
A Domain-Specific Language to Visualize Software
Evolution

Alison Fernandez1, Alexandre Bergel2

1University of San Simon, Bolivia
2Pleiad Lab, DCC, University of Chile

Abstract—Context: Accurately relating code authorship to
commit frequency over multiple software revisions is a complex
task. Most of the navigation tools found in common source code
versioning clients are often too rigid to formulate specific queries
and adequately present results of such queries. Questions related
to evolution asked by software engineers are therefore challenging
at answering using common Git clients.

Objective: This paper explores the use of stacked adjacency
matrices and a domain specific language to produce tailored
interactive visualizations for software evolution exploration. We
are able to support some classical software evolution tasks using
short and concise scripts using our language.

Method: We propose a domain-specific language to stack
adjacency matrices and produce scalable and interactive visu-
alizations. Our language and visualizations are evaluated using
two independent controlled experiments and closely observing
participants.

Results: We made the following findings: (i) participants are
able to express sophisticated queries using our domain-specific
language and visualizations, (ii) participants perform better than
GitHub’s visualizations to answer a set of questions.

Conclusion: Our visual and scripting environment performs
better than GitHub’s visualizations at extracting software evolu-
tion information.

Keywords: Git, history visualization, domain-specific language

I. INTRODUCTION

Programming activities often require historical information
from source code. Consider the following two software evolu-
tion tasks [1]: “Identify the two classes someone changed the
most in the past days” and “Identify the methods that someone
else has also changed”. Both tasks are likely to be asked by
a developer in order to become familiar with someone else’s
work or to become aware of a team activity. It has been shown
that completing these particular two tasks requires dedicated
tooling and traditional code versioning systems are suboptimal
in that respect [1].

This paper presents and evaluates a visualization framework
to explore the evolution of a source code repository. Our
approach is based on two main ingredients: (i) a domain-specific
language that focuses on the notion of time, Git commit, and
metric, and (ii) a visual way to stack adjacency matrices. The
language we have designed aims to tailor visualizations in order
to address particular questions related to software evolution.

Executing a script in our domain-specific language produces
an interactive visualization. As a visual support, we employ
MultiPile [2] as a compact way to summarize and navigate

through a set of matrices. MultiPile was proposed as a visualiza-
tion to explore temporal patterns in dynamic graphs. It employs
a natural and intuitive analogy of piling adjacency matrices,
each matrix representing a temporal snapshot. MultiPile was
designed to help neuroscientists. Our article is about assessing
MultiPile to solve software evolution problems.
Contributions. This paper makes the following contributions:

• We present GitMultipile, a domain-specific language
coupled with stacked adjacency matrices to produce
interactive visualizations.

• We evaluate GitMultipile using two experiments: (i) a first
controlled experiment focusing on the expressiveness of
our domain-specific language, (ii) a second controlled
experiment to compare visualizations of GitMultipile
against the ones of GitHub. For both experiments, we
observed and monitored the participant activities.

Findings. We made the following findings:
• The language offered by GitMultipile is more efficient

than Excel at retrieving data from a simple CSV sheet.
• Participants are more efficient at defining and using

visualizations with GitMultipile than using GitHub to
answer a set of software evolution questions.

• By observing participants during our experiments, we
identified some obvious limitations of the navigation tools
offered by GitHub.

Paper outline. Our paper is structured as follows: Section II
describes Multipile, the visual foundation used in our work.
Section III presents GitMultipile, our approach to assess
Git-based repositories using a domain-specific language and
Multipile. Section IV illustrates the use of GitMultipile on two
large Git repositories. Section V discusses the methodology
we use to evaluate GitMultipile. Section VI evaluates the ex-
pressiveness of our language by using a controlled experiment.
Section VII compares the visualization produced by some
participants against the visualizations of GitHub. Section VIII
lists some observations of our participants during their activity.
Section IX lists the threats to validity our work may be subject
to. Section X presents the work related to this paper. Section XI
concludes and outlines our future work.

II. BACKGROUND: STACKING ADJACENCY MATRICES

Matrix pile. Adjacency matrices are often used to visualize
edges between software related components [3], [4], [5]. Each

1

3/29/17, 2)30 PMRoassal Page

Page 1 of 1file:///Users/alexandrebergel/Downloads/Work/index.html

1 2 3

A B C D

A
B
C
D

A
B
C
D

A
B
C
D

A B C D A B C D

1 2 3

Fig. 1: Three adjacency matrices.

3/29/17, 3)42 PMRoassal Page

Page 1 of 1file:///Users/alexandrebergel/Downloads/Work/index.html

1 - 3

A B C D

A
B
C
D

3

2

1

Matrix 1
Matrix 2

Matrix 3

Matrix 1
Matrix 2
Matrix 3

Weight sum
low

high

Fig. 2: A piled stack of matrices, obtained from the three
matrices given in Figure 1.

element of a matrix indicates whether two elements are related.
A matrix is made of edge weights. Figure 1 gives three
adjacency matrices. On this contrived example, each matrix
is squared and has a size of 4. Matrix 1, located on the left,
indicates that element B is connected to element D, while D is
connected to A and C to A. We assume that the three matrices
represent the evolution in time of the graph composed of the
nodes A, B, C, and D.

A matrix pile, as proposed by Bach et al. [2], is a
structure that stacks adjacency matrices. A matrix pile is the
superposition of stacked adjacency matrices. All the matrices
that belong to a same pile have the same dimension and same
object values for both axes.

Figure 2 represents a piled matrix obtained from the three
matrices given in Figure 1. A piled matrix is made of three
distinct parts. Part 1 is a matrix showing the superposition of
the three matrices. This superposition is called the “coverage
matrix” and the weight of element Cij is the average weight
of the same cell in all the matrices:

Cij =
1

T

(
T∑

n=1

Mn
ij

)

3/29/17, 3)42 PMRoassal Page

Page 1 of 1file:///Users/alexandrebergel/Downloads/Work/index.html

1 - 3

3/29/17, 3)42 PMRoassal Page

Page 1 of 1file:///Users/alexandrebergel/Downloads/Work/index.html

1 - 3

3/29/17, 2)30 PMRoassal Page

Page 1 of 1file:///Users/alexandrebergel/Downloads/Work/index.html

1 2 3

A B C D

A
B
C
D

A
B
C
D

A
B
C
D

A B C D A B C D

1 2 3
Fig. 3: The previews support navigation in a matrix stack

where Mn is a stacked matrix and T the number of stacked
matrices.

Part 2 and Part 3, called top-preview and left-preview,
respectively, are a small visual summary of the piled matrices.
The previews summarize the content of the pile, each thin bar
corresponding to a matrix. The top-preview is made of three
thin horizontal bars, each representing a piled matrix. The order
of piled matrices goes from bottom to top. Each horizontal bar
has n parts, each summarizing a column and n is the number
of columns of the coverage matrix. The summary of a part
is obtained from the number of the weights greater than 0.
Similarly, the left preview summarizes each row of the piled
matrices.

A preview is also a navigation widget: locating the mouse
above a stacked matrix summary (i.e., thin bar), has the effect
to replace the coverage matrix by the actual pointed matrix.
Figure 3 illustrates this point: locating the mouse cursor on
the top line in the preview replaces the coverage matrix with
Matrix 3, given in Figure 2.

Two or more matrices can be piled to produce a pile matrix.
Note that the original definition of pile matrix [2] considers the
coverage matrix and the top preview (Part 1 and 2 of Figure 2).
We extended this original definition with a left preview (Part 3).
Timeline. A visualization may be composed of several stacks of
matrices and some non-stacked matrices. A timeline represents
a summary of the whole visualization and is also a way to
navigate through the different parts by highlighting parts related
to the element in the timeline pointed by the mouse.

1 2 3

A

B

C

D 1 2 3

Number of
incoming edges

low

high

Fig. 4: Timeline for the three non-stacked matrices given in
Figure 1

Figure 4 contains a timeline summarizing the three non-
stacked matrices. Each stacked and non-stacked matrix has an

2

identifier, and this identifier is used in the timeline to indicate
the represented matrix.

Each vertical box of the timeline summarizes a matrix. The
first column, with the id 1, represents Matrix 1 given in Figure 1.
In that matrix, the element A has two incoming edges (C and
D), and D receives an incoming edge from B. The intensity of
the green color in (A,1), Figure 4, represents the value 2 (since
A receives connections from 2 elements), and the intensity of
(D, 1) represents the value 1. In Matrix 1, both B and C are
not connected, thus producing cells in the timeline with no
weight.

In the timeline, a vertical cell group corresponds to one
time period (i.e., one adjacency matrix) and is separated from
other matrices. Piled matrices are represented in the timeline
as joined vertical cells. Figure 4 represents the three matrices
of Figure 1, kept separately, while the timeline of Figure 5
indicates that two piles are formed.

Multipile was presented at EuroVis 2015. Multipile has
several benefits, such as topological states, which are quickly
spotted and compared in a scalable fashion. This paper
reconsiders this work under the scope of software engineering
by extending and using it in addressing some software evolution
tasks.

III. GITMULTIPILE MATRIX

This section gives an overview of GitMultiPile, our com-
bination of Multipile and a domain-specific language. First
a brief and informal description is given (Section III-A). A
running example is used to illustrate various aspects of our
approach (Section III-B). Each of the subsequent sections
covers a particular problem addressed in analyzing software
history and uses GitMultipile to define a visual support, useful
to address that problem.

A. In a nutshell

The GitMultipile approach is centered around Git commits
and stackable adjacency matrices. GitMultipile features the
following:

• Expressing relations – The domain and codomain of the
relation (e.g., authors, files, time) are mapped to the X
and Y axes of the adjacency matrices.

• Computing cell weight – The weight of a matrix cell is
computed as the number of Git commits that match a
particular condition.

• Stacking matrices – Matrices can be stacked using
particular time ranges and conditions. Time range may be
deduced by using binary relations, i.e., all the consecutive
months in which a particular author is active.

• Filtering data – Rows and columns of the matrices may
be filtered out using manually set thresholds or defined
conditions, i.e., removing all the authors with less than a
particular number of commits.

• Adjusting visual properties – The overall layout involves
the location of matrices over an infinite two-dimensional
space. Customizable layouts may be used to accommodate
the overall visualization.

• Highlighting data – Predicates may be formulated to
highlight particular pieces of data, e.g., a particular author
or particular relations. Information on demand may also
be adjusted to reflect the meaning of each cell.

Projection and transformation metrics may be used when
defining the matrices. Transformation may be useful in treating
some particular outliers, which would hide particular patterns
if not adequately considered.

We have designed a domain-specific language that combines
the aspects listed above. Programs written in our DSL are
usually short, usually less than 20 lines of code, and are
supposed to support a particular analysis of a Git repository
evolution. The complete GitMultiple language is described in
Appendix.

B. Running example

We take as example a repository of Microsoft named mwt-
ds-explore-java1. This repository contains 55 commits and 5
authors.

This example is relatively small to comfortably illustrate
different aspects of our language, presented in the subsequent
sections. Section IV discusses the scalability of GitMultipile.

C. Frequency of commit within a range of time

The frequency of code commits during a particular time
range may provide a valuable insight on the effort distribution
during that period. This subsection details a short script (14
LOC) that presents the activity at the end of 2015 with the
beginning of 2016 of our running example. The result of the
script is shown in Figure 5.
Script. The variable git refers to a particular Git repository
and exposes the domain-specific language (DLS) through
commands sent within this context. The first necessary step to
initialize a visualization is to indicate the mapping of the Git
model to the two matrix axes:

1 git mapFrom: #authors to: #days.
2 git timeMonth.

The lines above indicate that the adjacency matrices repre-
sent authors and commit days of Git commits. Authors are
represented on the Y-axis and month-days on the X-axis. The
timeMonth keyword sets the time range represented by a matrix:
each matrix represents the activity of a month. All matrices have
the same dimensions: vertically the number of authors of the
whole project, and the day number of the month, horizontally.
As all matrices have the same size, the matrices have 31 cells
horizontally, to accommodate with the maximum number of
days a month can have. In case a month has less than 31 days,
cells of the missing days have a value weight of 0.

The weight of each cell (author, day) is determined using
the instruction:

3 git
4 from: [:commit :author | commit author = author]
5 to: [:commit :day | commit day = day].

1https://github.com/Microsoft/
mwt-ds-explore-java

3

https://github.com/Microsoft/mwt-ds-explore-java
https://github.com/Microsoft/mwt-ds-explore-java

3/29/17, 4*06 PMRoassal Page

Page 1 of 1file:///Users/alexandrebergel/Downloads/Work/index.html

June 2015 - December 2015

January 2016 - March 2016

author1
author2
author3
author4
author5

Fig. 5: Comparing the activity at the end of 2015 with beginning
of 2016 [Author names are anonymized].

The weight of a cell is the number of commits matching
the condition provided with from:... to:.... Each cell of a
matrix represents all the commits made by a particular author
on a particular day of the month. The weight of the cell is
the number of commits authored by a particular author on a
given day. Visually, a cell with a dark color represents a high
number of commits while a light color intensity indicates few
commits.

We will distinguish the commits made in the project
according to the year. We will compare the period of Jun-
Dec 2015 against Jan-Mar 2016 by using two matrix piles.
The following two instructions achieve this:

7 git pileFrom: (Month month: 'June' year: 2015)
8 to: (Month month: 'December' year: 2015).
9

10 git pileFrom: (Month month: 'January' year: 2016)
11 to: (Month month: 'March' year: 2016).

A complete API for manipulating time range and forming
date is available, however briefly presented in the Appendix.
Each invocation of the command pileFrom: ... to: ...

declares a new pile, composed of matrices fulfilling the
provided time range.

Some parameters may be set to accommodate the visual
representation.

12 git fromIdentifier: [:author | author fullName , author email].
13 git toIdentifier: [:day | 'Day ', day asString].
14 git layout verticalLine.

Lines 12 and 13 define a textual description of the cell. This
description is useful when the mouse cursor pointer is above

a cell to give some contextual information. Line 14 defines
the layout of the matrices. A vertical layout is selected which
means that the first pile is physically located above the second
pile. The result of the script execution is given in Figure 5.
Analysis. The script above contrasts the activity of two periods
of time for our running example and Figure 5 shows the
visualization produced from its execution. The visualization
shows a number of interesting facts. In particular the timeline
indicates:

• Four developers (author2, author3, author4, and author5)
participated in the development in 2015 while only two
developers (author1 and author2) in 2016.

• Author2 is the only developer who has a relatively con-
stant activity over the analyzed period. Other developers
contributed for a short period of time.

The two piled matrices provide additional information about
the overall activity. In particular they reveal:

• During 2015, author2 made several commits on the fifth
day of the months. The left preview indicates that commits
were realized in 3 of the 4 months composing the 2015
period.

• During 2015, author5’s contributions are concentrated on
only three days, 16, 17, 18.

D. Stacking matrices to reflect author changes

Section III-C shows that author2 made the most commits
in our running example. In this section, we will focus on his
activity by highlighting commits made on Java files.
Script. The script we will describe produces the visualization
given in Figure 6.

1 git mapFrom: #authors to: #days.
2 git timeMonth.
3 git
4 from: [:commit :author | commit author = author]
5 to: [:commit :day | commit day = day]
6 weight: [:commits | commits select: [:c | c containsFile: [:file | file

fullName endsWith: '.java']]].

Similarly as in Section III-C, each matrix maps authors to
days (Line 1) and each matrix represents a month (Line 2). The
weight function for each matrix cell is slightly more complex
than earlier. In this case, the weight is defined as the number
of commits that modified at least one .java file, made on a
day and by an author.

A stack of matrices superposes the activity of several months.
A condition may be provided to highlight a portion of author2’s
work:

7 git pileIf: [:matrix |
8 matrix containsAuthorNamed: 'author2'].

Lines 7-8 create piles for consecutive months in which the
author has committed. Figure 6 shows that only one pile is
formed, between January and March 2016.

Particular authors may be highlighted:

9 git
10 highlightAuthorName: 'author2'
11 using: Color blue.

4

3/29/17, 4*08 PMRoassal Page

Page 1 of 1file:///Users/alexandrebergel/Downloads/Work/index.html

June 2015

August 2015

November 2015

December 2015

January 2016 - March 2016

author1
author2
author3
author4
author5

Fig. 6: Highlighting a particular author and his activity.

Commits made by a particular author are colored in
blue. Colors may be mixed in case more than one
highlightAuthorName: ... using: ... clauses are defined.

Analysis. The script given above produces a visualization
representing the consecutive periods of activity on Java files
by a particular author. In particular, author2 committed during
the periods: August 2015 and January 2016 - March 2016.

E. Activity on files

As we have previously seen (Section III-C), the participation
of author5 is punctual in the project since he worked only in
June 2015. This section delves into author5’s activity during
that period of time. The result is presented in Figure 7.

Script. We focus on the activity per file per authors during a
month-time period. The matrix dimensions are defined as:

1 git mapFrom: #authors to: #files.
2 git timeMonth.

Each matrix represents a month, as in the previous examples.
The Y-Axis represents authors while files are located on the
X-axis. Each cell represents therefore the activity of an author
on a particular file, during a month period.

The weight of each cell is computed as the number of
commits made by author and that involve file:

3 git
4 from: [:commit :author | commit author = author]
5 to: [:commit :file | commit containsFile: [:f | f = file]].

Since we know that author5 has contributed in June 2015
only, we isolate this month from all the others by stacking
all the remaining months (i.e., the months that do not contain
author5’s activity):

6 git sequenceIf: [:matrix | matrix containsAuthorNamed: 'author5'].

We highlight author5’s activity in green:

7 git highlightAuthorName: 'author5'
8 using: Color green.

Analysis. Figure 7 shows the result of the script execution.
The time on top of the figure indicates two piles: the first
made with a unique matrix corresponding to June 2015 and the
second pile to the months August 2015 to March 2016. The
timeline shows that author5 made the the most contributions
in June 2015. The green line in the matrix June 2015 indicates
that author5 committed some changes over a large number
of files. By contrasting this matrix with the stacked matrices,
author5 is the only contributor who committed over so many
files. Actually, since our running example project was created
in June 2015, we deduce that author5 created all the green
files, and later did not touch them anymore.

IV. CASE STUDY ON LARGE REPOSITORIES

This section uses GitMultiple to represent history of large
software systems.

A. Author’s commits per day

The repository elastic/elasticsearch is one of the
most popular Java projects kept on GitHub. The project2 has
769 different contributors, totaling 26,220 commits. According
to gittrends.io [6], elasticsearch has a truck factor of 7 people,
which is pretty high compared to other Git repositories.

We used GitMultipile to highlight the truck factors over a
period of time from August 2016 to January 2017, as depicted
in Figure 8. The figure is produced by the following script:

git mapFrom: #authors to: #days.
git timeMonth.

git
from: [:commit :author | commit author = author]
to: [:commit :day | commit day = day].

git fromIdentifier: [:author | author fullName , ' ', author email].
git toIdentifier: [:day | 'Day ', day asString].

authors := #(tf1' 'tf2' 'tf3' 'tf4' 'tf5' 'tf6' 'tf7').

2https://github.com/elastic/elasticsearch

5

gittrends.io
https://github.com/elastic/elasticsearch

3/29/17, 4*10 PMRoassal Page

Page 1 of 1file:///Users/alexandrebergel/Downloads/Work/index.html

June 2015

August 2015 - March 2016

author1
author2
author3
author4
author5

Fig. 7: The green horizontal line indicates a commit affecting many files

3/30/17, 12)43 PMRoassal Page

Page 1 of 1file:///Users/alexandrebergel/Downloads/Work/index.html

April 2016 June 2016

July 2016

August 2016 - January 2017

Fig. 8: Portion of the ElasticSearch history

git pileIf: [:matrix |
matrix containsAnyAuthorMatchingFrom: authors
].

git filterOutAuthor: [:author | author numberOfCommits < 2].

authors do: [:a |
git highlightAuthorMatching: a using: Color blue].

In order to preserve author anonymity, we replaced the real
author name by a generic term to designate a truck factor. The
variable authors contains the authors listed by gittrends.io3.
Figure 8 clearly indicates in blue the contribution of the truck
factors over the considered period of time. The script filters
out authors that have less than 2 commits.

B. Author’s commits per hour

Brackets is an open source code editor for the web, written in
JavaScript, HTML, and CSS. Brackets is a popular application,
with over 27K stars and 340 contributors. Brackets has a truck
factor of 54.

The development of Brackets began in 2012 and it is still
under a sustained development. We use GitMultiple to perform
two tasks: (i) see the distribution of commits along a day’s
hour, and (ii) contrasts two time periods, January - September
in 20125 and in 20176. The truck factor is highlighted.

We generated a visualization using the script:

git mapFrom: #authors to: #hours.
git timeMonth.

git
from: [:commit :author | commit author = author]
to: [:commit :hour | commit hour = hour].

git fromIdentifier: [:author | author fullName , ' ', author email].
git toIdentifier: [:hour | 'Hour ', hour asString].

truckFactorAuthors := #('tf8' 'tf9' 'tf10' 'tf11' 'tf12').

3http://gittrends.io/#/repos/elastic/elasticsearch
4http://gittrends.io/#/repos/adobe/brackets
5https://github.com/adobe/brackets/graphs/

contributors?from=2011-12-07&to=2012-09-10&type=c
6https://github.com/adobe/brackets/graphs/

contributors?from=2016-12-07&to=2017-09-10&type=c

6

http://gittrends.io/#/repos/elastic/elasticsearch
http://gittrends.io/#/repos/adobe/brackets
https://github.com/adobe/brackets/graphs/contributors?from=2011-12-07&to=2012-09-10&type=c
https://github.com/adobe/brackets/graphs/contributors?from=2011-12-07&to=2012-09-10&type=c
https://github.com/adobe/brackets/graphs/contributors?from=2016-12-07&to=2017-09-10&type=c
https://github.com/adobe/brackets/graphs/contributors?from=2016-12-07&to=2017-09-10&type=c

January 2012 - September 2012 January 2017 - September 2017

Fig. 9: Two time periods of Adobe’s Brackets

git pileFrom: (Month month: 'January' year: 2017) to: (Month month: '
December' year: 2017) .

git pileFrom: (Month month: 'January' year: 2012) to: (Month month: '
December' year: 2012) .

truckFactorAuthors do: [:a |
git highlightAuthorMatching: a using: Color blue].

git layout horizontalLine.

The script produced the visualization Figure 9, which is
composed of two large matrix piles. The left matrix covers
the months January until September in 2012 and the right pile
covers the same months in 2017. Each line in a preview (i.e., a
matrix) represents a month time period. We have anonymized

contributor names.
We draw the following conclusions:
• Most commits happen after 8:00 am, as the top preview

indicate. Commits made before may indicate contributor
living in a different time-zone.

• The activity in 2017 is considerably reduced when
compared with the same time period in 2012.

• The truck factor is composed of 5 developers7, colored
in blue in the piled matrices. In the period January -
September 2012, only 4 developers belong to the truck
factor, thus indicating that the fifth one became active
later on. We also see that the truck factor was very active
during the 2012 period, and did very little in 2017.

• The left preview indicates many developers were constant
in their effort. However, not all of these authors belong
to the truck factor.

V. EVALUATION METHODOLOGY

GitMultipile combines a domain-specific language, a vi-
sualization framework, and an environment in which scripts
may be interpreted. These three facets therefore structure our
methodology to evaluate GitMultipile.

A. Three pillars

DLS expressiveness. The linguistic constructions given in
Section III are the basic blocks in formulating queries over
a dataset – a Git repository in our case. GitMultipile offers
several constructs to filter and query the history of a repository.
The first research question we will evaluate is

Q1 - “How expressive are the querying facilities offered by
GitMultipile’s domain-specific language?”

More specifically, we will assess the expressiveness of the
offered language constructions to formulate queries.
Visualization. Visualizations play a major role when navigating
and retrieving data from the history of a Git repository. The
second research question we will assess is

Q2 - “How effective is the GitMultipile visualization?”

In particular, whether the produced visualizations reduce
the search time and increase the accuracy of the participant
answers.
Usage. We built a simple but effective environment to edit
and run GitMultipile scripts, built on top of GTInspector [7].
Figure 10 illustrates the GitMultipile execution environment.
Scripts are typed in the textual panel located on the left-hand
side. The script is then executed by clicking on the green
triangle button, above the text pane, to produce the visualization
on the right hand side.

Observing user activities and identifying questions that are
raised during our experiments is proven to be effective. We
will apply the methodology formulated by Sillito et al. [8]:
we will identify the questions that a user is answering based

7http://gittrends.io/#/repos/adobe/brackets

7

http://gittrends.io/#/repos/adobe/brackets

Fig. 10: The GitMultiple environment in action

on the activity being carried out. We will then classify these
questions and measure their frequency.

B. Controlled experiments

We will conduct two controlled experiments [9] in which the
measured and tested dependent variables are the productivity
of a particular task and the independent variable reflects the
treatment (the used tool, GitMultipile, Excel, GitHub, in our
case) used to carry out the task.
Experimental design decisions. We will consider the following:
(i) each experiment will use a distinct set of participants to
avoid learning effects, (ii) we will use a within-subject design
(i.e., all participants are exposed to every condition), (iii) only
experienced professional developers will be used as participants,
(iv) task assignment to subjects is randomized.
Baseline for the first experiment. A baseline is a treatment
that is used as a standard of comparison. In order to have
meaningful results, it is important to use a fair (i.e., impartially
selected to not favor our results) and representative (i.e., match
current practices) baselines in our experiments.

GitMultipile provides a domain-specific language to formu-
late queries. Measuring the expressiveness of our language
requires a baseline to which our language has to be compared.
Unfortunately, there is no obvious choice for such a compar-
ison. We reviewed the different candidate baselines for our
experiment:

• gitql8 is a SQL like query language for a Git repository.
Although appealing at first glance, gitql does not provide a
tutorial nor a solid documentation. Making our experiment
fair requires a teaching material of the system we will
compare GitMultpline against.
However, comparing GitMultipile against gitql will be (i)
biased toward GitMultipile if we consider the rather poor
documentation of gitql, or (ii) biased if we designed the
gitql documentation ourself (e.g., we could unintentionally
design a sub-optimal documentation that would naturally
favor our system).

• GitHub Developer API9 is an API accessible via network
requests, which return JSON descriptions as results. Both
the network query formulation and the JSON description

8https://github.com/cloudson/gitql
9https://developer.github.com/v3/search/

manipulation require dedicated tools. The choices we
may have in picking these tools as the “glue” between
the network and JSON aspect are significant biases.
In addition, this tool chain cannot be considered as a
natural solution that matches current practices to query
Git repositories: this API is designed to build Git clients
and not solve particular software evolution tasks.

• GitPython10 is a full-fledged API to query Git repositories.
GitPython is a complex and large framework in which
repository queries are expressed by creating and combin-
ing classes offered by the framework. Most of queries
expressed using GitMultipile involve significantly more
lines of code using GitPython. GitPython is not made
to write short script, instead, it is a solution to perform
sophisticated Git repository manipulations.

We also looked into commercial products. GitPlex11, devel-
oped by the PMease company, is a sophisticated Git repository
management server. The purpose of GitPlex is to manage Git
repositories (including issue management and build pipeline),
and not directly query the history of a repository.

Microsoft Excel is commonly used to explore structured
and unstructured data. It is also used as a baseline in another
controlled experiment around software evolution tasks [10]. In
that related work, Excel is used as a baseline against CodeCity
to solve tasks that code metrics. Moreover, Excel offers a large
number of functions to filter and manipulate data sets.

In our first controlled experiment, we pick Excel as the
baseline to compare GitMultipile against. Excel is well known
among practitioners and frequently employed to manipulate
data. Comparing Excel’s querying and filtering features against
GitMultipile is therefore relevant. We will provide the data
ready to be processed by Excel.

Baseline for the second experiment. In our second controlled
experiment, we use GitHub’s visualizations and navigation
tools as the baseline. GitHub offers several visualizations that
let one crawl over the activity of a Git repository. Comparing
the visualizations offered by GitHub against the one produced
by GitMultipile is therefore relevant. The way stacked matrices
are defined and structured will be evaluated against the GitHub
visualizations.

Oracle. In order to unequivocally determine if a participant
answer is correct or not, we need an oracle. We have defined the
oracle manually, using all the available treatments participants
will be exposed to (Excel, GitHub, GitMultipile). We have
determined each answer using one treatment and checked with
the other treatments. No discrepancies were found between
the answers obtained from the different treatments. We can
therefore conclude that all the correct answers can be found
using the treatments we will use in our experiment. We
collected answers for both research questions that way.

Scoring. Each question has to be answered with one or more
textual items (e.g., dates, author names, number of commits).

10http://gitpython.readthedocs.io/en/stable/
11https://www.pmease.com/gitplex

8

https://github.com/cloudson/gitql
https://developer.github.com/v3/search/
http://gitpython.readthedocs.io/en/stable/
https://www.pmease.com/gitplex

Each answer to a question provided by a participant can
be correct, incorrect, or partially correct. For each answer,
we compute the precision (fraction of items contained in a
participant answer that are correct) and the recall (fraction of
the correct items contained in the answer from all the expected
correct items). We then compute the F-measure that combines
precision and recall (F = 2. precision.recallprecision+recall). The score of
each question answered by a participant is the F-measure of
the answer. A score of 1.0 means that the answer has both
the precision and recall equal to 1.0. A score of 0.0 means
that either the precision or the recall is equal to 0.0. Scoring
each participant answer with the F-measure has the benefit
of simplifying the analysis since only one numerical value is
associated. Alternatively, we could have used the precision and
recall separately, however no clear benefit would be gained by
doing so.
Work session. Both controlled experiments will follow a work
session as follows:

1) Learning material A – We provide a short description,
written in a mini-tutorial fashion that illustrates how to
use treatment A. Examples used in the description are
smaller and different from the tasks T1 and T2.

2) Task T1 on A – A number of questions (4 or 5, depending
on the task) are asked to a participant. Answers are
written on a sheet of paper.

3) Learning material B – We provide learning material for
treatment B.

4) Task T2 on B – Similarly as earlier, questions are asked
to the participant and answers are written on a sheet of
paper.

5) Experiment feedback – Open comments are gathered
informally and orally to not pressure the participant into
giving an answer that we expect.

We will observe and monitor the execution of each work
session. Participants performed the two tasks on a computer,
and reported their answers on paper.
Software evolution questions. It is known that developers often
implicitly or explicitly formulate questions when performing
a software-evolution activity [8]. We have produced a set
of questions (see our additional material, Section VI, and
Section VII) to define a benchmark to measure the effectiveness
of an evolution-related activity. Our questions are inspired from
existing attempts at proposing such a benchmark [1], [10] and
are restricted to the notion of time, authors, commits.
Pilot Study. Before carrying out our experiments, we performed
for each experiment a pilot run. In this pilot run, two
professional engineers from a local Chilean software company
have run the experiments described later. This pilot run led us
to make some adjustments in our experimental design:

• Improved our questionnaire – Our participants had some
troubles to precisely understanding some questions in each
of our two experiments. We therefore simplified these
questions to remove the ambiguities in their formulation.
Note that the questions are formulated in English while
our participants are native Spanish speakers.

• Improved keywords of our DLS – The participants had
to often look for the meaning of some keywords from
the teaching material we provided. This means that our
original set of keywords was not intuitive. We therefore
improved our DLS by simplifying the set of keywords
defining the language.

The two participants agreed with our improvements of the
experiment. Note that the two participants did not participate
in the full experiment as the knowledge acquired in the pilot
run could be source of biased measurement.

Additional material. The following sections detail our experi-
ments. Since we cannot provide every detail of our experimental
measurements, we therefore invite the reader to access our
additional material, available online (https://www.dropbox.
com/s/ki7uyml24yeq1jd/Material.zip?dl=0).

C. Participants

We have a pool of twenty participants (two women and
eighteen men): eight of them are based in Bolivia, while
the remaining twelve are from a local company in Chile.
Participants are all young professional software engineers (all
with less than 8 years of working experience and the oldest
participant is 39 years-old), making their the largest part of
their earning gross from professional software development.
None of the participants is known to be color blind: we did
not conduct any test and none of the results may cast suspicion
about whether some participants are color blind.

VI. EVALUATING THE EXPRESSIVENESS AND USABILITY

When defining a new language syntax, it is important to keep
the right balance between the expressiveness of the language
and the cognitive effort needed to learn it.

By expressiveness, we refer to the ability of the language to
express queries and GitMultiple visualizations about a historical
dataset. The intuition we are building on, is that before solving
some software tasks, we assess whether our domain-specific
language is fit to solve those tasks.

We evaluate the expressiveness and usability of GitMultipile
by studying how users formulate queries for a given set of tasks.
We measure the performance of each participant based on the
formulated queries. As a consequence, we do not identify and
characterize all the possible queries that may be formulated
using a particular treatment (GitMultiple or Excel), which we
consider as outside the scope of this work. Furthermore, we
employ a set of tasks that may be solved using both treatments.

Motivation. In this first evaluation, we will compare our DLS
with Excel. We will use a reduced version of GitMultipile
by stripping out the Git aspect. Users will therefore have to
formulate queries using the construct pileFrom:to:, pileIf:,
and sequenceIf: without referring to Git. By removing the
Git aspect, conditions used in the script are simply formulated
as checking the presence or absence of particular values in the
matrices.

We chose to strip the Git aspects when evaluating the
expressiveness since (i) Excel does not natively support queries

9

https://www.dropbox.com/s/ki7uyml24yeq1jd/Material.zip?dl=0
https://www.dropbox.com/s/ki7uyml24yeq1jd/Material.zip?dl=0

Part. EX - Score EX-Time GM - Score GM - Time
P1 3.8 36 4.8 23
P3 3.6 37 5 19
P5 2 44 4.8 30
P7 3.3 40 4.8 25
P2 3.5 32 5 28
P4 3.1 33 4.8 23
P6 3.6 35 4.5 30
P8 4.6 53 5 27

TABLE I: Score and time (in minutes) of Excel (EX) and
GitMultipile (GM). Gray cell indicates Dataset 1, white cell
indicates Dataset 2.

over a Git history and (ii) using Git may be a confounding
variable (e.g., a negative result may be due to the complexity
of Git and not to the DSL). We use the term GitMultipileT to
refer to GitMultipile trimmed from the Git aspect.

Datasets. We use two datasets and each dataset is expressed as
a tab-separated values file that relate some identifiers to other
identifiers at a given time. Here is an excerpt of a dataset:

time author class weight
1 aut1 RT1 1
1 aut1 RT2 1
2 aut2 RT20 1
2 aut3 RT5 1

Both datasets are similar in their size. Our first dataset
contains 524 data points and the second dataset contains 642,
spanned over 19 time values. The dataset represents an evolving
graph for which the edges and their weights evolve over time.

Questions. We formulated five questions that have to be
answered by identifying values of the time, author, or class

columns that match a particular condition. For example, one
question asks about the biggest number of classes having
incoming edges from only one author during the first four
time periods. Another question is about the a class name that
appears in each time. The questions we considered are similar
to the ones we used in our previous study [11] and in the
second experiment (Section VII, but without referring to Git).

The maximum score a participant can have is 5 since
answering a question gives a value between 0.0 and 1.0.

Running the experiment. As described earlier, the work
sessions are structured into two tasks: Task T1 on treatment
A, and Task T2 on treatment B. This experiment was run with
8 participants, totaling 8.5 hours. With four participants we
have A = Excel, B = GitMultipileT . Treatments A and B are
swapped with the remaining four participants.

With four participants, we have T1 that uses the first dataset
and T2 uses the second dataset. The remaining four participants
have T1 and T2 that are swapped.

Results & Analysis. Table I contains the score and time taken
by each participant. Figure 11 represents the distribution of
the time and score using a Tukey boxplot.

We compare both the score and the time to complete the
tasks. Using Excel participants have a median score of 3.5
(average = 3.4, standard deviation σ = 0.7) and a median score
of 4.8 using GitMultipleT (average = 4.8, σ = 0.1).

 E
X - S

co
re

 G
M -

Sco
re

0

2

4

6

Treatment

S
co

re

 EX-Tim
e

 G
M - T

im
e

0

20

40

60

Treatment

Ti
m

e
(m

in
ut

es
)

Fig. 11: Tukey boxplot of score and time of Excel and
GitMultipile

We use the non-parametric test Mann-Whitney to measure
the significance between our two data sets. A two-tailed test
indicates that they are significantly different, with P = 0.0003.

Since our time values are normal, we use the classical t-test
to estimate if the two score values are different. A two-tailed
test gives P = 0.0004, which is lower than 0.05, thus indicating
that the score values are significantly different.

We provided two datasets. We need to verify if these two
sets are comparable in their difficulty to complete. The idea
is to discard a bias that may be due to a dataset significantly
more difficult to answer the questions than when using the
other one. We compare the values indicated with gray cells
with the white cells, for both the column “EX - Score” and
“GM - Score”. The Mann-Whitney test indicates that comparing
Dataset 1 and Dataset 2 with Excel and GitMultipleT results in
P > 0.9999, U = 8.0. We therefore conclude that both datasets
have a similar difficulty to process.

The effect size is a way to quantify the size of the difference
between two groups. Cohen’s d indicates a standardized
difference between two means, obtained from two groups of
values. Cohen’s value expresses this difference in standard
deviation units. Cohen’s d = 1.874 for the score and d = 2.458
for the time. In both cases, Cohen’s d is bigger than 1, which
means that the difference between the means for both the score
and time is larger than one standard deviation. We conclude
that the effect size is large (if d is larger than 0.6 then it is
usually considered as a large effect).

Since the difference is significant, the null-hypothesis is
rejected, the effect size is large, we conclude that:

• Participants graded significantly better using a trimmed
version of GitMultipile compared with Excel.

• Participants completed the questionnaire significantly
faster when using a trimmed version of GitMultipile than
Excel.

• Both datasets are similar in their difficulty and time to
complete for a given treatment

VII. EVALUATING THE VISUALIZATION

Motivation. GitHub offers several visualizations and navigation
tools to let one browse and reason about the history of a Git
project. Figure 12 illustrates three GitHub tools, indicated as
A, B, and C on the figure.

10

Fig. 12: Visualizations and navigation tools offered by GitHub

Part A offers an overview of the contribution to the master
branch over time. A graph indicates the activity over a period
of time. One can select a portion of time to see those who
contributed in the selected time period. Contributors are listed
and ranked according to their number of commits. Clicking on
a contributor leads us to his or her personal page (Part B).

Part B summarizes the activity of a contributor. Popular
repositories are listed in a calendar heatmap visualization to
summarize the overall contributions across all repositories.

Part C illustrates the file inspector. The content of each file
may be browsed via the Git interface. A history button gives

Part. GH - Score GH - Time GM - Score GM - Time
P9 2.5 21 4 15
P11 3 38 4 28
P13 2.5 30 3.5 22
P15 2.5 34 4 27
P17 4 30 4 18
P19 2.5 32 3.5 24
P10 2.8 32 4 17
P12 2.9 44 3.8 18
P14 3.8 33 3.73 18
P16 1.9 40 4 20
P18 2.9 44 3.5 20
P20 3.8 47 3.8 22

TABLE II: Score and time (in minutes) of GitHub (GH) and
GitMultipile (GM). Gray cell indicates the use of mwt-ds-
explore-java, while cell indicates mssql-jdbc.

the list of all the commits and contributors related to that file.
GitHub offers several additional tools (e.g., blame to see

the author of each line of code and pulse to track the active
pull requests and issues). However, we consider them as out of
the scope for this work. Instead, we have presented the three
views that are related to our effort.
Datasets. We use two GitHub repositories to conduct our exper-
iment: Microsoft/mwt-ds-explore-java (Section III-B) and
Microsoft/mssql-jdbc (https://github.com/Microsoft/mssql-jdbc),
another Java project from Microsoft.
Questions. We formulated four questions to describe a task. We
have a set of questions for each dataset. For example, for the
exercise involving mwt-ds-explore-java, we use the following
set of questions:
Q1 - Who and when did someone commit a change that

modified the file named Test.java?
Q2 - Who worked during the most days during the same

month on a file named Test.java? For how many days
did the development take place?

Q3 - When and who has committed a change on a file that
belongs to the path src/main/java/com/mwt/sample?

Q4 - What is the greatest number of commits pushed during
one single day by a single contributor during the months
when Jon Morra contributed?

Questions for the other application may be found in our
additional material (see Section V-B).
Running the experiment. In total, 12 participants were in-
volved in this second controlled experiment, totaling 10 hours
and 59 minutes. With six participants we have A = GitHub, B
= GitMultipile. The six other participants have the treatment
swapped.

With six participants we have T1 using mwt-ds-explore-

java and six others we have T2 using mssql-jdbc. The other
other participants have the tasks swapped.
Results & Analysis. Table II contains the score and time taken
by each participant. Figure 13 represents the distribution of
the time and score using a Tukey boxplot.

Applying the non-parametric test Mann-Whitney indicates
that data are significantly different both for score and time (P
= 0.0011, P < 0.0001, respectively)

11

https://github.com/Microsoft/mssql-jdbc

 G
H - T

im
e

 G
M - T

im
e

0

10

20

30

40

50

Treatment

Ti
m

e
(m

in
ut

es
)

 G
H - S

co
re

 G
M - S

co
re

0

1

2

3

4

5

Treatment

Sc
or

e

Fig. 13: Tukey boxplot of score and time of GitHub and
GitMultipile

Since the difference is significant, the null-hypothesis is
rejected, and we therefore conclude that GitMultipile performs
better (both in score and in time) than the visualizations of
GitHub at answering the questions we formulated.

Participants evaluated two Git repositories (mwt-ds-explore-
java and mssql-jdbc) using two treatments (GitHub and
GitMultipile). We compared the scores obtained by using the
two repositories with each treatment. The two-tailed Mann-
Whitney test applied to the scores obtained with GitHub results
P = 0.5887, U = 14. The same test applied to the scores
obtained with GitMultipile results P = 0.6104, U = 15. These
two tests indicate that the two Git repositories we considered
lead to similar results per treatment. We can therefore conclude
that the two Git repositories are similar in their difficulty to
analyze.

We compute the effect size: Cohen’s d = 2.440 for the score
and d = 2.342 for the time, indicating a large effect size.

We conclude the following:
• Participants graded significantly better using GitMultipile

than using GitHub visualizations and navigation tools at
answering our set of questions about software evolution.

• Participants completed the questionnaire significantly
faster using GitMultipile than using GitHub visualizations.

• The two analyzed projects are similar in their difficultly
to answer our set of questions. We therefore exclude the
presence of unbalanced task difficulties, which could be
assimilated as a plausible bias.

VIII. OBSERVATIONS

We have closely observed each participant activity in the
second controlled experiment, the one involving GitHub and
GitMultipile. We used two data collection techniques: the
think-aloud protocol and user interactions. In the think-aloud
protocol, we asked participants to verbalize their thoughts
while answering their tasks. This protocol helps us understand
developer activities and identify questions that participants
were asking while trying to solve the tasks.
Questions. We identified 7 questions participants asked them-
selves during the experiment about GitHub and GitMultipile.
Questions are given below and each is annotated with the
number of occurrences during our experiment. We recall that
12 subjects participated in our experiment.

GitHub. We identified three questions that identify some
limitations or surprising behavior of GitHub:

1) “Why is the number of the contributors at the initial
page different than the number of contributors shown in
the graph page?” [Occurrence = 6] Each GitHub project
main page indicates the number of contributors, and time
to time, this number differs when accessing the list of
contributors. For example, https://github.com/Microsoft/
EMDocs.hu-hu indicates that 11 contributors are part of
the project. However, clicking the the graph tab lists 8
contributors. The fact that merge commits are not listed
in the graph page was confusing for the participants.

2) “The Graph tab is not contextual. For example, I am
on the page of a folder of the project, and I press the
Graph button, the metrics that are given are for the
whole project, and not the folder as I expected.” [Oc. =
6] Participants were expected to have metrics per folder,
and not for the whole project, even if nested folders are
currently presented.

3) “Why searching for a file gives me so many answers that
I don’t require?” [Occurrence = 5] Consider Question
Q1 about the file Test.java. Many participants have
entered Test.java in the search text field of GitHub.
However, GitHub returns the list of file having Test.java

in their name (e.g., PRGTest.java, MurMurHash3Test.

java). Many participants could not use the search facility
because GitHub does not solely return the exact match.

GitMultipile. Three questions were identified when participants
used GitMultipile:

1) “Can I highlight relations with a condition involving
code comments?” [Oc. = 5]

2) “Can I directly see the code modified by a contributor
on a file?” [Oc. = 3]

3) “Can I know how many lines of code were changed on
a file?” [Oc. = 3]

4) “Can I modify the relations shown in the timeline?” [Oc.
= 3] Currently, the metric shown in the timeline is set
and cannot be changed.

Post-experiment Feedback. After the experiments, we infor-
mally asked the opinion of each participant about GitMultipile.
Here are some comments:

• “GitMultipile is powerful for these kinds of questions
while GitHub forced me to do a lot of manual searches”

• “GitMultiPile with weight: allowed me to reduce the
commits to focus on, thus easing the searches. First, I
focus on the timeline, which let me identify the stacks of
matrices and on who is working. Secondly, I zoom in on
the data by using the relevant matrices”

• “GitMultiPile is an interesting tool. I like the idea to
stack matrices using a condition I defined. At first it was
not clear to me the difference between using weight: and
not using it. I used a lot the highlight facilities in the
questionnaire”.

All the comments made by the participants focus on the
functionalities offered by GitMultipile.

12

https://github.com/Microsoft/EMDocs.hu-hu
https://github.com/Microsoft/EMDocs.hu-hu

Results. A number of interesting facts can be deduced from
observing our participants. First, some obvious limitations of
GitHub were spotted. Half of our participants complained about
(i) the mismatch of list of contributors, (ii) the Graph button
giving a global analysis when a local one was expected, and
(iii) the search facility is suboptimal.

Regarding GitMultipile, a notable result is to not have
any questions about the meaning of the adjacency matrices
and their piles. This is confirmed by the post-experiment
feedback. Moreover, no participants questioned the interaction
we provided. The GitMultipile language did not seem to be
difficult to learn and no negative surprises were experienced by
the participants. We can therefore conclude that GitMultipile is
intuitive for the experiments we designed and for the subjects
who participated. All but one comment is about the limitation of
GitMultipile. Currently, GitMultipile does not operate directly
on the application source code. This perceived limitations will
shape our future work, as described in Section XI.

IX. THREATS TO VALIDITY

Our experiments and results are subject to validity threats.
Since such threats may be a source of false negatives and false
positives, it is important to carefully identify possible threats
and analyze how their impact may be mitigated.

Conclusion validity. Our conclusions are founded on two
experiments for which their strong statistical results favor
GitMultipile over Excel and GitHub. However, our conclusions
are based on the result of only 20 participants, which is
relatively low. Although we had no indication that increasing
the number of participants may invalidate our result, the
strength of the statistic results may be affected.

Internal validity. Our experiments shows strong evidences
that GitMultiple significantly performs better and faster than
Excel and GitHub to formulate queries and solve the software
evolution tasks we have designed. We therefore conclude
that the changes in the independent variables (the employed
treatment and the tasks we designed) cause the observed
changes in the dependent variables (score and time).

Construct validity. Can our results be generalized to other
software evolution tasks? Unfortunately, we are not aware of
any recognized standard benchmark for software evolution.
Thus, it could be that GitHub would perform better than
GitMultiple for a different set of tasks. We were careful to
identify research questions that reflect software evolution tasks,
based on existing work [1], [8], [10].

External validity. Threats to external validity are conditions
that limit the generalization of our result to industrial practices.
GitMultiple is a better solution than GitHub for the tasks we
designed. GitHub offers tools to help address software evolution
activity. We picked GitHub as the most representative baseline,
although it is not primarily designed to support software
evolution tasks. Thus, it could be that we wrongly picked
GitHub. As discussed in Section V-B, we took care to pick
GitHub as the most intuitive and natural choice.

Participants in the second experiment belong to the same
company and have experience from having worked on a
common codebase. Thus, it may be that their common
knowledge could put in question the random heterogeneity of
the participants. However, we could not see any hint supporting
this threat.

X. RELATED WORK

Software visualization techniques are commonly employed
when analyzing software history. Our approach, which com-
bines a domain-specific language with stacked matrices, is
unique as far as we are aware of. This section summarizes the
work in the field of software visualization.

A. Visualizations

In an attempt to classify software visualization research
tools, we have produced a taxonomy (Table III). Our taxonomy
follows the taxonomy proposed by Diehl [24], but adjusted to
the field of visualizing software evolution. The two dimensions
of the matrix are the abstraction layers of software systems
(whole systems, repository activity, and code clone), and the
associated phenomena to these layers. The remaining of this
section details each reference.

Repograms [12] is a visualization technique to qualitatively
compare and contrast software projects over time. Each project
is represented as a horizontal bar, in which portions of that bar
are colored to indicate values of a metric. Values can either
be numerical (in that case the color saturation is linear to the
metric values), or numeral (in that case, each item has a unique
color, e.g., designating code authorship by representing author
names).

ClonEvol [23] represents evolution of code clones across
multiple software versions. A radial tree and a variant of
hierarchical bundle edges are combined to indicate source code
clone relations. A dedicated color schema for the tree nodes
and edges indicates differences from a baseline. The schema
may indicate structural differences or variation in the activity.

CVSscan [21] is an integrated multiview environment in
which each software version is represented by a column,
and where a source code line is represented as a horizontal
line. Metrics and software versions are represented using
configurable color maps. One color map indicates textual
modification: source code lines that have been added, modified,
and deleted are represented in a distinct color. Another
color map involves authorship. CVSscan may be seen as an
improvement of SeeSoft [25].

Revision Tower [17] represents the activity of a control
version system repository. It uses a vertical layout of boxes
in which each box represents a historical information of a file
contained in the repository.

3DSoftVis [19] is a 3D visualization tool in which each
software release history is articulated over time, the software
structure, and the module version numbers.

Multiple Visualization Strategies [13] emphasizes that soft-
ware evolution may be analyzed in many different ways, e.g.,
along the time dimension or structural dimensions. SourceMiner

13

Static Component Evolution of Source Metric
structure logical coupling static structure code evolution

Systems [12] [13] [14] [10][15] [16]
Activity Repository [17] [18] [19] [20] [21] [22]
Code clones [23]

TABLE III: Taxonomy of software evolution visualizations

Evolution tool offers different visualizations, namely treemap,
tree-like polymetric view, graph showing dependency, timeline
matrix, to navigate through a software history.

History Slicing [14] is a scalable visual metaphor in which
a file history is a horizontal time line. Any part of this time
line can be zoomed in to reveal modification of the source
code.

Evolution metrics [16] uses a Kiviat diagram with superposed
data sets: each axis in the diagram presents a metrics and a
data set corresponds to a particular system snapshot. This
superposition of multiple revision lets patterns emerge in the
system evolution.

Chronia [20] is a visualization in which each file is
represented as a horizontal line. Time goes from left to right.
Authorship is represented with a color. Chronia indicates
authorship of commit during each file lifetime. Commits are
indicated as a colored circle, and size of the commit is reflected
in the size of the circle.

Spectographs [22] represents the evolution of software
components on a particular property measurements. The
visualization is a 2D chart in which the X-Axis represents
software versions and the Y-Axis represents files. Each element
of the chart indicates the spectrum (similar to the one used
in sound decomposition) and is colored accordingly to reflect
variation of metrics.

Evolution radar [18] visualizes the logical coupling of one
module with the others. A selected module is placed at the
center of a pie chart (similar to a “radar”) and each sector
represents a module the central module depends on. The size
of each sector represents the size of each module as indicated
with the number of files. Time intervals are represented using
a user-defined position-color mapping.

CodeCity [10], [15] is a 3D visualization of the structure of a
software system using a city metaphor. In a city, each building
represents a class for which the height represents the number
of methods of that class and the building top area represents
the number of variables. Underneath flat squares, indicating a
district, represent packages. CodeCity has evolved with two
time lines represent structural evolution of a system [26]: a
coarse-grained time in which each visualization represents a
snapshot of a system in a given point in time, and a fine-grained
time in which a visualization shows the evolution in time.

Dependency Structure Matrix is commonly used to represent
evolution of dependencies between software components. Lat-
tix [3] offers a navigable adjacency matrix. Enriched DSM [4]
augments each matrix cell with information about the indicated
dependency.

B. Domain specific languages
Boa [27] is a domain-specific language and infrastructure

that eases mining software repositories. Boa runs over an
“ultra-large dataset” and the language is designed in such a
way that scripts are relatively shorts (a few lines long). Output
are textual and a visualization tool is necessary to produce
compact representations.

Feature-based DSL construction [28] has been proposed as a
way to build DSL families. A DLS family is a series of DLSs
having a commonality in their domain. Such encoding of DSL
families is expressed using Alloy12, a language to describe
explorable structures.

Contrary of these domain specific languages to mine soft-
ware repositories, GitMultipile’s domain-specific language is
designed to produce stacked matrices.

XI. CONCLUSION AND FUTURE WORK

We designed a visualization framework and a domain-
specific language to produce software visualizations from a Git
repository. We performed two controlled experiments, involving
20 professional software engineers for nearly 20 hours. We
made three findings: (i) the participants performed better at
formulating queries using GitMultipile than using Excel, (ii) our
participants performed better using GitMultipile than GitHub’s
visualizations to answer a set of questions on the history of
two Git repositories, and (iii) we identified some oddities in
the way GitHub behaves.

We conclude that GitMultipile represents a better alternative
than GitHub’s visualization to crawl and extract historical
information.

As future work, we plan to expand our work as follows:
• Consider application source code. Currently, GitMultipile

does not consider the actual source code commit.
• Making the timeline more flexible by considering user

defined metrics.
These two aspects will address some of the situations our

participants have faced during our experiment.

REFERENCES

[1] L. Hattori, M. D’Ambros, M. Lanza, M. Lungu, Answering
software evolution questions: An empirical evaluation,
Information and Software Technology 55 (4) (2013) 755 – 775.
doi:10.1016/j.infsof.2012.09.001.
URL http://www.sciencedirect.com/science/article/pii/
S095058491200184X

[2] B. Bach, N. Henry-Riche, T. Dwyer, T. Madhyastha, J.-D. Fekete,
T. Grabowski, Small multipiles: Piling time to explore temporal patterns
in dynamic networks, Computer Graphics Forum 34 (3) (2015) 31–40.
doi:10.1111/cgf.12615.
URL http://dx.doi.org/10.1111/cgf.12615

12http://alloy.mit.edu/alloy

14

http://www.sciencedirect.com/science/article/pii/S095058491200184X
http://www.sciencedirect.com/science/article/pii/S095058491200184X
http://dx.doi.org/10.1016/j.infsof.2012.09.001
http://www.sciencedirect.com/science/article/pii/S095058491200184X
http://www.sciencedirect.com/science/article/pii/S095058491200184X
http://dx.doi.org/10.1111/cgf.12615
http://dx.doi.org/10.1111/cgf.12615
http://dx.doi.org/10.1111/cgf.12615
http://dx.doi.org/10.1111/cgf.12615
http://alloy.mit.edu/alloy

[3] N. Sangal, E. Jordan, V. Sinha, D. Jackson, Using dependency models to
manage complex software architecture, in: Proceedings of OOPSLA’05,
2005, pp. 167–176.

[4] J. Laval, S. Denier, S. Ducasse, A. Bergel, Identifying cycle causes
with enriched dependency structural matrix, in: Proceedings of the 2009
16th Working Conference on Reverse Engineering, WCRE ’09, IEEE
Computer Society, Washington, DC, USA, 2009, pp. 113–122. doi:
10.1109/WCRE.2009.11.
URL http://dx.doi.org/10.1109/WCRE.2009.11

[5] S. Rufiange, G. Melançon, Animatrix: A matrix-based visualization of
software evolution, in: Software Visualization (VISSOFT), 2014 Second
IEEE Working Conference on, 2014, pp. 137–146. doi:10.1109/
VISSOFT.2014.30.

[6] H. Borges, A. Hora, M. T. Valente, Understanding the factors that
impact the popularity of GitHub repositories, in: Proceedings of the 32nd
IEEE International Conference on Software Maintenance and Evolution
(ICSME), 2016, pp. 334–344.

[7] A. Chiş, T. Gı̂rba, O. Nierstrasz, A. Syrel, GTInspector: A moldable
domain-aware object inspector, in: Proceedings of the Companion
Publication of the 2015 ACM SIGPLAN Conference on Systems,
Programming, and Applications: Software for Humanity, SPLASH
Companion 2015, ACM, New York, NY, USA, 2015, pp. 15–16.
doi:10.1145/2814189.2814194.
URL http://scg.unibe.ch/archive/papers/Chis15b-GTInspector.pdf

[8] J. Sillito, G. C. Murphy, K. De Volder, Asking and answering questions
during a programming change task, IEEE Trans. Softw. Eng. 34 (2008)
434–451. doi:10.1109/TSE.2008.26.
URL http://portal.acm.org/citation.cfm?id=1446226.1446241

[9] S. Easterbrook, J. Singer, M.-A. Storey, D. Damian, Selecting empirical
methods for software engineering research, in: F. Shull, J. Singer,
D. Sjoberg (Eds.), Guide to Advanced Empirical Software Engi-
neering, Springer London, 2008, pp. 285–311. doi:10.1007/
978-1-84800-044-5_11.
URL http://dx.doi.org/10.1007/978-1-84800-044-5 11

[10] R. Wettel, M. Lanza, R. Robbes, Software systems as cities: a controlled
experiment, in: Proceedings of the 33rd International Conference on
Software Engineering, ICSE ’11, ACM, New York, NY, USA, 2011, pp.
551–560. doi:10.1145/1985793.1985868.
URL http://doi.acm.org/10.1145/1985793.1985868

[11] T. Schneider, Y. Tymchuk, R. Salgado, A. Bergel, Cuboidmatrix: Explor-
ing dynamic structural connections in software components using space-
time cube, in: 2016 IEEE Working Conference on Software Visualization
(VISSOFT), 2016, pp. 116–125. doi:10.1109/VISSOFT.2016.
17.

[12] D. Rozenberg, I. Beschastnikh, F. Kosmale, V. Poser, H. Becker, M. Pal-
yart, G. C. Murphy, Comparing repositories visually with repograms, in:
Proceedings of the 13th International Conference on Mining Software
Repositories, MSR ’16, ACM, New York, NY, USA, 2016, pp. 109–120.
doi:10.1145/2901739.2901768.
URL http://doi.acm.org/10.1145/2901739.2901768

[13] R. Novais, J. A. Santos, M. Mendonça, Experimentally assessing
the combination of multiple visualization strategies for software
evolution analysis, Journal of Systems and Software 128 (2017) 56–71.
doi:10.1016/j.jss.2017.03.006.
URL http://www.sciencedirect.com/science/article/pii/
S0164121217300572

[14] F. Servant, J. A. Jones, History slicing: Assisting code-evolution tasks, in:
Proceedings of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering, FSE ’12, ACM, New York, NY,
USA, 2012, pp. 43:1–43:11. doi:10.1145/2393596.2393646.
URL http://doi.acm.org/10.1145/2393596.2393646

[15] R. Wettel, M. Lanza, Visualizing software systems as cities, in: Pro-
ceedings of VISSOFT 2007 (4th IEEE International Workshop on
Visualizing Software For Understanding and Analysis), 2007, pp. 92–99.
doi:10.1109/VISSOF.2007.4290706.
URL http://dx.doi.org/10.1109/VISSOF.2007.4290706

[16] M. Pinzger, H. Gall, M. Fischer, M. Lanza, Visualizing multiple evolution
metrics, in: Proceedings of SoftVis 2005 (2nd ACM Symposium on
Software Visualization), St. Louis, Missouri, USA, 2005, pp. 67–75.

[17] C. Taylor, M. Munro, Revision towers, in: Proceedings 1st International
Workshop on Visualizing Software for Understanding and Analysis, IEEE
Computer Society, Los Alamitos CA, 2002, pp. 43–50.

[18] M. D’Ambros, M. Lanza, M. Lungu, The evolution radar: Integrating
fine-grained and coarse-grained logical coupling information, in: Pro-

ceedings of MSR 2006 (3rd International Workshop on Mining Software
Repositories), 2006, pp. 26 – 32.

[19] C. Riva, Visualizing software release histories with 3dsoftvis, in:
Proceedings of the 22Nd International Conference on Software En-
gineering, ICSE ’00, ACM, New York, NY, USA, 2000, pp. 789–.
doi:10.1145/337180.337644.
URL http://doi.acm.org/10.1145/337180.337644

[20] T. Gı̂rba, A. Kuhn, M. Seeberger, S. Ducasse, How developers drive
software evolution, in: Proceedings of International Workshop on
Principles of Software Evolution (IWPSE 2005), IEEE Computer Society
Press, 2005, pp. 113–122. doi:10.1109/IWPSE.2005.21.
URL http://scg.unibe.ch/archive/papers/Girb05cOwnershipMap.pdf

[21] L. Voinea, A. Telea, J. J. van Wijk, CVSscan: visualization of code
evolution, in: Proceedings of 2005 ACM Symposium on Software
Visualization (Softviz 2005), St. Louis, Missouri, USA, 2005, pp. 47–56.

[22] J. Wu, R. Holt, A. Hassan, Exploring software evolution using spec-
trographs, in: Proceedings of 11th Working Conference on Reverse
Engineering (WCRE 2004), IEEE Computer Society Press, Los Alamitos
CA, 2004, pp. 80–89.

[23] A. Hanjalić, Clonevol: Visualizing software evolution with code clones,
in: 2013 First IEEE Working Conference on Software Visualization (VIS-
SOFT), 2013, pp. 1–4. doi:10.1109/VISSOFT.2013.6650525.

[24] S. Diehl, Software Visualization, Springer-Verlag, Berlin Heidelberg,
2007.

[25] S. G. Eick, J. L. Steffen, S. Eric E., Jr., SeeSoft—a tool for visualizing line
oriented software statistics, IEEE Transactions on Software Engineering
18 (11) (1992) 957–968, depth.

[26] R. Wettel, M. Lanza, Visual exploration of large-scale system evolution,
in: Proceedings of WCRE 2008 (15th IEEE Working Conference on
Reverse Engineering), IEEE CS Press, 2008, pp. 219–228.

[27] R. Dyer, H. A. Nguyen, H. Rajan, T. N. Nguyen, Boa: A language
and infrastructure for analyzing ultra-large-scale software repositories,
in: Proceedings of the 2013 International Conference on Software
Engineering, ICSE ’13, IEEE Press, Piscataway, NJ, USA, 2013, pp.
422–431.
URL http://design.cs.iastate.edu/papers/ICSE-13/icse13.pdf

[28] C. Huang, Y. Kamei, K. Yamashita, N. Ubayashi, Using alloy to
support feature-based dsl construction for mining software repositories, in:
Proceedings of the 17th International Software Product Line Conference
Co-located Workshops, SPLC ’13 Workshops, ACM, New York, NY,
USA, 2013, pp. 86–89. doi:10.1145/2499777.2500714.
URL http://doi.acm.org/10.1145/2499777.2500714

APPENDIX: GITMULTIPLE LANGUAGE

A. Program Structure & Language Constructions

A program written in the GitMultiple Language has to begin
with instructions that (i) map a domain and co-domain to
the matrices; (ii) set a time period per matrix; (iii) define
the weights of each matrix cell; (iv) ordering, filtering, and
highlighting instructions.

Our domain-specific languages features the following con-
structions:

• The domain S1 and co-domain S2 used in the matrices
is defined using mapFrom: S1 to: S2. Values commonly
given to S1 and S2 are #authors, #files, #days, #months
, or #hours. These domains are exposed by the meta-
model we used to represent the Git repository data. This
construction is allowed only once in a script.

• Each matrix represents a time period, for which its
granularity may be determined: timeYear, timeMonth,
timeHour, timeDay define the time interval represented
by one matrix. Only one keyword is allowed in a script
(i.e., all the matrices represents the same period of time).

• The weights of each cell is defined using from: B1 to:

B2 weight: B3. B1 and B2 are two-args block predicates
used to select the relevant commits. In case the domain are

15

http://dx.doi.org/10.1109/WCRE.2009.11
http://dx.doi.org/10.1109/WCRE.2009.11
http://dx.doi.org/10.1109/WCRE.2009.11
http://dx.doi.org/10.1109/WCRE.2009.11
http://dx.doi.org/10.1109/WCRE.2009.11
http://dx.doi.org/10.1109/VISSOFT.2014.30
http://dx.doi.org/10.1109/VISSOFT.2014.30
http://scg.unibe.ch/archive/papers/Chis15b-GTInspector.pdf
http://scg.unibe.ch/archive/papers/Chis15b-GTInspector.pdf
http://dx.doi.org/10.1145/2814189.2814194
http://scg.unibe.ch/archive/papers/Chis15b-GTInspector.pdf
http://portal.acm.org/citation.cfm?id=1446226.1446241
http://portal.acm.org/citation.cfm?id=1446226.1446241
http://dx.doi.org/10.1109/TSE.2008.26
http://portal.acm.org/citation.cfm?id=1446226.1446241
http://dx.doi.org/10.1007/978-1-84800-044-5_11
http://dx.doi.org/10.1007/978-1-84800-044-5_11
http://dx.doi.org/10.1007/978-1-84800-044-5_11
http://dx.doi.org/10.1007/978-1-84800-044-5_11
http://dx.doi.org/10.1007/978-1-84800-044-5_11
http://doi.acm.org/10.1145/1985793.1985868
http://doi.acm.org/10.1145/1985793.1985868
http://dx.doi.org/10.1145/1985793.1985868
http://doi.acm.org/10.1145/1985793.1985868
http://dx.doi.org/10.1109/VISSOFT.2016.17
http://dx.doi.org/10.1109/VISSOFT.2016.17
http://doi.acm.org/10.1145/2901739.2901768
http://dx.doi.org/10.1145/2901739.2901768
http://doi.acm.org/10.1145/2901739.2901768
http://www.sciencedirect.com/science/article/pii/S0164121217300572
http://www.sciencedirect.com/science/article/pii/S0164121217300572
http://www.sciencedirect.com/science/article/pii/S0164121217300572
http://dx.doi.org/10.1016/j.jss.2017.03.006
http://www.sciencedirect.com/science/article/pii/S0164121217300572
http://www.sciencedirect.com/science/article/pii/S0164121217300572
http://doi.acm.org/10.1145/2393596.2393646
http://dx.doi.org/10.1145/2393596.2393646
http://doi.acm.org/10.1145/2393596.2393646
http://dx.doi.org/10.1109/VISSOF.2007.4290706
http://dx.doi.org/10.1109/VISSOF.2007.4290706
http://dx.doi.org/10.1109/VISSOF.2007.4290706
http://doi.acm.org/10.1145/337180.337644
http://dx.doi.org/10.1145/337180.337644
http://doi.acm.org/10.1145/337180.337644
http://scg.unibe.ch/archive/papers/Girb05cOwnershipMap.pdf
http://scg.unibe.ch/archive/papers/Girb05cOwnershipMap.pdf
http://dx.doi.org/10.1109/IWPSE.2005.21
http://scg.unibe.ch/archive/papers/Girb05cOwnershipMap.pdf
http://dx.doi.org/10.1109/VISSOFT.2013.6650525
http://design.cs.iastate.edu/papers/ICSE-13/icse13.pdf
http://design.cs.iastate.edu/papers/ICSE-13/icse13.pdf
http://design.cs.iastate.edu/papers/ICSE-13/icse13.pdf
http://doi.acm.org/10.1145/2499777.2500714
http://doi.acm.org/10.1145/2499777.2500714
http://dx.doi.org/10.1145/2499777.2500714
http://doi.acm.org/10.1145/2499777.2500714

authors and the co-domain are days, we can have B1 = [

:commit :author | commit author = author] and B2
= [:commit :day | commit day = day] to define the
weight of a matrix cell as the number of commits made
by an author in a given day.
B3 is an one-arg block function that accepts a list
of commits and a new list of commits. The function
B3 may do some manipulations of the selected list of
commits, for example, B3 = [:commits | commits

select: #hasNoComment] selects commits without any
comment. A variant of this construction is from: B1 to:

B2 for which the weight is the number of commits that
matches B1 and B2.

• Each matrix cell has a popup text, activated when
the mouse is located above the cell. The popup value
depends on the domain and co-domain. The constructions
fromIdentifier: B1 and toIdentifier: B2 build the
popup using a textual description resulting from B1 and
B2, both being an one-arg block function. A typical
one-arg block function will project and manipulate some
attributes of the domain and co-domain. For example, in
case the domain are authors, B1 = [:author | author

fullName , author email] will define a popup as the
full author name concatenated with author’s email.

• A particular author represented in matrices may be
highlighted using highlightAuthorName: N using: Col.
N represents the author name and Col a color.

• Matrices may be piled up using pileIf: C. Matrices
that match the condition C are piled. The condition C is
expressed as a predicate evaluated on a matrix, described
below.

• Matrices representing time periods within the interval D1
and D2 may be piled using pileFrom: D1 to: D2. Time
may be a year, a month, a day, or an hour and are specified
using a dedicated syntax. For example:

– Year year: 2017 represents the year 2017
– Month month: 'January' year: 2017 represents

the month January of the year 2017. A month index
may be provided instead of the month name.

– Date year: 2017 month: 'March' day: 23 repre-
sents March 23, 2017.

• Matrices may be avoided to be piled using the construction
sequenceIf: C. Matrices matching a condition C are not
included in a pile. This construction is useful in case
that matrices piled using pileIf: C should remain in
sequence.

• Some authors may be filtered out from the visualization
using filterOutAuthor: C, according to a particular
condition C. This condition is expressed for a given author.

• Matrices and piles of matrices may be ordered using a
layout. Several layouts are available, the commonly used
are layout horizontalLine and layout grid.

B. Predicates

Many of the constructions given in the previous section re-
quires a predicates. Our DSL offers a large set of constructions

to build predicates.
• Piling matrices involves conditions, which may in-

volve some dedicated predicates. A matrix offers
various predicates, including containsAuthorNamed:

anAuthorName indicating whether or not a matrix con-
tains data for a particular author. Another predicate is
containsAnyAuthorMatchingFrom: authors accepting a
collection of author names.

• A commit offers some predicates. For example
containsCommentMatching: aContent indicates whether
a commit comment contains a text portion aContent

. Some predicates are dedicated to files, for example,
containsFile: C indicates whether a commit contains a
file whose matches a particular condition C. For example,
C = [:file | file fullName endsWith: '.java'] is
a predicate that matches file whose name are ending with
.java. The condition C may be arbitrary complex and be
combined with other conditions using boolean operator
(& and |).
Another predicate is containsFileNamed: aFilename in-
dicates whether a commit directly modify a file with a
specific name. Similarly, containsAnyFileMatchingFrom:
someFilenames matches commits that contain a file that

matches any of the set of names someFilenames.

C. DLS Program Input & Host Language

A script written using the GitMultiple language operates
on a log file obtained from a Git repository. GitMultiple is
expressed as a domain-specific language embedded in the
Pharo programming language13. Pharo therefore acts as a host
language. Many libraries supported by Pharo may therefore be
used in GitMultiple scripts, including the collection and data
manipulation facilities. As we employed in our example, the
select: P construct filters a collection of elements using a
predicate P.

13http://pharo.org

16

http://pharo.org

	Introduction
	Background: Stacking Adjacency Matrices
	GitMultiPile Matrix
	In a nutshell
	Running example
	Frequency of commit within a range of time
	Stacking matrices to reflect author changes
	Activity on files

	Case Study on Large Repositories
	Author's commits per day
	Author's commits per hour

	Evaluation Methodology
	Three pillars
	Controlled experiments
	Participants

	Evaluating the Expressiveness and Usability
	Evaluating the Visualization
	Observations
	Threats to Validity
	Related Work
	Visualizations
	Domain specific languages

	Conclusion and Future Work
	References
	Program Structure & Language Constructions
	Predicates
	DLS Program Input & Host Language

