and Telea [55] to analyze memory allocations behavior. ©2007 Year IEEE. Reprinted, with
permission, from “Visualizing Dynamic Memory Allocations” by Sergio Moreta, 2007.

Manuscript submitted to ACM

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Alison Fernandez Blanco, Alexandre Bergel, and Juan Pablo Sandoval Alcocer

• Stacked displays. This category includes visual techniques that show data with a hierarchy structure (e.g.,
treemaps [82], hierarchical stacking). Of the articles, 23.91% employ stacked displays to represent hierarchical
partitioning. To illustrate, Figure 5 shows Vasco, an interactive visualization to explore object churn proposed
in article S21 [26]. Vasco represents the calling relationships between functions by employing a sunburst. Vasco
allows users to detect problematical functions by mapping the color and angle to different metrics (e.g., number
of allocated objects, number of captured objects). As a result, users can explore functions that allocate many
objects that are eventually released and which functions release them. The authors of Vasco demonstrated how
to employ their visualization to find and solve memory churn.

(a) Initial view (b) Refined view (c) Details for all invocations of the
getAllModelURIs method

Figure 5. JAZZ

(a) Initial view (b) Captures view (c) Details for the hasConnectAccess method

(d) Details for the hasConnectAccess method

Figure 6. CDMS

Figure 6c shows the same view with all previously
identified sources of churn removed (by using the “Se-
lect other invocations of this method” option followed
by “Remove selection”). The threshold for the metric
has also been adjusted to show more capturing loca-
tions. In the figure, the mouse pointer is located on
the SecurityServer.hasConnectAccess method,
which captures a large number of temporaries. As the
information panel indicates Figure 6d, this node captures
300 temporaries of 8 different types. Its region captures
an additional 700 temporaries. Interestingly, an inspection
of the immediate sibling of this node in the view re-
veals exactly the same local capture behavior. Selecting
the “Show allocating methods” option for either of these
nodes reveals another clue. The hasConnectAccess
method was invoked 20 times in the trace, and it created 20
SecurityDescriptor structures (one per invocation).

Each security descriptor is created and initialized by dese-
rializing a stream of bytes, resulting in 1000 temporaries
being created in the process.

A manual inspection of the code reveals that each
SecurityDescriptor instance is created for a specific
Id instance. Caching SecurityDescriptors within
their associated Id objects would therefore prevent most
of these temporaries from being repeatedly created. It is
also worth noting that hasConnectAccess is guarded
by a global flag that determines whether security checks are
enabled. During performance testing, it is conceivable that
such checks could be disabled, thus leading to very different
performance characteristics.

V. RELATED WORK

Visualizing execution data. A large body of existing
work proposes visualization techniques to help with program

Fig. 5. Vasco [26], an interactive visualization to explore object churn. ©2012 Year IEEE. Reprinted, with permission, from “Vasco: A
visual approach to explore object churn in framework-intensive applications” by Fleur Duseau, 2012.

• Standard 2D/3D. The articles which describe techniques such as plots of two or three dimensions (x-axis, y-axis,
and z-axis) belong to this category. In total, 23.91% of the selected papers present standard 2D/3D displays (e.g.,
bar charts, pie charts). For instance, article S34 [69] employs standard techniques to analyze cache behavior.
YACO support developer on understanding cache performance by displaying several bar charts and pie charts
to present the statistics on cache hits and misses.

Finally, we found that 39.13% of the selected studies employ more than one visual technique. Consequently, the most
popular combination of visual techniques involves the geometrically-transformed display with iconic display.

Views. All the visualizations display the information in one or more views. Commonly, the use of well-integrated
multiple views facilitates the exploration of distinct aspects of the data. To illustrate the number of views used on the
selected papers, we reviewed the visualization description provided in each one. We found that 47.82% of the studies
describe using a single view to display all the information. Most of these papers enrich their visualizations by combining
two or more visual techniques, as we described previously. We also noticed that 39.13% of the articles report employing
between two to four views. Finally, we detected that 13.04% of the articles adopt more than four views, usually to
display other aspects through visualizations with standard 2D/3D techniques.
Manuscript submitted to ACM

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

Software Visualizations to Analyze Memory Consumption: A Literature Review 21

3.4.2 Interactions. Some visualizations increased their effectiveness by providing interaction options to the users.
Usually, a practitioner has the intention of performing some actions over the graphics to facilitate information analysis.
However, few articles explicitly describe the supported interactions. This information is usually mixed with the
visualization description or a section on usage scenarios. In a number of cases this information was placed in some
footnotes. In order to analyze the interaction options that proposed visualizations support, we resorted to classifying
only articles that explicitly specify the supported interactions. This classification was based on the taxonomy proposed
by Yi and colleagues [107]:

• Select: mark something as interesting. Distinguish visual elements of interest is relevant for dense visualiza-
tions. We found that 60.86% of the visualizations support this interaction. For example, article S2 [102] presents
Memory cities, a visualization to analyze heap evolution using the software city metaphor. In this visualization,
the buildings are colored using a gradient ranging from gray to red. Memory cities allow the user to highlight a
building in blue and thus facilitate its tracking over evolution.

• Explore: show me something else. A user can view a limited amount of graphic elements due to a large
amount of data and the screen space used to display them. Users usually are interested in seeking out something
new bymoving the camera across a scene. This category includes interaction techniques (e.g., panning) that allow
users to explore different sub-collections of data. We observed that 54.34% of the articles provided exploration
techniques. For instance, article S2 [102] allows moving the camera to view the visualization from above, with
a perspective as though the observer were a bird for facilitating inspection of visual elements.

• Reconfigure: show me a different arrangement. The arrangement of elements on the screen helps analyze
data. We noticed that 17.39% of the visualizations support this task, like article S7 [9] presents a node-link
diagram that allows users to modify the layout by dragging nodes.

• Encode: show me a different representation. This category involves the interactions that enable a user
to modify the visual representation. We found that 10.86% of the visualizations support metric selection like
article S21 [26] presents Vasco that provides a menu bar to change the metrics for color or size of arcs.

• Abstract/Elaborate: show me more or less detail. To examine the details of an element of interest is a
primary task. Therefore, this category includes details-on-demand interactions. According to Yi and colleagues,
the interactions in this category allows developers to adjust the level of abstraction of a data representation. This
category is the most frequent in visualizations (60.86%). Usually, the visualizations provide pop-up windows or
provide panels with detailed information.

• Filter: show me something conditionally. Filtering according to criteria allows users to focus on specific
elements quickly. We detected that 32.60% of visualizations enable users to hide elements that do not satisfy a
condition. For example, article S7 [9] presents a menu for excluding methods based on the type of objects that
they allocate.

• Connect: show me related items. Users focusing on an element of interest will typically explore its rela-
tionships with other elements. We found that 21.74% of the visualizations provide interactions to support the
navigation through the related elements. For instance, article S7 [9] facilitate this task by highlighting the edges
and nodes related to a selected node.

Additionally, we found that 28.26% of the articles do not explicitly describe the interaction mechanisms provided or
specify the intentions of users when they interact with visualizations. We also noticed that the visualization mantra
“Overview first, zoom and filter, then details on demand” [83] is not always considered by the proposed visualizations.

Manuscript submitted to ACM

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

22 Alison Fernandez Blanco, Alexandre Bergel, and Juan Pablo Sandoval Alcocer

3.4.3 Medium. Advanced technology provides users different ways to interact with 3D or 2D visualizations. Maletic and
colleagues [46] explained that mediums (e.g., single monitor, wall displays, immersive virtual reality environments) might
improve visual representations since they present distinct characteristics. Although monitoring resource consumption
may involve some dedicated devices [52], most of the selected visualizations are rendered on a standard monitor of a
desktop computer or laptop. Some articles do not explicitly provide the medium, but we inferred that visualizations
are rendered on a standard computer screen. As a result, we found that no study exploited the medium to enhance
visualizations dedicated to supporting memory consumption analysis tasks.

3.5 RQ4: Evaluation

This section describes the distinct evaluation strategies to validate the effectiveness of the selected software visualizations.
We classify the selected studies in three categories based on the work of Merino et al. [50]: theoretical, empirical and no
explicit evaluation. Table 13 illustrates the distribution of articles based on the strategies used to evaluate visualizations.

Table 13. Classification of articles based on the strategies used to evaluate visualizations

Categories Strategy References Total

Empirical Usage scenario S2, S4-S6, S8-S13, S15, S17, S19-S23, S25-S27, S29-S31, S35, S38, S41 26
Anecdotal evidence S14, S19, S24, S28, S43 5
Experiment S1, S3, S7 3

No explicit
evaluation

S16, S18, S32-S34, S36-S37, S39-S40, S42, S44-S46 13

We found that 28.26% of the articles do not provide an evaluation, while the remaining present an empirical evaluation.
These empirical evaluations are divided into subcategories described below.

• Usage scenario. Of the selected studies, 56.52% only provide application examples. These usage scenarios
provide an extended description of how to address memory issues or analyze memory usage with the proposed
software visualization. The authors highlight the interactions and the advantages of their visualizations by
analyzing popular benchmarks likeDaCapo suite [8],DB suite, Reptile [100],GCOld [66], Paraffins, or open-source
projects. Half of the papers in this category presented usage scenarios as case studies. Nonetheless, they do not
explicitly describe that professional developers in the industry context with real-world applications employ the
visualization. Most of the authors usually give an extended description to demonstrate the effectiveness of their
visualization in different cases. However, this description is limited to providing the article authors’ experience
in using their tool, bearing the risk of biased conclusions according to different articles [106, 109].

• Anecdotal evidence. We found that four articles present a short section, usually with the title “industrial
experience”, where they informally describe the use of the visualization on software companies with professional
engineers. In this way, they claim the effectiveness of the visualization, but they do not present data of formal
interviews or questionaries. For example, article S24 [73] collects information from an informal interview to
four programmers with the think-aloud method. The goal of this interview is to collect information about how
developers employ Allocray to detect memory leaks. This research summarizes the usability observations and
the feedback of the participants during the interview.

Manuscript submitted to ACM

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

Software Visualizations to Analyze Memory Consumption: A Literature Review 23

• Experiment. Three articles present experiments with participants over software applications. For instance,
paper S7 [9] carries out a user study to evaluate their visualization. The authors explain with details the
interviews with eight participants, who use the tool to achieve some tasks. This study describes the results and
observations during the work sessions and gathered feedback from the participants.

Finally, none of the selected articles evaluate their visualizations with professional developers and real-world software
applications in the context of the software industry. As we mentioned in the category of use scenarios, 28.26% of the
articles present sections titled “Case studies”, however the users involved in the evaluation are the authors of the articles.
According to Merino and colleagues [50], a study that provides an evaluation with authors instead of independent
developers, is considered a “Usage Scenario”.

3.6 RQ5: Availability

This section lists the selected software visualizations that are available. Most of the software visualizations support a
group of people to address a problem of a particular context, this group of people is commonly called audience [46].
Having an available tool benefits the target audience to perform software engineering tasks over real-world applications.
Also, researchers can conduct how their approach works compared with other visualization proposals by using controlled
experiments.

We extracted from the selected articles the tool’s name and the links from which the visualization tool is available.
However, only 21.73% of the articles provide an existing link, and 6.52% of the articles present a non-existing link.
Additionally, we performed web searches based on the article’s title, the authors, and the tool’s name to find visualization
tools available for the remaining articles. As a result, we identified links to visualization tools for 23.91% of the articles
due to web search. Table 14 details the information of available software visualizations tools. Table 14 presents the
tool’s name, where the link was found (article content or web search), the link, and extra information presented aside
from the article to install and use the software visualization.

Extra information. We focused on the variety of information that could be available to enrich the experience and
facilitate the use of the visualization. Therefore, we detected the presence of the following information:

• Video. Some links provide a video explaining features of the visualization. In this case, five links present a video
showing the use of the visualization as supplemental material.

• Sample data. Some conferences promote the release of datasets to gain public data and the possibility of
replicability. Six links provide a list of sample data, which reference the data collected from the applications
used in the article as examples.

4 DISCUSSION AND OPEN CHALLENGES

The results described previously provide a general overview of the state-of-art software visualizations centered on
the analysis of memory consumption. We have described distinct features and categorized the selected software
visualizations to answer our research questions. In this section, we discuss some findings and open challenges for
our proposed dimensions. Also, we provide recommendations to practitioners and researchers based on our research
questions.

Problem domain. Software visualizations presented in this study attempt to facilitate the analysis and solution of
several memory issues (e.g.,memory bloat or fragmentation). The design of these visualizations is based on assumptions
of developers’ needs about the memory issue to be addressed. However, to the best of our knowledge, developer

Manuscript submitted to ACM

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

24 Alison Fernandez Blanco, Alexandre Bergel, and Juan Pablo Sandoval Alcocer

Table 14. Visualization tools and additional information from the selected articles. Verified on 18/05/2021

ID Ref. Tool Location Link Video Sample Data

S1 [101] AntTracks Article http://mevss.jku.at/?page_id=1592
S2 [102] Memory

Cities
Article https://doi.org/10.5281/zenodo.3991785 ✓ ✓

S3 [35] PVC Article https://github.com/RYOSKATE/
PlayVisualizerC.js

✓

S6 [11] Memoro Article https://github.com/epfl-vlsc/memoro
S7 [9] – Article http://dx.doi.org/10.5281/zenodo.1311787 ✓
S8 [93] NumaMMA Article https://github.com/numamma/numamma ✓
S9 [30] MemAxes Web search https://github.com/LLNL/MemAxes ✓
S13 [24] Aftermath Web search https://www.aftermath-tracing.com/

installation/
✓

S14 [34] Memory
blueprint

Web search http://smalltalkhub.com/ainfante/
MemoryProfiler/

S15 [6] Tabarnac Article https://github.com/dbeniamine/Tabarnac
S19 [48] HeapDbg Article http://heapdbg.codeplex.com
S21 [26] Vasco Web search http://geodes.iro.umontreal.ca/en/projects/

vasco/
✓

S26 [1] Heapviz Web search https://github.com/eaftan/heapviz
S28 [71] Dyvise Article ftp://ftp.cs.brown.edu/u/spr/dyvise.tar.gz
S31 [55] – Web search http://www.staff.science.uu.nl/~telea001/

uploads/Software/MemoView/
S33 [72] Jove Web search http://cs.brown.edu/~spr/research/visjove.

html
✓

S36 [70] Jive Web search http://cs.brown.edu/~spr/research/vizjive.
html

✓

S37 [68] GCspy Web search https://www.cs.kent.ac.uk/projects/gc/gcspy/
S39 [111] Memory

graphs
Article http://www.st.cs.uni-sb.de/memgraphs/ ✓

S41 [108] – Web search http://www.cs.toronto.edu/~yijun/cacheviz.
guide.html

S45 [110] DDD Web search https://www.gnu.org/software/ddd/

design requirements or needs for each particular memory issue has not been fully researched yet. In the past, several
studies have analyzed what developers asked during software development [44, 84], revealing a number of needs to
be addressed. However, no study provides detailed questions related to memory consumption analysis. Having solid
knowledge about developers’ needs while addressing these issues may help improve the design and effectiveness of the
proposed visualization tools.

Section 3.2 details the classification of articles based on the provided tasks to support programmers over the analysis
of memory usage. According to our findings, various visualizations help developers with memory consumption analysis
by focusing on different aspects. More than half of the visualizations in General and Data structure are available.
However, few visualizations are available to assist developers in analyzing applications with specific architectures, and
one visualization is available for analyzing cache behavior. The unique visualization to analyze memory regression is not
available. We also detected that at least two visualizations are available to detect each type of memory issue. However,
Manuscript submitted to ACM

http://mevss.jku.at/?page_id=1592
https://doi.org/10.5281/zenodo.3991785
https://github.com/RYOSKATE/PlayVisualizerC.js
https://github.com/RYOSKATE/PlayVisualizerC.js
https://github.com/epfl-vlsc/memoro
http://dx.doi.org/10.5281/zenodo.1311787
https://github.com/numamma/numamma
https://github.com/LLNL/MemAxes
https://www.aftermath-tracing.com/installation/
https://www.aftermath-tracing.com/installation/
http://smalltalkhub.com/ainfante/MemoryProfiler/
http://smalltalkhub.com/ainfante/MemoryProfiler/
https://github.com/dbeniamine/Tabarnac
http://heapdbg.codeplex.com
http://geodes.iro.umontreal.ca/en/projects/vasco/
http://geodes.iro.umontreal.ca/en/projects/vasco/
https://github.com/eaftan/heapviz
ftp://ftp.cs.brown.edu/u/spr/dyvise.tar.gz
http://www.staff.science.uu.nl/~telea001/uploads/Software/MemoView/
http://www.staff.science.uu.nl/~telea001/uploads/Software/MemoView/
http://cs.brown.edu/~spr/research/visjove.html
http://cs.brown.edu/~spr/research/visjove.html
http://cs.brown.edu/~spr/research/vizjive.html
http://cs.brown.edu/~spr/research/vizjive.html
https://www.cs.kent.ac.uk/projects/gc/gcspy/
http://www.st.cs.uni-sb.de/memgraphs/
http://www.cs.toronto.edu/~yijun/cacheviz.guide.html
http://www.cs.toronto.edu/~yijun/cacheviz.guide.html
https://www.gnu.org/software/ddd/

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

Software Visualizations to Analyze Memory Consumption: A Literature Review 25

the number of visualizations available is reduced. Domain-specific memory analysis, memory issue identification, and
memory regression analysis are not fully explored yet, leaving an open opportunity.

Data. Section 3.3 describes the aspects of the software involved in the analysis of memory consumption. According to
our findings, a set of articles develop a strategy to gather information, while others use dedicated tools, and the data
extracted by these tools are from different projects. The variety of analyzed projects, tools, and data collection strategies
makes it difficult to compare proposed visualizations. However, creating a baseline of project set (i.e., projects with
particular memory issues) and collection strategies may offer developers and future researchers a guide to successfully
gathering specific data and baselines to contrast their tools with state of the art.

Regarding the aspects extracted, we found that most visualizations dismiss mapping the information from program
execution with information from source code, like lines of code or classes. Consequently, developers may deal with
problems detecting which part of the code is causing or participating in a memory issue. Relating memory metrics with
source code is still an open area for further research.

Visual representation. Section 3.4 details the visual techniques used, the interaction options supported, and the
medium where the visualization is displayed. We found specific trends in visualizations when using some visual
techniques depending on the domain of the problem. For example, most visualizations that assist developers with data
structure analysis employ geometrically transformed techniques. However, there is no evidence of the advantages of
using a particular visual representation for a single problem domain. In addition, we found that most of the articles
present multiple views to display the information. In the same way, we do not observe if using a single view presents
better, similar, or worse results than using multiple views.

Finally, we detected that most of the studies employ a single monitor screen to render the visualization. We encourage
researchers to analyze the impact of the medium on the effectiveness of visualizations centered on support memory
consumption analysis by employing different mediums to render the visualization, like wall-display, multi-touch tables,
or a 3D immersive environment.

Evaluation. Section 3.5 summarizes the evaluation strategies used by the selected articles. We found that most articles
lack robust empirical evaluation that involves software developers. For instance, we detected that only three articles
present evaluations with users of the target audience and expose the comments and observations during the work
sessions. We also observed usage scenarios presented as case studies, which detail the author’s experience in employing
the proposed visualization to analyze memory consumption.

Conducting experiments could be difficult because the nature of the problem domain may require expert developers
with a high level of knowledge regarding memory management. Besides, designing and conducting robust experiments
is an aspect that memory visualization articles need to improve.

Availability. Actually, only 21.73% of the articles present a valid link where the software visualization tool is available.
We detected three articles published between 2002 and 1997 that provide no valid links. Additionally, we found links
with software visualization tools for 23.91% of the articles by performing a search on the web that could be tedious, as
we explain in Section 3.6. We must highlight that we did not try to install the tool nor verify whether it works. However,
we enlisted the additional information (videos that show how to use it correctly or a data sample) that the link presents
to support users with the visualization tool.

Unfortunately, around 54.36% of the visualization tools are not available. As a consequence, developers may fail to
adopt visualizations to perform tasks related to memory consumption analysis.

Manuscript submitted to ACM

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

26 Alison Fernandez Blanco, Alexandre Bergel, and Juan Pablo Sandoval Alcocer

5 THREATS OF VALIDITY

Search of articles. A threat to the validity of this study may be not cover all the relevant articles. We performed a sys-
tematic search to find articles that propose visualization centered on supporting developers with memory consumption
analysis. We developed our search query based on keywords from articles that belong to our scope published between
2017 and 2020 in the most cited venues dedicated to software visualization or memory management. However, our
search query is biased by the specific keywords of this set of articles. We decided to decrease this threat by performing
an additional manual search and bi-directional snowballing. These two phases assisted in our finding of missing relevant
studies.

Selection of articles. A relevant article may be excluded during the selection phase and vice versa. We defined
inclusion/exclusion criteria and a quality assessment to reduce bias in selecting articles. During the selection of
inclusion/exclusion criteria, the three authors independently review the title and the abstract to consider if an article
should be included or not. We calculated the kappa of Fleiss for the inter-rater reliability, and the result was 0,72%, which
is generally considered a good agreement. The disagreements were discussed and resolved during meetings among the
authors. For the quality assessment, we adopted a checklist to examine the quality of papers. The discrepancies found
were reviewed again in a second iteration, and discussion sessions were carried out to reach a consensus.

Data extraction. Another threat to consider is that the data extraction process could be biased. We mitigated this
threat by establishing a protocol to extract the data for each paper. An author managed a spreadsheet to keep records of
relevant text segments and identify irregularities like missing information. The other two authors of this study review
if the data extracted was correct.

Data analysis. During the data analysis, we performed thematic analysis and content analysis to answer our research
questions. One author performed a systematic process to conduct a thematic analysis for RQ1 and RQ2. This process
includes generating codes and defining themes (patterns) that help answer the research questions. The codes and
themes generated vary depending on the coder’s experience, point of view, and level of abstraction. For example, to
respond to RQ1, we detected visualizations focused on analyzing specific points. However, some articles were too
general at determining their objectives, so we decided to consider these articles as a general-purpose group since no
specific pattern was found. We tried to reduce this threat by checking the consistency of the process. Due to this, the
other two authors examined the description of themes and the data coding. We carried out three discussion meetings to
analyze the codes and the themes generated. As a result, we solve the differences among the three authors.

To answer RQ3.1, RQ3.2, and RQ4, we conducted a content analysis. We selected classification schemes proposed in
previous studies. We code the data based on these schemes and measure the agreement between the three authors. We
detected some specific discrepancies that were discussed and solved during a meeting.

6 RELATEDWORK

To the best of our knowledge, this work is the first literature review of software visualizations focused on supporting
the user to comprehend memory consumption. Nevertheless, relevant work was published in the software visualization
field covering different aspects over the years [64, 65, 74].

Scope. Focus on software visualizations over a general context: these surveys [4, 64, 65, 74, 92], systematic literature
reviews [40, 49, 51, 57, 91, 97], taxonomies or classifications [23, 46] generate findings of how visualizations support users
on software engineering tasks. In addition, a number of studies cover visualizations supporting specific aspects of the

Manuscript submitted to ACM

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

Software Visualizations to Analyze Memory Consumption: A Literature Review 27

software engineering field. For example, there are literature reviews [39, 81, 103] that focus on software visualizations to
support the analysis software architecture design. These studies analyze how software architecture is visually represented
to examine the design based on features like complexity, cohesion, etc. Another popular domain is software evolution.
For this domain, Novais et al. [60] and Salameh et al. [76] published systematic studies centered on visualizations to
display how certain software elements (e.g., source code, dependencies) change over time.

In addition, several studies [2, 32, 36] focus on the use of software visualization in educational programming. These
studies examine the benefits of using visualizations to improve and facilitate the learning process of students. The
studies take into account the effectiveness of software visualization to engage students in the field of education. Our
study detected six articles that propose software visualizations to help students or novice developers analyze memory
consumption.

Furthermore, Bedu et al. [5] presented a tertiary systematic literature review on software visualization. This article
identifies topic (e.g., architecture, education) trends of surveys focused on software visualizations and issues related to
software visualizations (e.g., scalability, validation).

Dimensions. Furthermore, most of the surveys and systematic literature reviews [46, 49, 51, 64, 65, 74] cover the tasks
that are supported, the gathered information, and the visual techniques used to display the information. The main
variation is the scope of our survey, and consequently, the tasks supported and the collected information are more
specific than in prior works. For example, we discussed that our visualizations under study help developers analyze the
program behavior and support debugging tasks following the classification scheme of prior work. However, our findings
show various focus points (e.g., data structures, cache behavior) to analyze and different memory issues (e.g., memory
leak, memory bloat) to address. We also provided which data (e.g., threads, time) and which information sources (e.g.,
program execution, source code) are collected, similar to the study of Merino et al. [51]. However, we considered how
the extracted data from different sources is related to help developers with memory consumption analysis.

Furthermore, a minor number of the studies mentioned in this section cover the evaluation and availability dimension.
However, there are systematic reviews that focus explicitly on how software visualizations are evaluated. The cases by
Merino et al. [50], Sensalire et al. [79], and Seriai et al. [80] examine the different evaluation strategies to validate certain
features of a software visualization study (e.g., effectiveness, usability). These studies provide guidelines to produce
enough evidence to evaluate software visualizations and describe some challenges in the field. They also explain the
weak empirical evidence among software visualizations and detail the inconsistencies in the studies. Our findings
expose that 73.91% of the articles present empirical evaluations, mostly usage scenarios. However, the number of studies
that describe experiments and case studies is minor. Our results confirm that few articles evaluate visualizations with
developers and real-world applications as prior work details.

We noticed that few studies [14, 51] examine the availability of software visualizations. However, our study does not
limit publications’ data and focuses on visualizations that support memory consumption. Consequently, we provide
links to visualization tools not considered by the prior work.

Methodology. As mentioned, most of the relevant prior work focuses on reviewing the state-of-art in the software
visualization field. These studies also follow the steps proposed on distinct guidelines for systematic reviews [42, 63],
however they present differences with our work in some steps. For example, the construction of the search string could
be less complex due to the scope of the studies. Therefore, the number of articles resulting from searching over digital
databases and the number of selected papers tends to be higher than ours.

Manuscript submitted to ACM

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

28 Alison Fernandez Blanco, Alexandre Bergel, and Juan Pablo Sandoval Alcocer

7 CONCLUSION

Our study summarizes the software visualizations to support users with the analysis and improvement of memory
consumption. Consequently, we present the supported tasks, data extracted, visual techniques employed, interactions
supported, the medium used, evaluations conducted, and a list of visualization tools available.

According to the previous sections, most studies support data structure analysis and memory analysis over ap-
plications with specific architectures (e.g., high-performance computing). We detected that visualizations also help
developers detect memory issues (e.g., memory bloat, memory leak).

Regarding the data extracted, several articles propose a strategy to gather information or use dedicated tools,
such as Pin [45], Jinsight [20], DynamoRIO 6, etc. Furthermore, most visualizations dismiss mapping the information
from program execution with information from source code, like lines of code or classes. We consider that collecting
information from both sources reduces the effort of practitioners to analyze memory consumption.

Additionally, most authors employ more than one visual technique for the software visualizations. We also detected
that geometrically transformed display is the most frequent technique because articles propose node-link diagrams to
represent relationships between elements. Also, most of the papers use a standard monitor to display the visualization.
We consider that visualizations could be implemented to use other mediums such as tactile devices or 3D environments.

Regarding the evaluations conducted, most of the articles present usage scenarios that highlight the visualization
features to support users’ understanding of memory consumption. Furthermore, most of the applications used in this
study are popular benchmarks like DaCapo suite [8], DB suite, Reptile [100], GCOld [66], Paraffins, or open-source
projects. However, only three papers conducted experiments to evaluate the visualization with users. Finally, we
detected few visualizations available, and as a consequence, we consider the lack of availability is one of the main weak
points in the field.

ACKNOWLEDGMENTS

Alison Fernandez Blanco is supported by a Ph.D. scholarship from CONICYT, Chile. CONICYT-PFCHA/Doctorado
Nacional/2019-21191851. Alexandre Bergel is grateful to the ANID FONDECYT Regular project 1200067 for having
partially sponsored the work presented in this article.

REFERENCES
[1] Edward E. Aftandilian, Sean Kelley, Connor Gramazio, Nathan Ricci, Sara L. Su, and Samuel Z. Guyer. 2010. Heapviz: Interactive Heap Visualization

for Program Understanding and Debugging. In Proceedings of the 5th International Symposium on Software Visualization (Salt Lake City, Utah, USA)
(SOFTVIS ’10). Association for Computing Machinery, New York, NY, USA, 53–62. https://doi.org/10.1145/1879211.1879222

[2] Abdullah Al-Sakkaf, Mazni Omar, and Mazida Ahmad. 2019. A systematic literature review of student engagement in software visualization: a
theoretical perspective. Computer Science Education 29, 2-3 (2019), 283–309. https://doi.org/10.1080/08993408.2018.1564611

[3] Juan Pablo Sandoval Alcocer, Alexandre Bergel, Stéphane Ducasse, and Marcus Denker. 2013. Performance evolution blueprint: Understanding
the impact of software evolution on performance. In 2013 First IEEE Working Conference on Software Visualization (VISSOFT). IEEE, 1–9. https:
//doi.org/10.1109/VISSOFT.2013.6650523

[4] Sarita Bassil and Rudolf K Keller. 2001. Software visualization tools: Survey and analysis. In Proceedings 9th International Workshop on Program
Comprehension. IWPC 2001. IEEE, 7–17. https://doi.org/10.1109/WPC.2001.921708

[5] Laure Bedu, Olivier Tinh, and Fabio Petrillo. 2019. A tertiary systematic literature review on Software Visualization. In 2019 Working Conference on
Software Visualization (VISSOFT). IEEE, 33–44. https://doi.org/10.1109/VISSOFT.2019.00013

[6] David Beniamine, Matthias Diener, Guillaume Huard, and Philippe O. A. Navaux. 2015. TABARNAC: Visualizing and Resolving Memory Access
Issues on NUMA Architectures. In Proceedings of the 2nd Workshop on Visual Performance Analysis (Austin, Texas) (VPA ’15). Association for
Computing Machinery, New York, NY, USA, Article 1, 9 pages. https://doi.org/10.1145/2835238.2835239

6http://dynamorio.org

Manuscript submitted to ACM

https://doi.org/10.1145/1879211.1879222
https://doi.org/10.1080/08993408.2018.1564611
https://doi.org/10.1109/VISSOFT.2013.6650523
https://doi.org/10.1109/VISSOFT.2013.6650523
https://doi.org/10.1109/WPC.2001.921708
https://doi.org/10.1109/VISSOFT.2019.00013
https://doi.org/10.1145/2835238.2835239
http://dynamorio.org

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Software Visualizations to Analyze Memory Consumption: A Literature Review 29

[7] Alexandre Bergel, Felipe Bañados, Romain Robbes, and David Röthlisberger. 2012. Spy: A Flexible Code Profiling Framework. Comput. Lang. Syst.
Struct. 38, 1 (April 2012), 16–28. https://doi.org/10.1016/j.cl.2011.10.002

[8] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg,
Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanović,
Thomas VanDrunen, Daniel von Dincklage, and Ben Wiedermann. 2006. The DaCapo Benchmarks: Java Benchmarking Development and Analysis.
SIGPLAN Not. 41, 10 (Oct. 2006), 169–190. https://doi.org/10.1145/1167515.1167488

[9] Alison Fernandez Blanco, Juan Pablo Sandoval Alcocer, and Alexandre Bergel. 2018. Effective visualization of object allocation sites. In 2018 IEEE
Working Conference on Software Visualization (VISSOFT). IEEE, 43–53. https://doi.org/10.1109/VISSOFT.2018.00013

[10] Michael D. Bond and Kathryn S. McKinley. 2008. Tolerating Memory Leaks. SIGPLAN Not. 43, 10 (Oct. 2008), 109–126. https://doi.org/10.1145/
1449955.1449774

[11] Stuart Byma and James R Larus. 2018. Detailed Heap Profiling. In Proceedings of the 2018 ACM SIGPLAN International Symposium on Memory
Management (Philadelphia, PA, USA) (ISMM 2018). Association for Computing Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/
3210563.3210564

[12] Andrew M Cheadle, AJ Field, JW Ayres, Neil Dunn, Richard A Hayden, and J Nystrom-Persson. 2006. Visualising Dynamic Memory Allocators.
In Proceedings of the 5th International Symposium on Memory Management (Ottawa, Ontario, Canada) (ISMM ’06). Association for Computing
Machinery, New York, NY, USA, 115–125. https://doi.org/10.1145/1133956.1133972

[13] Adriana E. Chis, Nick Mitchell, Edith Schonberg, Gary Sevitsky, Patrick O’Sullivan, Trevor Parsons, and John Murphy. 2011. Patterns of Memory
Inefficiency. In Proceedings of the 25th European Conference on Object-oriented Programming (Lancaster, UK) (ECOOP’11). Springer-Verlag, Berlin,
Heidelberg, 383–407. https://doi.org/10.1007/978-3-642-22655-7_18

[14] Noptanit Chotisarn, Leonel Merino, Xu Zheng, Supaporn Lonapalawong, Tianye Zhang, Mingliang Xu, and Wei Chen. 2020. A systematic literature
review of modern software visualization. Journal of Visualization 23, 4 (2020), 539–558. https://doi.org/10.1007/s12650-020-00647-w

[15] ANM Imroz Choudhury, Kristin C Potter, and Steven G Parker. 2008. Interactive visualization for memory reference traces. In Computer Graphics
Forum, Vol. 27. Wiley Online Library, 815–822. https://doi.org/10.1111/j.1467-8659.2008.01212.x

[16] ANM Imroz Choudhury and Paul Rosen. 2011. Abstract visualization of runtime memory behavior. In 2011 6th International Workshop on Visualizing
Software for Understanding and Analysis (VISSOFT). IEEE, 1–8. https://doi.org/10.1109/VISSOF.2011.6069452

[17] ANM Imroz Choudhury, Bei Wang, Paul Rosen, and Valerio Pascucci. 2012. Topological analysis and visualization of cyclical behavior in memory
reference traces. In 2012 IEEE Pacific Visualization Symposium. IEEE, 9–16. https://doi.org/10.1109/PacificVis.2012.6183557

[18] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. 2009. Introduction to algorithms. MIT press.
[19] Andrew R Dalton and William Kreahling. 2010. Automated Construction of Memory Diagrams for Program Comprehension. In Proceedings of the

48th Annual Southeast Regional Conference (Oxford, Mississippi) (ACM SE ’10). Association for Computing Machinery, New York, NY, USA, Article
22, 6 pages. https://doi.org/10.1145/1900008.1900040

[20] Wim De Pauw, Erik Jensen, Nick Mitchell, Gary Sevitsky, John Vlissides, and Jeaha Yang. 2002. Visualizing the execution of Java programs. In
Software Visualization. Springer, 151–162.

[21] Wim De Pauw and Gary Sevitsky. 1999. Visualizing reference patterns for solving memory leaks in Java. In European Conference on Object-Oriented
Programming. Springer, 116–134. https://doi.org/10.1007/3-540-48743-3_6

[22] Joanna F DeFranco and Phillip A Laplante. 2017. A content analysis process for qualitative software engineering research. Innovations in Systems
and Software Engineering 13, 2 (2017), 129–141. https://doi.org/10.1007/s11334-017-0287-0

[23] Stephan Diehl. 2007. Software visualization: visualizing the structure, behaviour, and evolution of software. Springer Science & Business Media.
[24] Andi Drebes, Antoniu Pop, Karine Heydemann, and Albert Cohen. 2016. Interactive visualization of cross-layer performance anomalies in dynamic

task-parallel applications and systems. In 2016 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS). IEEE,
274–283. https://doi.org/10.1109/ISPASS.2016.7482102

[25] Stéphane Ducasse, Michele Lanza, and Roland Bertuli. 2004. High-Level Polymetric Views of Condensed Run-Time Information. In Proceedings
of 8th European Conference on Software Maintenance and Reengineering (CSMR’04). IEEE Computer Society Press, Los Alamitos CA, 309–318.
https://doi.org/10.1109/CSMR.2004.1281433

[26] Fleur Duseau, Bruno Dufour, and Houari Sahraoui. 2012. Vasco: A visual approach to explore object churn in framework-intensive applications. In
Software Maintenance (ICSM), 2012 28th IEEE International Conference on. IEEE, 15–24. https://doi.org/10.1109/ICSM.2012.6405248

[27] Satu Elo and Helvi Kyngäs. 2008. The qualitative content analysis process. Journal of advanced nursing 62, 1 (2008), 107–115. https://doi.org/10.
1111/j.1365-2648.2007.04569.x

[28] Joseph L Fleiss. 1971. Measuring nominal scale agreement among many raters. Psychological bulletin 76, 5 (1971), 378. https://doi.org/10.1037/
h0031619

[29] Joseph L Fleiss, Bruce Levin, and Myunghee Cho Paik. 2013. Statistical methods for rates and proportions. john wiley & sons.
[30] Alfredo Giménez, Todd Gamblin, Ilir Jusufi, Abhinav Bhatele, Martin Schulz, Peer-Timo Bremer, and Bernd Hamann. 2018. Memaxes: Visualization

and analytics for characterizing complex memory performance behaviors. IEEE transactions on visualization and computer graphics 24, 7 (2018),
2180–2193. https://doi.org/10.1109/TVCG.2017.2718532

[31] Patrick Gralka, Christoph Schulz, Guido Reina, Daniel Weiskopf, and Thomas Ertl. 2017. Visual exploration of memory traces and call stacks. In
2017 IEEE Working Conference on Software Visualization (VISSOFT). IEEE, 54–63. https://doi.org/10.1109/VISSOFT.2017.15

Manuscript submitted to ACM

https://doi.org/10.1016/j.cl.2011.10.002
https://doi.org/10.1145/1167515.1167488
https://doi.org/10.1109/VISSOFT.2018.00013
https://doi.org/10.1145/1449955.1449774
https://doi.org/10.1145/1449955.1449774
https://doi.org/10.1145/3210563.3210564
https://doi.org/10.1145/3210563.3210564
https://doi.org/10.1145/1133956.1133972
https://doi.org/10.1007/978-3-642-22655-7_18
https://doi.org/10.1007/s12650-020-00647-w
https://doi.org/10.1111/j.1467-8659.2008.01212.x
https://doi.org/10.1109/VISSOF.2011.6069452
https://doi.org/10.1109/PacificVis.2012.6183557
https://doi.org/10.1145/1900008.1900040
https://doi.org/10.1007/3-540-48743-3_6
https://doi.org/10.1007/s11334-017-0287-0
https://doi.org/10.1109/ISPASS.2016.7482102
https://doi.org/10.1109/CSMR.2004.1281433
https://doi.org/10.1109/ICSM.2012.6405248
https://doi.org/10.1111/j.1365-2648.2007.04569.x
https://doi.org/10.1111/j.1365-2648.2007.04569.x
https://doi.org/10.1037/h0031619
https://doi.org/10.1037/h0031619
https://doi.org/10.1109/TVCG.2017.2718532
https://doi.org/10.1109/VISSOFT.2017.15

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

30 Alison Fernandez Blanco, Alexandre Bergel, and Juan Pablo Sandoval Alcocer

[32] Jeisson Hidalgo-Céspedes, Gabriela Marín-Raventós, and Vladimir Lara-Villagrán. 2016. Learning principles in program visualizations: a systematic
literature review. In 2016 IEEE frontiers in education conference (FIE). IEEE, 1–9. https://doi.org/10.1109/FIE.2016.7757692

[33] Huihui Nora Huang, Eric Verbeek, Daniel German, Margaret-Anne Storey, and Martin Salois. 2017. Atlantis: Improving the analysis and
visualization of large assembly execution traces. In 2017 IEEE International Conference on Software Maintenance and Evolution (ICSME). IEEE,
623–627. https://doi.org/10.1109/ICSME.2017.23

[34] Alejandro Infante and Alexandre Bergel. 2015. Efficiently identifying object production sites. In Software Analysis, Evolution and Reengineering
(SANER), 2015 IEEE 22nd International Conference on. IEEE, 575–579. https://doi.org/10.1109/SANER.2015.7081880

[35] Ryosuke Ishizue, Kazunori Sakamoto, Hironori Washizaki, and Yoshiaki Fukazawa. 2020. PVC. js: visualizing C programs on web browsers for
novices. Heliyon 6, 4 (2020), e03806. https://doi.org/10.1016/j.heliyon.2020.e03806

[36] Essi Isohanni and Hannu-Matti Järvinen. 2014. Are Visualization Tools Used in Programming Education? By Whom, How, Why, and Why Not?. In
Proceedings of the 14th Koli Calling International Conference on Computing Education Research (Koli, Finland) (Koli Calling ’14). Association for
Computing Machinery, New York, NY, USA, 35–40. https://doi.org/10.1145/2674683.2674688

[37] Kamil Jezek and Richard Lipka. 2017. Antipatterns causing memory bloat: A case study. In 2017 IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 306–315. https://doi.org/10.1109/SANER.2017.7884631

[38] Daniel A Keim. 2002. Information visualization and visual data mining. IEEE transactions on Visualization and Computer Graphics 8, 1 (2002), 1–8.
https://doi.org/10.1109/2945.981847

[39] Taimur Khan, Henning Barthel, Achim Ebert, and Peter Liggesmeyer. 2012. Visualization and Evolution of Software Architectures. In Visualization
of Large and Unstructured Data Sets: Applications in Geospatial Planning, Modeling and Engineering - Proceedings of IRTG 1131 Workshop 2011,
Vol. 27. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 25–42. https://doi.org/10.4230/OASIcs.VLUDS.2011.25

[40] Holger M Kienle and Hausi A Muller. 2007. Requirements of software visualization tools: A literature survey. In 2007 4th IEEE International
Workshop on Visualizing Software for Understanding and Analysis. IEEE, 2–9. https://doi.org/10.1109/VISSOF.2007.4290693

[41] Barbara Kitchenham. 2004. Procedures for performing systematic reviews. Keele, UK, Keele University 33, 2004 (2004), 1–26.
[42] Barbara Kitchenham and Stuart Charters. 2007. Guidelines for performing Systematic Literature Reviews in Software Engineering. Technical Report

EBSE 2007-001. Keele University and Durham University Joint Report. http://www.dur.ac.uk/ebse/resources/Systematic-reviews-5-8.pdf
[43] Michele Lanza and Stéphane Ducasse. 2003. Polymetric Views—A Lightweight Visual Approach to Reverse Engineering. Transactions on Software

Engineering (TSE) 29, 9 (Sept. 2003), 782–795. https://doi.org/10.1109/TSE.2003.1232284
[44] Thomas D LaToza and Brad A Myers. 2010. Hard-to-answer questions about code. In Evaluation and Usability of Programming Languages and

Tools. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/1937117.1937125
[45] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood.

2005. Pin: building customized program analysis tools with dynamic instrumentation. SIGPLAN Not. 40, 6 (2005), 190–200. https://doi.org/10.
1145/1064978.1065034

[46] Jonathan I Maletic, Andrian Marcus, and Michael L Collard. 2002. A task oriented view of software visualization. In Proceedings First International
Workshop on Visualizing Software for Understanding and Analysis. IEEE, 32–40. https://doi.org/10.1109/VISSOF.2002.1019792

[47] M. Mamani, A. Infante, and A. Bergel. 2014. Inti: Tracking Performance Issue Using a Compact and Effective Visualization. In 2014 33rd International
Conference of the Chilean Computer Science Society (SCCC). 132–134. https://doi.org/10.1109/SCCC.2014.28

[48] Mark Marron, Cesar Sanchez, Zhendong Su, and Manuel Fahndrich. 2012. Abstracting runtime heaps for program understanding. IEEE Transactions
on Software Engineering 39, 6 (2012), 774–786. https://doi.org/10.1109/TSE.2012.69

[49] Anna-Liisa Mattila, Petri Ihantola, Terhi Kilamo, Antti Luoto, Mikko Nurminen, and Heli Väätäjä. 2016. Software visualization today: Systematic
literature review. In Proceedings of the 20th International Academic Mindtrek Conference. Association for Computing Machinery, New York, NY,
USA, 262–271. https://doi.org/10.1145/2994310.2994327

[50] Leonel Merino, Mohammad Ghafari, Craig Anslow, and Oscar Nierstrasz. 2018. A systematic literature review of software visualization evaluation.
Journal of systems and software 144 (2018), 165–180. https://doi.org/10.1016/j.jss.2018.06.027

[51] Leonel Merino, Mohammad Ghafari, and Oscar Nierstrasz. 2016. Towards actionable visualisation in software development. In 2016 IEEE Working
Conference on Software Visualization (VISSOFT). IEEE, 61–70. https://doi.org/10.1109/VISSOFT.2016.10

[52] Leonel Merino, Mario Hess, Alexandre Bergel, Oscar Nierstrasz, and Daniel Weiskopf. 2019. PerfVis: Pervasive Visualization in Immersive
Augmented Reality for Performance Awareness. In Companion of the 2019 ACM/SPEC International Conference on Performance Engineering (Mumbai,
India) (ICPE ’19). Association for Computing Machinery, New York, NY, USA, 13–16. https://doi.org/10.1145/3302541.3313104

[53] Nick Mitchell, Edith Schonberg, and Gary Sevitsky. 2009. Making sense of large heaps. In European Conference on Object-Oriented Programming.
Springer-Verlag, Berlin, Heidelberg, 77–97. https://doi.org/10.1007/978-3-642-03013-0_5

[54] Ghanavati Mohammadreza, Diego Costa, Janos Seboek, David Lo, and Artur Andrzejak. 2020. Memory and resource leak defects and their repairs
in Java projects. Empirical Software Engineering 25, 1 (2020), 678–718. https://doi.org/10.1007/s10664-019-09731-8

[55] Sergio Moreta and Alexandru Telea. 2007. Visualizing dynamic memory allocations. In 2007 4th IEEE International Workshop on Visualizing Software
for Understanding and Analysis. IEEE, 31–38. https://doi.org/10.1109/VISSOF.2007.4290697

[56] Tao Mu, Jie Tao, Martin Schulz, and Sally A McKee. 2003. Interactive locality optimization on numa architectures. In Proceedings of the 2003 ACM
Symposium on Software Visualization (San Diego, California) (SoftVis ’03). Association for Computing Machinery, New York, NY, USA, 133–ff.
https://doi.org/10.1145/774833.774853

Manuscript submitted to ACM

https://doi.org/10.1109/FIE.2016.7757692
https://doi.org/10.1109/ICSME.2017.23
https://doi.org/10.1109/SANER.2015.7081880
https://doi.org/10.1016/j.heliyon.2020.e03806
https://doi.org/10.1145/2674683.2674688
https://doi.org/10.1109/SANER.2017.7884631
https://doi.org/10.1109/2945.981847
https://doi.org/10.4230/OASIcs.VLUDS.2011.25
https://doi.org/10.1109/VISSOF.2007.4290693
http://www.dur.ac.uk/ebse/resources/Systematic-reviews-5-8.pdf
https://doi.org/10.1109/TSE.2003.1232284
https://doi.org/10.1145/1937117.1937125
https://doi.org/10.1145/1064978.1065034
https://doi.org/10.1145/1064978.1065034
https://doi.org/10.1109/VISSOF.2002.1019792
https://doi.org/10.1109/SCCC.2014.28
https://doi.org/10.1109/TSE.2012.69
https://doi.org/10.1145/2994310.2994327
https://doi.org/10.1016/j.jss.2018.06.027
https://doi.org/10.1109/VISSOFT.2016.10
https://doi.org/10.1145/3302541.3313104
https://doi.org/10.1007/978-3-642-03013-0_5
https://doi.org/10.1007/s10664-019-09731-8
https://doi.org/10.1109/VISSOF.2007.4290697
https://doi.org/10.1145/774833.774853

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

Software Visualizations to Analyze Memory Consumption: A Literature Review 31

[57] Richard Müller and Dirk Zeckzer. 2015. Past, Present, and Future of 3D Software Visualization. (2015), 63–74. https://doi.org/10.5220/
0005325700630074

[58] Colin Myers and David Duke. 2010. A map of the heap: Revealing design abstractions in runtime structures. In Proceedings of the 5th International
Symposium on Software Visualization. Association for Computing Machinery, New York, NY, USA, 63–72. https://doi.org/10.1145/1879211.1879223

[59] Lucas Leandro Nesi, Samuel Thibault, Luka Stanisic, and Lucas Mello Schnorr. 2019. Visual performance analysis of memory behavior in a
task-based runtime on hybrid platforms. In 2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID). IEEE,
142–151. https://doi.org/10.1109/CCGRID.2019.00025

[60] Renato Lima Novais, André Torres, Thiago Souto Mendes, Manoel Mendonça, and Nico Zazworka. 2013. Software evolution visualization: A
systematic mapping study. Information and Software Technology 55, 11 (2013), 1860–1883. https://doi.org/10.1016/j.infsof.2013.05.008

[61] Kristian Nybom, Adnan Ashraf, and Ivan Porres. 2018. A systematic mapping study on API documentation generation approaches. In 2018 44th
Euromicro Conference on Software Engineering and Advanced Applications (SEAA). IEEE, 462–469. https://doi.org/10.1109/SEAA.2018.00081

[62] Mariano Martinez Peck, Noury Bouraqadi, Marcus Denker, Stéphane Ducasse, and Luc Fabresse. 2010. Visualizing objects and memory usage. In
Smalltalks’2010. Buenos Ares, Argentina. https://hal.inria.fr/inria-00531510

[63] Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. 2015. Guidelines for conducting systematic mapping studies in software engineering: An
update. Information and Software Technology 64 (2015), 1–18. https://doi.org/10.1016/j.infsof.2015.03.007

[64] Blaine Price, Ronald Baecker, and Ian Small. 1998. An introduction to software visualization. Software visualization (1998), 3–27.
[65] Blaine A Price, Ronald M Baecker, and Ian S Small. 1993. A principled taxonomy of software visualization. Journal of Visual Languages & Computing

4, 3 (1993), 211–266. https://doi.org/10.1006/jvlc.1993.1015
[66] Tony Printezis and David Detlefs. 2000. A generational mostly-concurrent garbage collector. In Proceedings of the 2nd international symposium on

Memory management. Association for Computing Machinery, New York, NY, USA, 143–154. https://doi.org/10.1145/362422.362480
[67] Tony Printezis and Alex Garthwaite. 2002. Visualising the Train garbage collector. SIGPLAN Not. 38, 2 supplement (June 2002), 50–63. https:

//doi.org/10.1145/773039.512436
[68] Tony Printezis and Richard Jones. 2002. GCspy: An Adaptable Heap Visualisation Framework. In Proceedings of the 17th ACM SIGPLAN Conference

on Object-Oriented Programming, Systems, Languages, and Applications (Seattle, Washington, USA) (OOPSLA ’02). Association for Computing
Machinery, New York, NY, USA, 343–358. https://doi.org/10.1145/582419.582451

[69] Boris Quaing, Jie Tao, and Wolfgang Karl. 2005. Yaco: A user conducted visualization tool for supporting cache optimization. In International
Conference on High Performance Computing and Communications. Springer, 694–703. https://doi.org/10.1007/11557654_80

[70] Steven P Reiss. 2003. Visualizing Java in action. In Proceedings of the 2003 ACM symposium on Software visualization. ACM, Association for
Computing Machinery, New York, NY, USA, 57–ff. https://doi.org/10.1145/774833.774842

[71] Steven P Reiss. 2009. Visualizing the Java heap to detect memory problems. In Visualizing Software for Understanding and Analysis, 2009. VISSOFT
2009. 5th IEEE International Workshop on. IEEE, 73–80. https://doi.org/10.1109/VISSOF.2009.5336418

[72] Steven P Reiss and Manos Renieris. 2005. JOVE: Java as it happens. In Proceedings of the 2005 ACM symposium on Software visualization. ACM,
Association for Computing Machinery, New York, NY, USA, 115–124. https://doi.org/10.1145/1056018.1056034

[73] George G Robertson, Trishul Chilimbi, and Bongshin Lee. 2010. Allocray: Memory allocation visualization for unmanaged languages. In
Proceedings of the 5th international symposium on Software visualization. Association for Computing Machinery, New York, NY, USA, 43–52.
https://doi.org/10.1145/1879211.1879221

[74] G-C Roman and Kenneth C Cox. 1993. A taxonomy of program visualization systems. Computer 26, 12 (1993), 11–24. https://doi.org/10.1109/2.247643
[75] Paul Rosen. 2013. A visual approach to investigating shared and global memory behavior of CUDA kernels. In Computer Graphics Forum, Vol. 32.

Wiley Online Library, 161–170. https://doi.org/10.1111/cgf.12103
[76] Hani Bani Salameh, Ayat Ahmad, and Ashraf Aljammal. 2016. Software evolution visualization techniques and methods-a systematic review. In

2016 7th International Conference on Computer Science and Information Technology (CSIT). IEEE, 1–6. https://doi.org/10.1109/CSIT.2016.7549475
[77] Juan Pablo Sandoval Alcocer, Harold Camacho Jaimes, Diego Costa, Alexandre Bergel, and Fabian Beck. 2019. Enhancing Commit Graphs with

Visual Runtime Clues. In 2019 Working Conference on Software Visualization (VISSOFT). 28–32. https://doi.org/10.1109/VISSOFT.2019.00012
[78] Sekhar R Sarukkai and Andrew Beers. 1996. Monitoring data-structure evolution in distributed message-passing programs. In Proceedings of

HICSS-29: 29th Hawaii International Conference on System Sciences, Vol. 1. IEEE, 310–319. https://doi.org/10.1109/HICSS.1996.495476
[79] Mariam Sensalire, Patrick Ogao, and Alexandru Telea. 2009. Evaluation of software visualization tools: Lessons learned. In 2009 5th IEEE International

Workshop on Visualizing Software for Understanding and Analysis. IEEE, 19–26. https://doi.org/10.1109/VISSOF.2009.5336431
[80] Abderrahmane Seriai, Omar Benomar, Benjamin Cerat, and Houari Sahraoui. 2014. Validation of software visualization tools: A systematic

mapping study. In 2014 Second IEEE Working Conference on Software Visualization. IEEE, 60–69. https://doi.org/10.1109/VISSOFT.2014.19
[81] Mojtaba Shahin, Peng Liang, and Muhammad Ali Babar. 2014. A systematic review of software architecture visualization techniques. Journal of

Systems and Software 94 (2014), 161–185. https://doi.org/10.1016/j.jss.2014.03.071
[82] Ben Shneiderman. 1992. Tree visualization with tree-maps: 2-d space-filling approach. ACM Transactions on graphics (TOG) 11, 1 (1992), 92–99.

https://doi.org/10.1145/102377.115768
[83] Ben Shneiderman. 2003. The eyes have it: A task by data type taxonomy for information visualizations. In The craft of information visualization.

Elsevier, 364–371. https://doi.org/10.1016/B978-155860915-0/50046-9

Manuscript submitted to ACM

https://doi.org/10.5220/0005325700630074
https://doi.org/10.5220/0005325700630074
https://doi.org/10.1145/1879211.1879223
https://doi.org/10.1109/CCGRID.2019.00025
https://doi.org/10.1016/j.infsof.2013.05.008
https://doi.org/10.1109/SEAA.2018.00081
https://hal.inria.fr/inria-00531510
https://doi.org/10.1016/j.infsof.2015.03.007
https://doi.org/10.1006/jvlc.1993.1015
https://doi.org/10.1145/362422.362480
https://doi.org/10.1145/773039.512436
https://doi.org/10.1145/773039.512436
https://doi.org/10.1145/582419.582451
https://doi.org/10.1007/11557654_80
https://doi.org/10.1145/774833.774842
https://doi.org/10.1109/VISSOF.2009.5336418
https://doi.org/10.1145/1056018.1056034
https://doi.org/10.1145/1879211.1879221
https://doi.org/10.1109/2.247643
https://doi.org/10.1111/cgf.12103
https://doi.org/10.1109/CSIT.2016.7549475
https://doi.org/10.1109/VISSOFT.2019.00012
https://doi.org/10.1109/HICSS.1996.495476
https://doi.org/10.1109/VISSOF.2009.5336431
https://doi.org/10.1109/VISSOFT.2014.19
https://doi.org/10.1016/j.jss.2014.03.071
https://doi.org/10.1145/102377.115768
https://doi.org/10.1016/B978-155860915-0/50046-9

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

32 Alison Fernandez Blanco, Alexandre Bergel, and Juan Pablo Sandoval Alcocer

[84] Jonathan Sillito, Gail C Murphy, and Kris De Volder. 2006. Questions programmers ask during software evolution tasks. In Proceedings of the 14th
ACM SIGSOFT international symposium on Foundations of software engineering. Association for Computing Machinery, New York, NY, USA, 23–34.
https://doi.org/10.1145/1181775.1181779

[85] Rebecca Smith and Scott Rixner. 2016. Leveraging Managed Runtime Systems to Build, Analyze, and Optimize Memory Graphs. ACM SIGPLAN
Notices 51, 7 (2016), 131–143. https://doi.org/10.1145/2892242.2892253

[86] Amitabh Srivastava and Alan Eustace. 1994. ATOM: A system for building customized program analysis tools. Vol. 29. ACM, New York, NY, USA.
https://doi.org/10.1145/178243.178260

[87] Jaishankar Sundararaman and Godmar Back. 2008. HDPV: interactive, faithful, in-vivo runtime state visualization for C/C++ and Java. In
Proceedings of the 4th ACM symposium on Software visualization. Association for Computing Machinery, New York, NY, USA, 47–56. https:
//doi.org/10.1145/1409720.1409729

[88] Lin Tan, Chen Liu, Zhenmin Li, Xuanhui Wang, Yuanyuan Zhou, and Chengxiang Zhai. 2014. Bug characteristics in open source software.
Empirical Software Engineering 19, 6 (2014), 1665–1705. https://doi.org/10.1007/s10664-013-9258-8

[89] Jie Tao, Wolfgang Karl, and Martin Schulz. 2001. Visualizing the memory access behavior of shared memory applications on NUMA architectures.
In International Conference on Computational Science. Springer, 861–870. https://doi.org/10.1007/3-540-45718-6_91

[90] Gareth Terry, Nikki Hayfield, Victoria Clarke, and Virginia Braun. 2017. Thematic analysis. The Sage handbook of qualitative research in psychology
(2017), 17–37.

[91] Alfredo R Teyseyre and Marcelo R Campo. 2009. An overview of 3D software visualization. IEEE transactions on visualization and computer
graphics 15, 1 (2009), 87–105. https://doi.org/10.1109/TVCG.2008.86

[92] Scott Tilley and Shihong Huang. 2002. Documenting software systems with views iii: towards a task-oriented classification of program visualization
techniques. In Proceedings of the 20th annual international conference on Computer documentation. Association for Computing Machinery, New
York, NY, USA, 226–233. https://doi.org/10.1145/584955.584988

[93] François Trahay, Manuel Selva, Lionel Morel, and KevinMarquet. 2018. NumaMMA: NUMAmemory analyzer. In Proceedings of the 47th International
Conference on Parallel Processing. Association for Computing Machinery, New York, NY, USA, 1–10. https://doi.org/10.1145/3225058.3225094

[94] Edward Tufte and P Graves-Morris. 2014. The visual display of quantitative information.; 1983.
[95] Muhammad Usman, Emilia Mendes, Francila Weidt, and Ricardo Britto. 2014. Effort estimation in agile software development: a systematic

literature review. In Proceedings of the 10th international conference on predictive models in software engineering. ACM, Association for Computing
Machinery, New York, NY, USA, 82–91. https://doi.org/10.1145/2639490.2639503

[96] Eric van der Deijl, Gerco Kanbier, Olivier Temam, and Elana D. Granston. 1997. A cache visualization tool. Computer 30, 7 (1997), 71–78.
https://doi.org/10.1109/2.596631

[97] Renan Vasconcelos, Marcelo Schots, and Cláudia Werner. 2014. An information visualization feature model for supporting the selection of software
visualizations. In Proceedings of the 22nd International Conference on Program Comprehension. Association for Computing Machinery, New York,
NY, USA, 122–125. https://doi.org/10.1145/2597008.2597796

[98] Raoul L Veroy, Nathan P Ricci, and Samuel Z Guyer. 2013. Visualizing the allocation and death of objects. In Software Visualization (VISSOFT), 2013
First IEEE Working Conference on. IEEE, 1–4. https://doi.org/10.1109/VISSOFT.2013.6650538

[99] Anthony J Viera, Joanne M Garrett, et al. 2005. Understanding interobserver agreement: the kappa statistic. Fam med 37, 5 (2005), 360–363.
[100] David Wakeling. 1999. Compiling lazy functional programs for the Java Virtual Machine. Journal of Functional Programming 9, 6 (1999), 579–603.

https://doi.org/10.1017/S0956796899003603
[101] Markus Weninger, Paul Grünbacher, Elias Gander, and Andreas Schörgenhumer. 2020. Evaluating an Interactive Memory Analysis Tool:

Findings from a Cognitive Walkthrough and a User Study. Proc. ACM Hum.-Comput. Interact. 4, EICS, Article 75 (June 2020), 37 pages. https:
//doi.org/10.1145/3394977

[102] Markus Weninger, Lukas Makor, and Hanspeter Mössenböck. 2020. Memory Cities: Visualizing Heap Memory Evolution Using the Software City
Metaphor. In 2020 Working Conference on Software Visualization (VISSOFT). IEEE, 110–121. https://doi.org/10.1109/VISSOFT51673.2020.00017

[103] Joao Werther, Glauco de Figueiredo Carneiro, and Rita Suzana Pitangueira Maciel. [n.d.]. A Systematic Mapping on Visual Solutions to Support
the Comprehension of Software Architecture Evolution. ([n. d.]).

[104] BenjaminWeyers, Christian Terboven, Dirk Schmidl, JoachimHerber, TorstenWKuhlen,Matthias SMüller, and BerndHentschel. 2014. Visualization
of memory access behavior on hierarchical NUMA architectures. In 2014 First Workshop on Visual Performance Analysis. IEEE, 42–49. https:
//doi.org/10.1109/VPA.2014.12

[105] Claes Wohlin. 2014. Guidelines for snowballing in systematic literature studies and a replication in software engineering. In Proceedings of the 18th
international conference on evaluation and assessment in software engineering. Association for Computing Machinery, New York, NY, USA, 1–10.
https://doi.org/10.1145/2601248.2601268

[106] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and Anders Wesslén. 2012. Experimentation in software engineering.
Springer Science & Business Media.

[107] Ji Soo Yi, Youn ah Kang, John Stasko, and Julie A Jacko. 2007. Toward a deeper understanding of the role of interaction in information visualization.
IEEE transactions on visualization and computer graphics 13, 6 (2007), 1224–1231. https://doi.org/10.1109/TVCG.2007.70515

[108] Yijun Yu, Kristof Beyls, and Erik H D’Hollander. 2001. Visualizing the impact of the cache on program execution. In Proceedings Fifth International
Conference on Information Visualisation. IEEE, 336–341. https://doi.org/10.1109/IV.2001.942079

Manuscript submitted to ACM

https://doi.org/10.1145/1181775.1181779
https://doi.org/10.1145/2892242.2892253
https://doi.org/10.1145/178243.178260
https://doi.org/10.1145/1409720.1409729
https://doi.org/10.1145/1409720.1409729
https://doi.org/10.1007/s10664-013-9258-8
https://doi.org/10.1007/3-540-45718-6_91
https://doi.org/10.1109/TVCG.2008.86
https://doi.org/10.1145/584955.584988
https://doi.org/10.1145/3225058.3225094
https://doi.org/10.1145/2639490.2639503
https://doi.org/10.1109/2.596631
https://doi.org/10.1145/2597008.2597796
https://doi.org/10.1109/VISSOFT.2013.6650538
https://doi.org/10.1017/S0956796899003603
https://doi.org/10.1145/3394977
https://doi.org/10.1145/3394977
https://doi.org/10.1109/VISSOFT51673.2020.00017
https://doi.org/10.1109/VPA.2014.12
https://doi.org/10.1109/VPA.2014.12
https://doi.org/10.1145/2601248.2601268
https://doi.org/10.1109/TVCG.2007.70515
https://doi.org/10.1109/IV.2001.942079

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

Software Visualizations to Analyze Memory Consumption: A Literature Review 33

[109] Marvin V Zelkowitz and Dolores R. Wallace. 1998. Experimental models for validating technology. Computer 31, 5 (1998), 23–31.
[110] Andreas Zeller and Dorothea Lütkehaus. 1996. DDD—a free graphical front-end for UNIX debuggers. ACM Sigplan Notices 31, 1 (1996), 22–27.

https://doi.org/10.1145/249094.249108
[111] Thomas Zimmermann and Andreas Zeller. 2002. Visualizing memory graphs. In Software Visualization. Springer Berlin Heidelberg, Berlin,

Heidelberg, 191–204. https://doi.org/10.1007/3-540-45875-1_15

A SEARCH STRING FOR DIGITAL LIBRARIES

Table 15 shows the search queries used for the three digital libraries.

Table 15. Search query for the three digital libraries

Digital library Search query

ACM Abstract: ((software OR program OR application) AND (visualize OR visualization OR visual-
isation OR visualizations OR visualisations OR visuals OR visual) AND ("memory heap" OR
"memory allocation" OR "memory consume" OR "memory consumption" OR "memory usage" OR
"memory management" OR "memory issues" OR "memory issue" "memory bloats" OR "memory
leaks" OR "memory access" OR "memory address"))

IEEE Xplore ("Abstract": "software" OR "Abstract": "program" OR "Abstract": "application") AND ("Abstract":
"visualize" OR "Abstract": "visualization" OR "Abstract": "visualisation" OR "Abstract": "visual-
izations" OR "Abstract": "visualisations" OR "Abstract": "visuals" OR "Abstract": "visual") AND
("Abstract": "memory heap" OR "Abstract": "memory allocation" OR "Abstract": "memory con-
sume" OR "Abstract": "memory consumption" OR "Abstract": "memory usage" OR "Abstract":
"memory management" OR "Abstract": "memory issues" OR "Abstract": "memory bloats" OR
"Abstract": "memory leaks" OR "Abstract": "memory access" OR "Abstract": "memory address")

Scopus ABS ((software OR program OR application) AND (visualize OR visualization OR visualisation
OR visualizations OR visualisations OR visuals OR visual) AND ("memory heap" OR "memory
allocation" OR "memory consume" OR "memory consumption" OR "memory usage" OR "memory
management" OR "memory issues" OR "memory issue" OR "memory bloats" OR "memory leaks"
OR "memory access" OR "memory address")) AND (LIMIT-TO (SUBJAREA , "COMP")) AND (
LIMIT-TO (DOCTYPE , "cp") OR LIMIT-TO (DOCTYPE , "ar")) AND (LIMIT-TO (LANGUAGE
, "English"))

Manuscript submitted to ACM

https://doi.org/10.1145/249094.249108
https://doi.org/10.1007/3-540-45875-1_15

	Abstract
	1 Introduction
	2 Methodology
	2.1 Research Questions
	2.2 Search Strategy
	2.3 Inclusion & Exclusion Criteria
	2.4 Quality Assessment
	2.5 Data Extraction
	2.6 Data Analysis

	3 Results
	3.1 Overview
	3.2 RQ1: Problems domain
	3.3 RQ2: Data
	3.4 RQ3: Representation
	3.5 RQ4: Evaluation
	3.6 RQ5: Availability

	4 Discussion and open challenges
	5 Threats of validity
	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Search string for digital libraries

