
Effective Visualization of Object Allocation Sites
Alison Fernandez Blanco2, Juan Pablo Sandoval Alcocer1, Alexandre Bergel2

1Departamento de Ciencias Exactas e Ingenierı́a,
Universidad Católica Boliviana ”San Pablo”, Regional Cochabamba, Bolivia

2DCC, University of Chile

Abstract—Profiling the memory consumption of a software
execution is usually carried out by characterizing calling-context
trees. However, the plurality nature of this data-structure makes
it difficult to adequately and efficiently exploit in practice. As
a consequence, most of anomalies in memory footprints are
addressed either manually or in an ad-hoc way.

We propose an interactive visualization of the execution
context related to object productions. Our visualization augments
the traditional calling-context tree with visual cues to characterize
object allocation sites. We performed a qualitative study involving
eight software engineers conducting a software execution memory
assessment. As a result, we found that participants find our visu-
alization as beneficial to characterizing a memory consumption
and to reducing the overall memory footprint.

Video companion: https://youtu.be/y8tEyQbtiho
Artifact: http://dx.doi.org/10.5281/zenodo.1311787

I. INTRODUCTION

Modern software execution platforms are designed to effi-
ciently cope with a massive number of objects creations and
destructions. However, ensuring that the memory consumed
by an application execution is not excessive remains a manual
activity. It is widely known that debugging memory issues is
a tedious and error-prone activity [1].

Most of modern programming environments come with a
memory profiling tool. Reporting on the memory consumption
is typically based on introspecting the memory. Character-
izing and identifying the cause of an excessive memory
consumption is a problem involving several metrics over
several dimensions [2], [3]. Unfortunately, most of popular
memory and execution profilers offer disconnected memory
report representations, leading to a difficult exploitation.

This paper presents and evaluates a visualization of the
method execution context. During the application execution,
we monitor the memory blueprint of each method call. After
the execution, our visualization summarizes the execution. Our
visualization conveys information using a calling-context tree,
a natural representation of memory consumption. Each context
is augmented with visual cues that indicate the cost of that
context in the overall memory consumption.

We evaluated our visualization with eight professional
software engineers. Each engineer was asked to perform a
characterization of a familiar software using our visualization.
We found that our visualization is considered a significant
improvement over the ad-hoc and log-based manual technique.
Engineers rated our visualization as intuitive, easy to under-
stand, and easy to navigate through.

This paper is organized as following: Section II motivates the
problem we are addressing. Section III details our visualization.
Section IV presents a qualitative study we carried out. Section V
describes the related work. Section VI concludes and outlines
our future work.

II. MEMORY USAGE & OBJECT ALLOCATION SITES

Object Allocations Sites. In an object-oriented programming
language, size of a heap primarily reflects the occurrence and
the physical size of objects contained in the heap. Traditional
code execution and memory profilers keep track of the
consumed memory by characterizing the execution and the
heap obtained after the execution.

Consider the piece of Java code1 given in the upper part
of Figure 1. This contrived code snippet creates an instance
of the class Canvas filled with 30 instances of Circle and 16
instances of Box. Each use of the new operator represents an
object allocation site, which could, potentially, be the source of
many objects. This code contains three object allocations: one
in method main(String[]) and two in create(String). This
section details how this example appears in the YourKit2 and
JProfiler3 code profilers. Note that we will use this running
example through this paper.

Calling context tree. A common way to represent dynamic
information is to use a calling-context tree (CCT). Such a tree
gives a representation of each snapshot of the calling-context
for all method invocations that occur during an application
execution. Each node of the tree groups a number of method
invocations performed within the context represented by the
node. The calling context tree (CCT) compactly represents all
calling contexts in the execution, combining nodes that have
the same calling context.

Profiler often uses a calling context tree to represent run-
time information. In the case of memory profiling, the tree is
augmented with metrics associated with each method context.
For example, consider the execution of our running example
under JProfile (Figure 2). The figure uses a tree text widget to
visually render the calling context tree. The tree summarizes
the execution of the code. The method Canvas.main consumes

1Our profiler and visualization run for the Pharo programming language.
To facilitate reading we offer Java code instead of Pharo code.

2https://www.yourkit.com/
3https://www.ej-technologies.com/products/

jprofiler/overview.html

1

https://youtu.be/y8tEyQbtiho
http://dx.doi.org/10.5281/zenodo.1311787
https://www.yourkit.com/
https://www.ej-technologies.com/products/jprofiler/overview.html
https://www.ej-technologies.com/products/jprofiler/overview.html

Memory
consumption

High

Low

Color

Calling methods

Edge
width

Executions

Objects

Outer box Method

Inner box Instantiated
Class

Unique Color By Class

A

B

C F

E D

All classes

Circle

Box

Canvas

ShapeFactory

30 6kB

16 2kB

1 0kB

1 0kB

F D

D

F

class Shape { int x, y; }
class Box extends Shape { double h, w; }
class Circle extends Shape { double r; }
class ShapeFactory {

Shape create(String form){ // D
if(form.equals("Circle"))

return new Circle();
else{

if(form.equals("Box"))
return new Box();

else
return null;

}
}

}

public class Canvas{
List<Shape> shapes = new ArrayList<>();
ShapeFactory factory = new ShapeFactory(); // B

void add(Shape s){ shapes.add(s); }

void createCircles(int number){ // C
 createShape(number,"Circle"));
}

void createBoxes(int number){ // E
 createShape(number, "Box");
}

 void createShape(int number, String form){ // F
 for(int i = 0; i < number; i++)
 add(factory.create(form));
}

public static void main(String[] argv){ // A
Canvas canvas = new Canvas();
canvas.createCircles(15);
canvas.createBoxes(8);

 canvas.createShape(15, "Circle");
 canvas.createShape(8, "Box");

}
}

Fig. 1: Running example and detail of our visualization

100% of the memory consumed by the whole execution.
This method executes the Canvas.<init> constructor, which
accounts for 90.6% of the whole memory consumption. The
number of object allocations and the actual size in memory
are also provided for each context.

Note that the tree does not indicate which classes are actually
instantiated. On our example, we see that the produced calling
contact tree is tiny. Identifying the classes that are instantiated
is challenging for the execution of any non-trivial piece of code.
Note that this situation is not particular to JProfiler. VisualVM4,
NetBeansProfiler5, and the YourKit profilers provide a similar
view and suffer from of the same limitations.

4https://visualvm.github.io/
5https://profiler.netbeans.org/

Allocation table. Some profiler complement the range of
supported analysis by offering an occurrence table indicating
the number of instances for each type and class. Typical
information includes: the number of instances created for each
type, and the physical size of these instances. Using this table,
it is easy to determine the weight of each class in the overall
memory footprint. For example, Figure 3 gives the allocation
table given by JProfiler for our running example.

The figure indicates that the largest amount of memory is
consumed by 315 instances of char[]. Since the table does
not consider the CCT, we have no indication on where in the
whole execution these instances are created. Since our example
does not create strings, we deduce that the Java runtime or
even JProfiler is likely to be the cause of these instances.

2

https://visualvm.github.io/
https://profiler.netbeans.org/

Fig. 2: Calling context tree of memory consumption with
JProfiler

Fig. 3: List of classes instantiated with JProfiler

Information of the Circle and Box classes are mixed within
information related to execution not related to our example.
We see that this table is of little help in identifying where
and when during a program execution instances are created,
which is crucial for detecting memory bottlenecks and finding
memory optimization opportunities.

Limitations. This section illustrates two shortcomings present
in popular memory profiling tools. A number of limitations
are deduced from these shortcomings:

• Indirect instantiation. YourKit and JProfiler annotates the
calling context tree with object allocation that are directly
or indirectly performed within each context. However,
these is no information about which classes are associated
with these object allocations. As such, a simple question
like Which classes were instantiated in a given method?
cannot be directly answered.

• Object distribution. YourKit and JProfiler provide a
summary of the overall consumption using the allocation
table. However, mapping the distribution of the reported
objects over the calling-context tree is left to be done
manually. As a consequence, even a simple question like
Which methods are instantiating the most objects? cannot
be answered simply.

• Pattern discovery. It is known that textual listings are
suboptimal in identifying relevant values or patterns [4]. A
simple question that cannot be answered without tedious

labor is: Are two or more methods that have similar
number of instances of certain class?.

The next section presents the visualization that we designed
for addressing these limitations.

III. CONTEXT VISUALIZATION OF OBJECT ALLOCATION
SITES

We propose a new visualization to identify and characterize
allocations responsible for creating objects. Our interactive
visualization is composed of two main components: (i) a
calling-context tree in which object allocation sites are carefully
represented and (ii) an interactive class list to narrow the search
and highlight particular nodes in the tree.

A. Calling Context Tree (CCT) visualization

We use a polymetric view [5] to visualize the calling context
tree obtained from an application execution. Each node of the
tree represents a method invoked in a given context that creates
at least one object (directly or indirectly). Edges represent
the callee/caller relation between method contexts during the
execution. The lower part of Figure 1 gives our blueprint for
the running example, which is detailed below.

Tree Layout. Nodes of the tree are located using an horizontal
tree layout. Roots, which typically includes the main method,
are located on the left hand side and leafs on the right hand
side. This organization favors reading the visualization from
left to right, as most non-semitic natural languages do (e.g.,
Latin and Anglo-Saxon). A caller method is placed on the left
of the called methods, and an edge indicates the execution
control flow, from left to right.

Calling contexts are ordered from up to bottom to reflect
the order in which methods are called. A branch located at the
top of the visualization was the first one to be executed while
the bottom-most branch was the last one before the execution
completed.

Nodes. Each node represents a node of the calling context tree
(CCT). A node in a CCT represents a method and the context
in which the method is invoked. A method called by several
other methods may therefore appear several times in the tree
(e.g., Method D in Figure 1).

A node color indicates the amount of memory directly and
indirectly consumed by this node. Color fades from red to blue,
where red means that the node is the most memory-consuming
while a blue node indicates that little memory is consumed. For
example, in the lowest branch in Figure 1, method createShape

(marked F in the lower part) calls the method create (D). Both
F and D have the same color since they consume the exact
same amount of memory. Method F consumes more than B,
the constructor of Canvas.

A node may contain inner boxes. Each box represents a
group of objects created in the encapsulating node context.
Each group of objects are instances of the same class. In
Figure 1 we have five groups of created objects. Method A

creates a Canvas, B creates a ShapeFactory, D in the second
branch creates 15 Circles, D in the third branch creates 8

3

Boxes and D in the lower branch creates 15 Circles and 8
Boxes. The exact number of instances is indicated in the list
located on the right of the CCT.

Each class is a unique color to favor identifying patterns in
method contexts based on the instantiated classes. For example,
in Figure 1, we immediately see that the four object allocation
sites create instances from different classes. The size of the
inner box linearly indicates the number of objects created in
this method context.

Figure 4 illustrates our visualization on a large and rep-
resentative code execution. The mouse cursor is above a
context of the method renderCountries, defined in the class
RTMapBuilder. This context has one inner box and calls two
other methods, each having an inner box of the same size.
We can therefore deduce that these three contexts create the
same number of instances, for three different classes, since the
colors of the inner boxes are distinct. As described below, the
popup details the exact number of created class instances.

All classes
RTSVGPath 169 7 kB
RTElement 169 7 kB
RTPopup 169 6 kB

TRSVGPath 169 12 kB
RTGroup 6 0 kB

TRCanvas 2 0 kB
RTView 2 0 kB

RTInteractionBuilder 2 0 kB
RTShapeBuilder 2 0 kB

TRCameraInitializer 2 0 kB
TRCamera 2 0 kB

TRWhiteSolarizedTheme 2 0 kB
RTCenteredAttachPoint 1 0 kB

RTLine 1 0 kB
RTCityBuilder 1 0 kB

RTRouteBuilder 1 0 kB
RTEllipse 1 0 kB

RTDraggableView 1 0 kB
RTNColorLinearNormalizer 1 0 kB

RTMapBuilder 1 0 kB

-= FAF =-

355 executed methods

21 methods producing objects

5.92 % methods producing objects

Outer box - Method

memory consumption

Inner box - Instantiated class

#objects

#objects Instantiated class

<RTMapBuilder>>renderCountries:>
Executions: 1

RTPopup 169 6 kB
TRSVGPath 169 12 kB
RTElement 169 7 kB
RTSVGPath 169 7 kB

Fig. 4: Call context tree interaction when the cursor is over the
method renderCountries: of the class RTMapBuilder

Edges. Call flow between method context nodes is indicated
using edges: a context on the left calls another connected
context on the right. The width of an edge is proportional to
the number of times that the method is called by the calling
method context. A context represents the path from a particular
node to the root. A method may be called from different
contexts.

For example, on the example code of Figure 1, on the method
main we call to the method createShape two times with
different arguments. This is showed on the CCT as following:
the method A calls to F two times, on the first call: F called
to D generating 15 Circles, on the second call: F called to
D generating 8 Boxes. Instead of have two branches with the
same structure of method contexts, we union the two branches
on a single branch.

Also, the method D is called in three different contexts, in
Figure 1. We also see on the lower branch that the method D is
called by F more times than when called by on the second and
the third branch, since the edge on the lower branch between
F and D is thick. The exactly number of executions is given
by a popup.

Interactions. The method context nodes (i.e., outer boxes)
support a number of interactions, actionable by moving the
mouse cursor:

• Highlighting. When passing over a node its outgoing edges
and connected nodes are highlighted. Figure 4 illustrates
this situation.

• Node popup. A popup window appears when the cursor
is above a method context node. The popup indicates the
method name, the number of times its has been invoked
by the calling method context. Furthermore, the popup
summarizes direct and indirect objects creation by the
pointed method. This summary is presented in a list in
which:

– Instantiated classes. The first column contains the
name of the classes that are directly or indirectly
instantiated by the method context. In Figure 4, we
see that the context that corresponds to the method
renderCountries: instantiate four classes.

– Black border. A class that is directly instantiated by
the method context is marked with a black border. We
see that the class RTSVGPath is directly instantiated
by the pointed method. It means that the source code
of renderCountries: contains the expression new

RTSVGPath().
– Number of instances. The third column gives the

number of objects directly and indirectly created. We
see that each of the four classes is instantiated 169
times.

– Memory usage. The fourth column indicates the
memory footprint in Kilobytes (kB).

• Inner node popup. For inner nodes, the popup indicates
the number of objects produced of the inner node
corresponding class.

• Source code. When clicking an outer node the source code
corresponding to that method is opened (not shown in the
figure).

B. Interactive class list

In addition to the calling-context tree, our visualization
summarizes the number of instances for each class involved
in the execution (Figure 5). This summary is given as an

4

interactive list of class names, located on the right of the tree.
The list is decreasingly ordered with respect to the number of
instances created for each class. Content of the list is similar
to the node popup, previously described: each row contains
the class name, a horizontal rectangle indicating the color and
width indicating the number of instances, and the memory
consumption expressed in kB.

All classes
RTSVGPath 169 7 kB
RTElement 169 7 kB
RTPopup 169 6 kB

TRSVGPath 169 12 kB
RTGroup 6 0 kB

TRCanvas 2 0 kB
RTView 2 0 kB

RTInteractionBuilder 2 0 kB
RTShapeBuilder 2 0 kB

TRCameraInitializer 2 0 kB
TRCamera 2 0 kB

TRWhiteSolarizedTheme 2 0 kB
RTCenteredAttachPoint 1 0 kB

RTLine 1 0 kB
RTCityBuilder 1 0 kB

RTRouteBuilder 1 0 kB
RTEllipse 1 0 kB

RTDraggableView 1 0 kB
RTNColorLinearNormalizer 1 0 kB

RTMapBuilder 1 0 kB

-= FAF =-

355 executed methods

21 methods producing objects

5.92 % methods producing objects

Outer box - Method

memory consumption

Inner box - Instantiated class

#objects

#objects Instantiated class

Fig. 5: Call context tree and the interactive class list

When first opened, the visualization shows the complete
calling-context tree and all the classes are listed, as illustrated
in Figure 5. To mitigate the necessity to make a visualization
scalable, the interactive class list allows for filtering and
highlighting. These operations are:
Class Exclusion. A practitioner may exclude a class from the
tree visualization by right clicking on the name in the class
list. Excluding a class results in removing all corresponding
inner boxes in the tree. Note that a branch that is left without
inner boxes is also removed from the tree.

All classes
RTPopup 169 6 kB

RTSVGPath 169 7 kB
TRSVGPath 169 12 kB
RTElement 169 7 kB

RTShapeBuilder 2 0 kB
RTInteractionBuilder 2 0 kB

RTView 2 0 kB
TRCanvas 2 0 kB

TRCameraInitializer 2 0 kB
TRCamera 2 0 kB

TRWhiteSolarizedTheme 2 0 kB
RTCenteredAttachPoint 1 0 kB

RTLine 1 0 kB
RTCityBuilder 1 0 kB

RTRouteBuilder 1 0 kB
RTEllipse 1 0 kB

RTDraggableView 1 0 kB
RTNColorLinearNormalizer 1 0 kB

RTMapBuilder 1 0 kB

-= FAF =-

355 executed methods

18 methods producing objects

5.07 % methods producing objects

Outer box - Method

memory consumption

Inner box - Instantiated class

#objects

#objects Instantiated class

Fig. 6: Calling context tree without objects of RTGroup

Figure 5 indicates that the class RTGroup has 6 instances.
Figure 6 shows the result of excluding this class from the tree.
By removing this class from the visualization, several branches
of the tree are empty and are therefore removed.
Method context highlighting. Method context may be high-
lighted for a given class. Locating the cursor above a class name
shades all the method contexts that do not directly or indirectly
instantiate that class. Figure 7 illustrates the highlighting of

all method contexts that are related to the instantiation of the
class RTGroup. The four branches in the calling context tree,
highlighted by shading all other nodes, end with an instantiation
of RTGroup.

All classes
RTSVGPath 169 7 kB
RTElement 169 7 kB
RTPopup 169 6 kB

TRSVGPath 169 12 kB
RTGroup 6 0 kB

TRCanvas 2 0 kB
RTView 2 0 kB

RTInteractionBuilder 2 0 kB
RTShapeBuilder 2 0 kB

TRCameraInitializer 2 0 kB
TRCamera 2 0 kB

TRWhiteSolarizedTheme 2 0 kB
RTCenteredAttachPoint 1 0 kB

RTLine 1 0 kB
RTCityBuilder 1 0 kB

RTRouteBuilder 1 0 kB
RTEllipse 1 0 kB

RTDraggableView 1 0 kB
RTNColorLinearNormalizer 1 0 kB

RTMapBuilder 1 0 kB

-= FAF =-

355 executed methods

21 methods producing objects

5.92 % methods producing objects

Outer box - Method

memory consumption

Inner box - Instantiated class

#objects

#objects Instantiated class

Fig. 7: Paths of execution that produce at least one object of
the class RTGroup

By clicking on a class name, the highlight is fixed to allow
for further exploration by moving the cursor above the method
context. Clicking back on the class name release the previous
fixed highlight.

C. Example

Figure 8 and Figure 9 represent the evolution of the
execution of a large application. Figure 8 describes the original
execution of a sunburst application [6]. During the execution,
the application executes 141 methods (not represented on the
figure), for which only 17 methods contain an object allocation
site. The tree presented in Figure 8 contains 87 method contexts,
representing the different contexts in which the 17 methods
and their callers are executed.

In our setting, the application computes a sunburst for an
arbitrary set of 382 input data. The interactive class list in
Figure 8 indicates that 382 instances of the class RTElement

and TRArcShape are created. We can therefore deduce that
the number of created instances is likely to be related to the
number of provided inputs. The class RTGroup is instantiated
766, thus it is likely that each Sunburst input element creates
two instances of RTGroup. In total, the creation of the sunburst
produces over 1,500 objects consuming more than 70kB of
memory. In the presence of a modern executing platform, such
figures may appear as insignificant. However, the sunburst
is integrated within the Pharo programming environment to
visualize source code while a programmer is programming.
It is therefore crucial to have the visualization snappy with
no latency. It is therefore essential to avoid any unnecessary
memory consumption.

The visualization presents the repetition of a visual pattern.
Inspecting the source code of the method A indicates the
presence of a non-terminal recursion, which is simplified as:

5

All classes
RTGroup 766 21 kB

RTElement 382 17 kB
TRArcShape 382 32 kB

RTDraggableView 1 0 kB
RTArc 1 0 kB

RTView 1 0 kB
RTShapeBuilder 1 0 kB

RTSunburstExtentLayout 1 0 kB
RTLayoutBuilder 1 0 kB

RTPopup 1 0 kB
TRCamera 1 0 kB
TRCanvas 1 0 kB

RTFlowLayout 1 0 kB
RTInteractionBuilder 1 0 kB

RTSunburstConstantWidthLayout 1 0 kB
TRWhiteSolarizedTheme 1 0 kB

TRCameraInitializer 1 0 kB

-= FAF =-

145 executed methods

20 methods producing objects

13.79 % methods producing objects

Outer box - Method

memory consumption

Inner box - Instantiated class

#objects

#objects Instantiated class

<RTShape>>elementsOn:>
Executions: 67

RTGroup 67 2 kB
RTElement 67 3 kB

TRArcShape 67 6 kB

Recursive call
C

A

B

Fig. 8: Visualizing the execution of the Sunburst application

All classes
RTElement 382 17 kB

TRArcShape 382 32 kB
RTGroup 2 0 kB

RTDraggableView 1 0 kB
RTArc 1 0 kB

RTView 1 0 kB
RTShapeBuilder 1 0 kB

RTSunburstExtentLayout 1 0 kB
RTLayoutBuilder 1 0 kB

RTPopup 1 0 kB
TRCamera 1 0 kB
TRCanvas 1 0 kB

RTFlowLayout 1 0 kB
RTInteractionBuilder 1 0 kB

RTSunburstConstantWidthLayout 1 0 kB
TRWhiteSolarizedTheme 1 0 kB

TRCameraInitializer 1 0 kB

-= FAF =-

141 executed methods

17 methods producing objects

12.06 % methods producing objects

Outer box - Method

memory consumption

Inner box - Instantiated class

#objects

#objects Instantiated class

Fig. 9: The memory reduction of Sunburst

RTAbstractTreeBuilder>>createElements: atree using: ablock depth:
depth

e := shapeBuilder elementOn: atree.
children := children collect: [:child | | e2 |

self createElements: child using: ablock depth: depth + 1.
]

The call to createElements: using: depth: execute the
method marked as B in the visualization, which is elementOn:.
The source code of this method is:

RTShapeBuilder>>elementOn: object
ˆ (self elementsOn: (RTGroup with: object)) first

The method calls indirectly to the method marked as C in
the visualization, which creates several instances of RTGroup.
The source code of this method is:

RTShape>>elementsOn: models
| group |
group := RTGroup new.
models do: [:m | group add: (self elementOn: m)].
ˆ group

This method returns an instance of RTGroup with elements
created based on models each time that is called. In this case,

we only need the elements created based on models calling
to the method RTShape>>elementOn:. To avoid the creation
of several instances of RTGroup we modify the method B as
follows (simplified version):

RTShapeBuilder>>elementOn: object
answer := shape elementOn: object.
createdElements add: answer.

Avoiding the unnecessary creation of RTGroup has a visual
impact, as presented in Figure 9. The calling context related to
RTShapeBuilder>>elementOn: now does not call to RTShape

>>elementsOn: instead it calls to RTShape>>elementOn:, so
the recursive call is free from inner boxes related to RTGroup.

IV. USER STUDY

This section presents the design and the results of an
explorative user study [7]. Our results support the viability
of using our visualization as an effective tool (i) to analyze
the memory consumption and (ii) to identify optimization
opportunities.

6

A. Participants

Since our visualization is implemented in Pharo and our
experiment requires comprehending and modifying Pharo code,
our participants must be familiar with the Pharo programming
language.

We selected eight participants, all with solid software
engineering experience. From the eight participants, 4 are
professional software engineers in a local Chilean software
company, 2 are PhD students in the field of software engi-
neering, and the remaining 2 develop software in an academic
context. The experience of our participants spans over various
programming languages and programming environments, in
addition to Pharo. In particular, Java, Python, and JavaScript
are mentioned as known programming languages.

Table I summarizes the profile of each participant. The
first column assigns an identifier to each participant. We
will use these identifiers along the description of our user
study. The second column refers to the number of experience
years in software development. The third column gives a brief
explanation on how a participant usually addresses an excessive
memory consumption in a running application:

• Logging: A memory anomaly can be identified by inserting
an event generation next to an object production site. For
example, printing a message whenever a class constructor
is executed.

• Manual: The code execution is manually traced until a
line of code prone to an excessive memory consumption
is reached.

• No experience: The participant has no experience in
addressing memory issue.

• Debugger: The participant used a dedicated memory
debugger and profiler to track down the issue.

The fourth column of Table I indicates whether the partici-
pant authored the benchmark that will be analyzed in the user
study (as described below). The last column gives the name
of the benchmark.

Par. Exp.
Prog.

Experience in address-
ing memory issue

Exp.
Bench.

Benchmark

P1 15 Logging Sunburst
P2 6 Manual BundleBuilder
P3 5 Debugger GraphQL
P4 14 No experience Discord
P5 7 Manual HartLib
P6 7 No experience # Grapher
P7 3 Manual # MapBuilder
P8 5 Manual # Mondrian

TABLE I: Information of participants.

B. Benchmarks

A software execution benchmark provides a reference point
against which to measure absolute and relative performances.
Our study requires some benchmarks on which participants
will use our visualization to solve some generic tasks.

Analyzing memory consumption is not a trivial and common
activity. A high level of knowledge is required (i) to understand

if a memory consumption footprint indicates an anomaly, and
(ii) to identify the cause of that anomaly. As a consequence,
we need to carefully chose the benchmarks our participants
will have to consider in our study.

We selected for each participant a project that we know the
participant is familiar with (either as an author or as a user).
The fourth column of Table I indicates whether the participant
is the author of the benchmark: indicates the participant
authored the benchmark, # if the participant is a user of the
project.

Project Benchmark
Grapher Creates ellipses representing 598 classes where the size is

proportional to the lines of code and the position corresponds
to the number of methods and the number of variables.

MapBuilder Creates circles on the map representing 2200 earthquakes,
positioned given the latitude and longitude, with a size
proportional to the magnitude of the earthquake.

SunBurst Creates a visualization of sunburst of 382 classes, where each
class has a color and its position depends on the subclasses.

BundleBuilder Creates a visualization of 598 classes, where each node is
a class and it is connected by bezier lines to his dependent
classes.

Mondrian Creates circles representing 585 classes, each class connected
with their superclass, with the color and the size normalized
and using a cluster layout.

GraphQL Given a simple schema and an entry point return the answer
to a simple request, all this following the specification of
GraphQL.

Discord Given an user on discord, login to the account and recollect all
the last 50 messages of 3 servers where the user is involved.

HartLib Construct a pdf document given several specifications.

TABLE II: Projects and benchmarks.

Table II describes the benchmarks considered in our study.

C. Tasks and Work Session

A work session involves one participant and one benchmark.
The work session is carried out as follows:

1) General questions - Four questions are asked to the
participant about general experience and experience with
dealing with memory issues.

2) Learning material - We provide a tutorial-like6 descrip-
tion of our visualization.

3) Tasks - Three or four questions are asked to the partici-
pant. It is necessary to use our visualization to answer
the questions. If the participant authored the benchmark
(), then four questions are asked. In case the author is
a user (#) three questions are asked. The questions are
divided into three categories: Identifying, Understanding,
and Improving. Questions and their rationales are given
in Table III.

4) Experiment feedback - Open comments and a few open
questions are gathered. We gathered comments in an
informal and oral fashion to not pressure the participant
into giving an answer that we expect.

We observe and monitor the execution of each work session,
each participant performed the tasks on a computer and reported

6https://www.dropbox.com/s/o6lce9sx0rv6ekf/
About.pdf?dl=0

7

https://www.dropbox.com/s/o6lce9sx0rv6ekf/About.pdf?dl=0
https://www.dropbox.com/s/o6lce9sx0rv6ekf/About.pdf?dl=0

Category Par. Question Rationale
Identifying # Can you characterize the memory consumption of

the benchmark? Why?
Identify where are the top memory consumption, where are the objects
created on the path of execution and what methods were related to
each other on the call context tree.

Understanding

 # Do you understand the visualization? Understand how the program is executed and the memory consumed
on each part of the path of execution.

Do you find it intuitive? Why? We want to participants could use the visualization without problems
to understand what is being represented.

 Do you find some anomalies in the way memory is
consumed? Why?

Understand if the number of objects created is in accordance with the
schema mental or the idea that they have, and also if they really know
how much memory they are using.

Improving Can you modify your application to reduce the
memory consumption?

Modify their application to see what features are more used of the
memory profiler and how they deal with memory consumption issues
using the memory profiler.

If you would reduce the memory consumption of that
application, how would you do it?

Try to reduce de memory consumption of the application to see how
they deal with memory consumption issues using the profiler.

TABLE III: Questions to the participants.

their answers in an online form7. Running a work session for
each of the 8 participants totals 4.18 hours.

D. Results and Discussion

This section presents and summarizes the results we obtained.
• Identifying object allocation sites. The eight participants

understood the visualization. All the participants were able
to characterize the memory consumption of the application
for which the benchmark is run. Some participants used the
visualization to spot object allocation sites by searching
for method context colored in red (we recall that red
indicates a high memory consumption), other use the
interactive menu to detect the object allocations of distinct
classes on the CCT. As a result, all the participants have
successfully identified object allocation sites on their
respective benchmarks.

• Understanding object allocation sites. All the participants
understood the execution of the program and had no
difficulties understanding what a calling-context tree was.
Actually, participants consider a calling context tree to be
a familiar structure. Participants correctly understood the
meaning of inner boxes and contrasting the visualization
with method source codes did not generate doubts. We
found that 80% of the benchmark authors found anomalies
in their application because of the creation of unnecessary
objects. They notice using the interactive menu that the
number of certain objects was greater than the expected
and verified it doing the navigating on the CCT by the
interaction of view the source code. Participant P5 found
an opportunity for introducing a cache, by detecting on
the CCT repetitive visual patterns.

• Improving object allocation sites. All the five benchmark
authors tried to modify their applications, by proposing
several solutions to reduce the memory consumption. Two
of the five authors could actually implement the changes
they proposed, by navigating on the CCT and using the

7https://goo.gl/forms/kqsvABhADjlqjodn2 (),
https://goo.gl/forms/tYli8bmkoBpqV0dA3 (#)

interaction of source code. The remaining three could not
implement an improvement, essentially because of the
large and deep modification this code improvement im-
plied. Significantly more time was necessary to complete
the tasks.
For the application authors, we asked them for a possible
solution to reduce the memory consumption. All of
them gave solutions according to what they think were
unnecessary object creation during the execution. For
example, P6 and P8 identified unnecessary creation of
RTGroup according the benchmark, and P7 introduced a
lazy object creation.

Observations. By observing the participants using our visual-
ization, we found a number of relevant elements.

• Interactive menu. All the participants use the interactive
class list menu to see the total number of created objects.

• Class highlights. All the participants highlighted classes in
order to identify methods that create objects of a specific
class.

• Node popups. All the participants used the visual popups
to obtain the method’s name, the number of times it
was executed, the classes instantiated, and the number of
instances.

• Source code. 87.5% of the participants use the interaction
of source code at the time of the identifying anomalies and
to modifying the code to reduce memory consumption.

• Class exclusion. 25% of the participants use the operation
of class exclusion to discard the objects of a given class,
because they thought that the total number of objects was
the right one.

Experiment feedback. After the experiment we asked our
participants about their opinion on the memory profiler. We
summarize the answers we collected for two informally asked
questions:

• Do you feel more efficient at identifying memory issue
using memory blueprint than without? All the participants
agree that the memory profiler facilitated their efficiency at
identifying memory issues rather than doing it manually.

8

https://goo.gl/forms/kqsvABhADjlqjodn2
https://goo.gl/forms/tYli8bmkoBpqV0dA3

Participants P5 and P8 commented that our profiler is
better than other profilers, including JProfiler and YourKit,
because they consider that a visual representation is more
compact than a large textual description. The visual cues
offered by our visualization are also perceived as important
in order to understand and find object allocation sites.
However, these two participants made some suggestions
on how our visualization can be improved.

• Do you have any suggestions on how to improve the
visualization? We obtained several propositions:

– Easy use P3, P4 and P7 wants an easy way to install
the visualization and use it. The participant suggests
a better integration within the Pharo programming
environment. Having an example of a visualization
is also mentioned as relevant.

– Object’s life P5 and P6 suggested that the life time
of the objects could also be represented. In particular,
some of the spotted objects may be garbage collected,
which are not represented on the visualization. Know-
ing when exactly an object dies is considered to be
relevant. These two participants wish to know when
exactly an object is removed from the memory or
whether the objects live until the end of the execution.

– Exclude with condition P7 thinks that the operation
of class exclusion should satisfy a condition. For
example, classes with less instances than a particular
threshold could be automatically excluded from the
visualization.

– Line of Code P6 and P8 thinks that it would be
relevant to indicate the line of code where the object
is created. This feature is perceived as a way to
simplify finding object allocation sites.

E. Threats to validity

As most experimental studies, our work is subject to threats
to validity. We presents these threats using the classical structure
conclusion, internal, construct, and external.

Conclusion Validity. A threat to conclusion validity is a factor
that may lead our effort to an incorrect conclusion about a
relationship in our observations.

Our conclusion is based on the an explorative user study that
involves a group of participants. We considered 8 participants.
Although this number if relatively low, we mitigated possible
bias by choosing participants with a diverse background.

Internal Validity. This threat present influences that could affect
the independent variable. Internal validity refers to how well
our experiment was designed and conducted (e.g., identifying
possible independent variables).

All our participants have a solid background in Pharo, are
knowledgable in other programming languages, and have a cer-
tain level of knowledge about the benchmark. We use different
benchmarks, one per participant. We therefore avoid having
independent variables that are related to the programming
language or the benchmark.

Construct Validity. This threat presents the influences of social
factors or the design of the experiment to generalize the
experiment result.

We voluntarily focussed on the Pharo programming language.
We ensured that the participants we selected have knowledge
about the benchmark and fully understand the problem they
have to solve. Output of each participant session was carefully
measured using observation while a particular task was being
completed.
External Validity. This threat presents the conditions that
generalizes the results of our study to other situations (e.g., in
industry).

This paper voluntary focuses on real benchmarks of the
Pharo ecosystem. In addition, we cover diverse categories of
software projects.

Larger projects could cause visual clutter, for example
running all the tests of certain project of the Pharo ecosystem.
This generates a CCT with 1767 nodes, which could be reduced
using the previous operations. However, the original CCT
generated needs scrollbar to navigate around or maybe a
summarize technique.

The external validity of our user study is limited. However,
we believe that our study provides relevant evidence of the
viability of our approach in the studied projects.

V. RELATED WORK

Visualizing memory consumption is an active research area.
This section highlights the most relevant related works.
Production sites. Infante [8] presents memory blueprint as a
visual representation of a graph of calls that indicates object
production sites for a given application execution. Similar to
our visualization, memory blueprint helps to identify methods
that create objects. Contrary to our visualization, memory
blueprint loses the context of the method when one cannot
immediately identify which objects exactly are produced based
on the callees. In addition, one cannot see the source code of
the method, exclude class from the analysis or see the paths
where a certain class is instantiated.
Allocation and death of objects. Veroy [9] presents a graph
with hive plots [10] the relationship of the objects allocation
context to the death context. This work has a different objective
from ours. Their hive plots focus on identifying which classes
are hot spots for object death, and not to identify or understand
the object allocation sites that may lead to the creation of
unnecessary objects.
GCspy framework. Printezis [11] presents GCspy, a framework
for the collection, storage and replay of memory management
behavior. Printezis allows one to visualize used memory space
like a history graph and offers a user interface view to show
detailed information about the space management. Contrary
to our work, Printezis focuses on the used and free spaces.
Later Cheadle [12] extends the GCspy framework to visualize
memory allocators like dlmalloc and how concurrent garbage
collectors make use of the heap memory. The visualization
presented by the extensions is based on a serial of nested boxes

9

with representative colors for the heap and their respective
spaces. Contrary to our work, Cheadle’s work focuses on the
use of the heap by garbage collectors and dlmalloc and does
not identify the creation of objects.
Visualizing dynamic information. Walker [13] presents an
approach to visualize operations of an object-oriented system
at the architectural level. Their approach abstracts the number
of objects involved in the execution and the interaction between
objects, without representing the memory consumption. Later
Ducasse [14] applied polymetric views to visualize dynamic
information as boxes with features associated to dynamic
information. Ducasse’s work is an example of a visualization
for the classes that are the most instantiated, but contrary to
our work they do not focus on information about the memory
consumption.
Unused objects. Peck [15] presents a visualization of nested
boxes to understand the memory usage analyzing the amount
of instances of a class, of used and unused instances, and
other metrics. The objective of this work is to detect unused
instances of a program execution to avoid creating them, and
not identify and characterize object allocation sites.
Object churn. Duseau [16] presents Vasco, a visual approach
to explore object churn in framework intensive applications.
An object churn consists in the excessive use of temporary
objects generating possible memory bloats. Vasco visualizes
the object churn on a sunburst representing a CCT. Their work
differs from ours in purpose.
Memory leaks. There are various works that address memory
leaks. Jinsight [17] is a tool with a number of visualizations
to explore the lifetimes of objects, showing the interactions,
deadlocks and the garbage collector activity. Contrary to our
visualization, Jinsight represents the call context tree render as
text like JProfiler and presents the limitations previously seen.

Heapviz [18] is a tool to visualize and explore the heap
graph using a radial layout of the heap snapshots, obtained
from a running Java program. Reiss et al. [19] present a plane
compact interactive graph visualized as a tree map to show
the memory behavior of a executed program. Also Reiss [20]
presents a tool visualization where each class and package is
displayed using a box display visualization. This tool indicates
the behavior of the memory, the allocations, and deallocations.
Reiss designed an improvement called JOVE [21] taking a
different visualization to show the threads. All these works
attempt to identify memory leaks in their own way, but using
visual graphs or tree maps. As a consequence, they lose the
context of the method, and do not have filter criteria and cannot
view the source code. They use information for deallocations
to identify memory leaks.

VI. CONCLUSIONS

This paper presented a visualization of object allocation sites.
It visualizes the method calling context in which objects are
created. Our approach visually maps object creations to the
node of a calling-context tree. Several metrics are provided for
characterizing the memory consumption. Our visualization is

interactive to navigate and it reduces the number of nodes in
the tree.

We present a user study that involves 8 software engineers
who use our approach to identify, understand and improve
the memory usage of their own projects or projects that are
familiar with. Our results show that all participants were able
to identify and characterize object allocation sites. In addition,
some of them were able also to reduce the creation number of
objects in their benchmarks, in this way reducing the memory
usage.

ACKNOWLEDGMENT

We gratefully thank LAM Research for its financial support.
We also thanks to Truextend for the continuous support in
Bolivia.

REFERENCES

[1] A. E. Chis, N. Mitchell, E. Schonberg, G. Sevitsky, P. O’Sullivan,
T. Parsons, J. Murphy, Patterns of memory inefficiency, in: Proceedings
of the 25th European Conference on Object-oriented Programming,
ECOOP’11, Springer-Verlag, Berlin, Heidelberg, 2011, pp. 383–407.
URL http://dl.acm.org/citation.cfm?id=2032497.2032523

[2] D. Marinov, R. O’Callahan, Object equality profiling, in: Proceedings of
the 18th annual ACM SIGPLAN conference on Object-oriented program-
ing, systems, languages, and applications, OOPSLA ’03, ACM, New York,
NY, USA, 2003, pp. 313–325. doi:10.1145/949305.949333.
URL http://doi.acm.org/10.1145/949305.949333

[3] A. Infante, A. Bergel, Object equivalence: Revisiting object equality
profiling (an experience report), in: Proceedings of the 13th ACM
SIGPLAN International Symposium on on Dynamic Languages, DLS
2017, ACM, New York, NY, USA, 2017, pp. 27–38. doi:10.1145/
3133841.3133844.
URL http://doi.acm.org/10.1145/3133841.3133844

[4] E. Tufte, P. Graves-Morris, The visual display of quantitative information.;
1983 (2014).

[5] M. Lanza, S. Ducasse, Polymetric views—a lightweight visual approach
to reverse engineering, Transactions on Software Engineering (TSE)
29 (9) (2003) 782–795. doi:10.1109/TSE.2003.1232284.
URL http://scg.unibe.ch/archive/papers/Lanz03dTSEPolymetric.pdf

[6] M. Mamani, A. Infante, A. Bergel, Inti: Tracking performance issue
using a compact and effective visualization, in: 2014 33rd International
Conference of the Chilean Computer Science Society (SCCC), 2014, pp.
132–134. doi:10.1109/SCCC.2014.28.

[7] G. Ellis, A. Dix, An explorative analysis of user evaluation studies in
information visualisation, in: Proceedings of the 2006 AVI workshop
on BEyond time and errors: novel evaluation methods for information
visualization, ACM, 2006, pp. 1–7.

[8] A. Infante, A. Bergel, Efficiently identifying object production sites, in:
Software Analysis, Evolution and Reengineering (SANER), 2015 IEEE
22nd International Conference on, IEEE, 2015, pp. 575–579.

[9] R. L. Veroy, N. P. Ricci, S. Z. Guyer, Visualizing the allocation and
death of objects, in: Software Visualization (VISSOFT), 2013 First IEEE
Working Conference on, IEEE, 2013, pp. 1–4.

[10] M. Krzywinski, I. Birol, S. J. Jones, M. A. Marra, Hive plots?rational
approach to visualizing networks, Briefings in bioinformatics 13 (5)
(2011) 627–644.

[11] T. Printezis, R. Jones, GCspy: an adaptable heap visualisation framework,
Vol. 37, ACM, 2002.

[12] A. M. Cheadle, A. Field, J. Ayres, N. Dunn, R. A. Hayden, J. Nystrom-
Persson, Visualising dynamic memory allocators, in: Proceedings of the
5th international symposium on Memory management, ACM, 2006, pp.
115–125.

[13] R. J. Walker, G. C. Murphy, B. Freeman-Benson, D. Wright, D. Swanson,
J. Isaak, Visualizing dynamic software system information through high-
level models, in: ACM SIGPLAN Notices, Vol. 33, ACM, 1998, pp.
271–283.

10

http://dl.acm.org/citation.cfm?id=2032497.2032523
http://dl.acm.org/citation.cfm?id=2032497.2032523
http://doi.acm.org/10.1145/949305.949333
http://dx.doi.org/10.1145/949305.949333
http://doi.acm.org/10.1145/949305.949333
http://doi.acm.org/10.1145/3133841.3133844
http://doi.acm.org/10.1145/3133841.3133844
http://dx.doi.org/10.1145/3133841.3133844
http://dx.doi.org/10.1145/3133841.3133844
http://doi.acm.org/10.1145/3133841.3133844
http://scg.unibe.ch/archive/papers/Lanz03dTSEPolymetric.pdf
http://scg.unibe.ch/archive/papers/Lanz03dTSEPolymetric.pdf
http://dx.doi.org/10.1109/TSE.2003.1232284
http://scg.unibe.ch/archive/papers/Lanz03dTSEPolymetric.pdf
http://dx.doi.org/10.1109/SCCC.2014.28

[14] S. Ducasse, M. Lanza, R. Bertuli, High-level polymetric views of
condensed run-time information, in: Software Maintenance and Reengi-
neering, 2004. CSMR 2004. Proceedings. Eighth European Conference
on, IEEE, 2004, pp. 309–318.

[15] M. M. Peck, N. Bouraqadi, M. Denker, S. Ducasse, L. Fabresse,
Visualizing objects and memory usage, in: Smalltalks’ 2010, 2010.

[16] F. Duseau, B. Dufour, H. Sahraoui, Vasco: A visual approach to
explore object churn in framework-intensive applications, in: Software
Maintenance (ICSM), 2012 28th IEEE International Conference on, IEEE,
2012, pp. 15–24.

[17] W. De Pauw, E. Jensen, N. Mitchell, G. Sevitsky, J. Vlissides, J. Yang,
Visualizing the execution of java programs, Software Visualization (2002)
647–650.

[18] E. E. Aftandilian, S. Kelley, C. Gramazio, N. Ricci, S. L. Su, S. Z.
Guyer, Heapviz: interactive heap visualization for program understanding
and debugging, in: Proceedings of the 5th international symposium on
Software visualization, ACM, 2010, pp. 53–62.

[19] S. P. Reiss, Visualizing the java heap to detect memory problems, in:
Visualizing Software for Understanding and Analysis, 2009. VISSOFT
2009. 5th IEEE International Workshop on, IEEE, 2009, pp. 73–80.

[20] S. P. Reiss, Visualizing java in action, in: Proceedings of the 2003 ACM
symposium on Software visualization, ACM, 2003, pp. 57–ff.

[21] S. P. Reiss, M. Renieris, Jove: Java as it happens, in: Proceedings of
the 2005 ACM symposium on Software visualization, ACM, 2005, pp.

115–124.

11

	Introduction
	Memory Usage & Object Allocation Sites
	Context Visualization of Object Allocation Sites
	Calling Context Tree (CCT) visualization
	Interactive class list
	Example

	User Study
	Participants
	Benchmarks
	Tasks and Work Session
	Results and Discussion
	Threats to validity

	Related Work
	Conclusions
	References

