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Abstract—Glyphs are automatically generated visual icons,
commonly employed as an object identification technique. Al-
though popular in the Human Computer Interaction community,
glyphs are rarely employed to address software engineering
problems.

We extended the VisualID glyph technique to cope with
structural software elements and used it to address two issues
in software maintenance: identify classes with the same depen-
dencies and classes with a similar set of methods. We have
compared VisualID against three visual representations: textual,
graph (nodes and edges), and dependency structural matrix. Our
experiments indicate that VisualID significantly helps identify
classes with the same dependencies and classes with similar
methods when compared with visual techniques commonly used
in software maintenance.

I. INTRODUCTION

VisualID [1] is a glyph-based object identification technique.
VisualID was originally proposed as a technique to generate
desktop file icons based on filenames. Automatically generated
glyphs help identify files having similar names [1]. Unfortu-
nately, despite some attempts [2], [3], glyphs are rarely used
within the software engineering community even though glyphs
have positive effect on improving cognitive abilities.

Figure 1 represents six classes from an object-oriented sys-
tem. Each class is visually represented using a glyph. The seed
producing the glyph visual pattern is taken from the class name,
cut down into camel case pieces. For example, the class named
RTMultiColoredLine is cut down in {RT, Multi, Colored,

Line}. Visually, we see similarities between RTMultiLine,

RTMultiColoredLine and RTDirectedLine. The remaining
glyphs have a low similarity which makes their glyphs different.

We have extended VisualID to exercise pattern matching
and similarity computation on any arbitrary data structure,
and not only on character strings as originally formulated.
This extension enabled us to carry out controlled experiments
to measure the effectiveness of the glyphs to address some
software maintenance issues. In particular, we studied the
following two research questions:

Q1 Does VisualID help identify classes with the exact same
dependencies? It has been shown that identifying classes
with the same dependencies is a recurrent need in
programming and maintenance activities. Dependencies
are often represented as a graph or a dependency structural
matrix (DSM) [4]. We have compared VisualID against
these two representations.

Fig. 1: VisualID glyphs example

Q2 Does VisualID help identify classes with similar method
names? Identifying behavior similarities offered by class
hierarchies is often key to spotting opportunities for
code quality improvement by refactoring out common
behavior. We compared the ability of VisualID against
SystemBrowser to spot classes with a similar set of method
names. SystemBrowser is the standard code editing and
navigation tool in the Pharo programming environment.

We have carried out two controlled experiments [5] in which
the measured and tested dependent variable is the productivity
of a particular task and the independent variable reflects the
context or tool used to perform the task.

For Q1, our results shows that VisualID is significantly more
precise than DSM and Graph. In addition, it has a significantly
higher recall (i.e., the relevant pairs indicated by the oracle
is close to the participant’s answer). This result indicates that
participants gives many more matching class pairs when using
VisualID.

For Q2, we found that participants have a significantly
higher recall using VisualID. This indicates that VisualID helps
identify group of classes with similar behavior, though with
low precision.

These two research questions complement each other since
answering Q1 involves the ability of VisualID to identifying



exact matching pairs while Q2 is about identifying similar pairs.
The two experiments we have carried out indicate that VisualID
significantly helps identify matching or similar pairs. Although
VisualID has been originally designed to evaluate similarity,
we employ it to identify exact matching by answering Q1.

The two research questions shows that the visual repre-
sentation of exact matching pairs and similar pairs are the
key enablers to positively answers the two research questions.
Although we do not verify whether the algorithm behind
VisualID glyphs is the optimal algorithm to answer the research
questions, our results suggests that it is robust enough to support
two different software engineering-related tasks.

This paper is organized as follows. Section II informally
describes the VisualID glyph technique. Section III describes
our first controlled experiment to answer the Q1 research
question. Section IV describes our second controlled experiment
to answer the Q2 research question. Section V briefly presents
our implementation and gives some of the lesson we have learnt
when implementing VisualID. Section VI gives a brief overview
of the related work. Section VII concludes and outlines our
future work.

II. GLYPH-BASED OBJECT IDENTIFICATION

VisualID is a glyph-based object identification technique [1].
It generates a unique glyph for each object that is input.
Similarities may exist between two glyphs depending on how
similar their respective objects are: two glyphs that are visually
similar are therefore likely to present two similar objects. In its
original formulation, VisualID aims to automatically generate
desktop icons based on filenames. We extend the VisualID
technique to generate glyphs from any arbitrary data structure
and a comparison function. For example, providing (i) a set of
software classes and (ii) a comparison function over method
names between two classes, then two classes with a large
portion of common method names will be represented with
visually similar glyphs.

A. VisualID Algorithm

The complete algorithm may be found in the original
publication from Lewis et al. [1]. We summarize the approach
here and describe our extensions to handle any arbitrary
structures.
Glyph generation. Each glyph is a recursive structure. VisualID
draws each glyph through the following process:

1) Establishing a parent glyph and generating it,
2) Generating children for the parent glyph, and
3) Generating more children until the glyph reaches a

maximum complexity.
When the glyph reaches a set maximum complexity, the

rendering simply stops. The complexity is a number between 0
and 5,000, an arbitrary value. A complexity of 0 means there is
no glyph while a complexity of 5,000 means the glyph is at its
most complex. Each glyph has its own way of calculating its
complexity, which depends on the number of children it spawns.
When a new glyph is added, its complexity is calculated and
added to the total sum complexity of the figure.

Fig. 2: Three-level recursive glyph rendering

VisualID begins its rendering by setting a basic glyph as
the parent glyph. There are eight different primitive glyphs
(line, figure, path, shape, radial, spiral, symmetry, and a null
glyph). VisualID picks one glyph at random and establishes it
as the parent glyph. Each glyph has its own set of variables
that control different properties. These properties can include
scaling, angles, points, number of vertices, and separation
between subglyphs. These variables are calculated using pseudo-
random generators. Once these properties are established the
parent glyph is rendered. VisualID then decides at random
which children to spawn for the parent glyph.

The algorithm for rendering complex glyphs uses a three-
level recursive method. The first glyph is rendered in the first
level. It is the most complex. As each level progresses, the
rendered subglyph becomes less and less complex.

A child, or subglyph, is any glyph class that is not the parent
glyph class. Each glyph class has its own set of children. When
a parent spawns a child, a new glyph is generated using the
same process as the parent glyph. Each child created can then
generate children of its own, leading to higher levels of glyphs.
Each glyph adds to the total complexity of the figure. The
more glyphs present, the more complex the figure.

Recursion. Figure 2 demonstrates the algorithm for rendering
glyphs. The first level contains the main glyph; it is the most
complex. Here we have a VPath as the parent glyph with a
VRadial as an outline child. The outline child is rendered in
the second level, which is not as complex as the first level. In
this level, the VRadial is rendered. It is a polygon with vertex
children. The third level contains the VRadial’s vertex children
and the simplest glyph: a VLine.

Glyph complexity. The glyphs need to be complicated enough
to be unique for a large number of objects, but they also
need to be simple enough to be easily learned. Thus, the
maximum level at which a child is spawned is three and the
glyph’s complexity ranges from 0 to 5,000. If the glyph is too
simple, then we would have repeated glyphs. If the glyph is
too complicated, then they would not be recognizable. While
VisualID is capable of creating unique glyphs, it is also capable
of creating similar glyphs for similar objects. VisualID’s ability
to recognize similar objects and draw similar glyphs for them
is imperative for user identification.

Glyph mutation. VisualID generates similar objects through
mutation. The input, if absent, is kept for future comparison.
VisualID compares the new object with the other existing
objects in the dictionary. If they are similar enough, the glyph
of the original object is cloned and given to the new object as



Fig. 3: Left to right: The original, the clone, and the mutated
figure

a glyph. The new glyph is then mutated. This mutation process
is illustrated in Figure 3. The new figure keeps the same parent
and child glyphs. Its variables are recalculated pseudo randomly.
The end result is a similar but easily distinguishable figure.
Recognition. Through the process given above, VisualID
generates distinct glyphs for a large number of objects. As
a result, the user can easily identify and categorize different
objects based on their respective glyphs. Lewis et al. [1] have
shown that glyphs are effective for searching and relating
elements when compared with generic icons. Unfortunately,
VisualID has not been employed to assist software engineering
tasks, which is the topic of this article.

III. CONTROLLED EXPERIMENT: CLASS DEPENDENCIES

Understanding dependencies between classes is a recurrent
need in programming activity. For example, class diagrams,
which is the most frequently used UML diagram [6], put
class dependencies at the heart of the diagram, expressed as
associations.

Glyphs help identify classes having similar dependencies.
To give an intuition of this effect, we draw two graphs showing
class dependencies. Figure 4 gives the two versions of the graph.
The graph on the left-hand side represents a circle as a class
and uses non-directed edges as dependencies. The graph on the
right hand side uses glyphs to represent classes. Interestingly,
having glyphs clearly highlights comparable nodes, without
having directed edges.

We will therefore measure the effect of VisualID against
other representations. This section answers Research Question
Q1. This section employs glyphs to identify exact matching
pairs.

A. Experiment design

Baseline. The software engineering community has produced
numerous different ways to assess class dependencies. In
particular, we will focus on two representations, graph and
DSM, as a baseline to evaluate VisualID:

• Graph: UML class diagrams represent classes as a box
and dependencies using connecting lines and arrows. We
designate as Graph the metaphor in which a class is
represented as a node and a dependency as an arrow. In
the graph given in Figure 5, Class A depends on Class B
and C. Class B depends on A. Class D depends on Class
E. Each node has a label to identify the corresponding
class.

• DSM: A Dependency Structural Matrix [7], [4] is a
popular way to represent dependencies between structural

software entities. A DSM is a square matrix in which
each column and row corresponds to a class. Columns and
rows use the same ordered set of classes. Dependencies
are indicated with a colored cell. Figure 5 shows a small
DSM representing the dependencies of the same small
system.

These two visual metaphors are motivated by current practice
in industry. Many UML diagrams use graphs to represent
dependencies, and DSM are frequently employed in commercial
products (e.g., Lattix1 and Sonar2).
Code to evaluate. We will consider a set of 40 classes
taken from a complex graphical user interface library. These
40 classes have 236 dependencies in total. We consider as
dependencies all the class name references. For example,
consider the following class:
public class Color extends Object {

int r, g, b;
public Color(int r, int g, int b) {

r = r; g = g; b = b;
}
public String toString() {

return super.toString() + ”<”+r+”,”+g+”,”+b+”>”;
}

}

The class Color depends on Object, its superclass, and on
String, because of the return type of toString() and the call
to super.

We have chosen a codebase of size 40 classes because these
classes can be comfortably represented on screen using any of
the three representations without using scrollbars, a magnifier or
other mechanisms that may introduce a bias in our experiment.
Work session. Each participant evaluated the codebase three
times, using the Graph, VisualID, and DSM representations.
Our session was designed to be relatively short, taking around
20 minutes in total. The activity of a participant is structured
as follows:

• Each participant begins with four questions about their
personal experience.

• Graph, VisualID, and DSM are then described and
illustrated with a short and concise example.

• Exercise: The Graph representation of the codebase is
evaluated. A large graph showing all the dependencies
is presented. Each participant indicates groups of classes
with the same dependencies.

• Exercise: The VisualID representation is evaluated. A Vi-
sualID’s glyph is produced for each class of the codebase.
The seed used for each glyph is the alphanumerically
ordered list of dependencies. For example, to represent
the class Color given above, the seed {Object, String}
is used. Participants were asked to distinguish classes with
the same dependencies.

• Exercise: The DSM representation is evaluated. Similarly
as for Graph, each participant has to indicate classes with
the same dependencies.

1http://lattix.com
2http://www.sonarqube.org/sonar-2-0-in-screenshots/

http://lattix.com
http://www.sonarqube.org/sonar-2-0-in-screenshots/
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Fig. 4: Comparing Graph and VisualID

a b

Fig. 5: The Graph (a) and DSM (b) visual representation of
class dependencies of the same toy system

The experiment was carried out on paper sheets and in a
dedicated room (to minimize interruption that may occur when
being in front of a computer). We use the very same codebase
for each of the three exercises. This motivation of this choice
is based on avoiding bias that may occur from having different
systems. Classes have been anonymized: instead of the name,
each class was associated a number as identifier. Anonymizing
classes is important since a name may be perceived as being
related to other names, thus overriding our intent to evaluate
the effectiveness of the visual representation.

Furthermore, each of the three exercises uses a distinct
scheme to map numerical identifiers to classes to ensure that a
class has different numerical identifiers across exercises. This
is to make sure that participants do not see any similarities of
the codebase between each evaluation.

Oracle. An oracle is needed to rank answers provided by the
participants and which answers are considered as correct. To
this end, for class pair (c1, c2) we compute automatically the
similarity of dependencies: if the two classes have exactly
the same dependencies we mark S(c1, c2) = 1, otherwise

S(c1, c2) = 0. The VisualID algorithm is fed with the S
comparison function.

The oracle indicates the dependency similarity score per
couple of classes, and the number of perfect matches. From
the 40 classes, only 42 pairs of classes have an exact match,
within 800 different pair combinations (402/2).

Scoring. For each of the three exercises, a participant’s
answers groups of classes with common external dependencies
{g1, ..., gn}, where each gi is a set {c1, ..., cm} of classes.

A score (p, r) is given for each exercise answer: p corre-
sponds to the precision, and r to the recall. Both p and r are
metrics commonly employed in information retrieval: precision
measures the fraction of retrieved class pairs that have the
same external dependencies and recall the fraction of matching
class pairs that are retrieved. Both metrics range from 0.0 to
1.0:

• A perfect precision, p = 1.0, means that every class pair
identified by the participant is indeed matching the criteria.

• A perfect recall, r = 1.0 means that all the matching class
pairs are identified by the participant.

Exact matching. This experiment aims at assessing VisualID
to identify classes with the very same external dependencies.
We therefore have set a threshold of 1.0, the highest possible
score that two classes can produce. This high threshold has the
effect that glyphs do not mutate. A new glyph is associated to
each class that does not have the same external dependencies
as a previous class.

B. Results

Participant profile. We analyzed the answer from 18 partic-
ipants. Among these participants, there are (i) 5 engineers
from three different Chilean companies, (ii) 10 PhD students



Par. Graph-p Graph-r Vid-p Vid-r Dsm-p Dsm-r
1 1 0.36 1 0.83 0.75 0.36
2 0.65 0.26 1 1 0.36 0.31
3 0.67 0.33 1 0.93 1 0.21
4 1 0.29 0.98 0.98 1 0.33
5 0.53 0.55 1 0.95 0.81 0.71
6 1 0.48 0.55 0.43 1 0.36
7 0.25 0.02 0.93 0.93 0.71 0.29
8 0.33 0.02 1 1 0.45 0.43
9 0.78 1 0.88 1 0.58 0.81

10 0.39 0.98 1 1 0.43 0.86
11 0.87 0.31 1 1 0.81 0.4
12 0.89 0.38 1 1 0.67 0.29
13 0.48 0.26 1 1 0.71 0.12
14 1 0.36 1 0.98 1 0.36
15 1 0.29 0.9 0.86 0.6 0.29
16 0.73 0.38 0.95 0.93 0.72 0.43
17 0.91 0.5 1 0.93 0.76 0.31
18 0.87 0.79 1 1 0 0

Fig. 6: Result of the controlled experiment

having a strong background in programming, (iii) 3 professors
in Software Engineering. One of the participants is female.
Intermediary check. We have deliberately used the same
codebase for all the exercises. This decision simplifies the
experiment by not considering the codebase, which would be
represented as an additional independent variable.

When running the experiment, we asked the first four
participants whether they discovered or even suspected that
they were analyzing the same codebase at each exercise. We
asked the participants orally (i.e., this question was not written
in the questionnaire sheet) to not influence them. They all
answered they that did not suspect that the same codebase was
used.

We also could not spot any indication that there is a learning
effect between the exercises. We asked the first four participants
whether they have felt the need to correlate the result of
an exercise with participant’s previous answers (e.g., look
for missing matching classes). All four participants answered
that they did not even realized this possibility. This gave us
confidence that using a within-subject design in our experiment
is indeed the right choice given we had an available pool of
participants of 18.
Raw data. Figure 6 shows the result of the controlled experi-
ment we have carried out. The first column gives the participant
number. Graph-p refers to the precision of using the Graph
representation. Graph-r gives the recall value for the same
representation. Similarly, Vid-p / Vid-r gives the result of
the VisualID representation and Dsm-p / Dsm-r for the DSM
representation.
Statistical tests. We first analyze the normality of the data.
The Shapiro-Wilk test indicates that none of the samples is
normal except Dsm-p. Kruskal-Wallis is a statistical test to
analyze differences in median values between samples [8]. It
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Fig. 7: Statistical analysis of the precision of the three
techniques

is non-parametric (implying that it operates on data that are
not normal as we have) and evaluates one particular factor. We
apply this test to measure the effect of the representation on
both the precision and the recall.

Kruskal-Wallis is a non-parametric version of ANOVA.
ANOVA can be extended with the Bonferroni-Dunn test to
support multiple comparisons, thus controlling the group error
rate.

Analysis. Figure 7 gives the distribution of the precision
for the three presentations we are considering. The graph
indicates that the precision for the VisualID, with an average
of 0.95, is greater than for Graph (0.74) and DSM (0.68).
The multiple comparisons of the Kruskal-Wallis test indicates
a significant difference when comparing VisualID for the
precision. The Dunn’s multiple comparisons test supports a
significant difference between the samples Graph-p and Vid-p
with a P value = 0.0113 and between Dsm-p and Vid-p with
a P value = 0.0015. We used a confidence level threshold
α = 0.05.

Figure 8 gives the distribution of the recall for the three
representations. The average recall for VisualID is 0.93, which
is greater than for Graph (0.42) and DSM (0.38). The multiple
comparison indicates that recall for VisualID is significantly
different than for Graph and DSM. However, there is no
significant difference between Graph and DSM as the P value
is well above the α confidence level.

Conclusion. The experiment we have carried out measures
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Fig. 8: Statistical analysis of the recall

the ability for the participants to identify classes with exact
external dependencies using three different visual representa-
tions. Participants were able to retrieve a large portion of the
matching classes, independently of the used representation:
most of the indicated class pairs do indeed match. VisualID
leads to significantly more precise results than when using
Graph or DSM.

Regarding the recall metric, we have identified significant
differences. VisualID results in a much higher recall than DSM
or Graph. This means that a large portion of the matching class
pairs (according to the oracle) are given by the participants
when using VisualID. A significantly lower number of matching
class pairs are given using DSM or Graph.

Informal post-experiment discussions with the participants
indicate that the participants were not aware they have evaluated
three times the same codebase.

Experiment relevance. The controlled experiment evaluates the
productivity to perform a given task using a particular visual
representation of class dependencies. The visual representations
we are considering are not meant to be solely used to identify
classes having the same dependencies. Software engineering
tasks using class dependencies are often likely to be part
of larger activities, such as software design or software
maintenance. For example, graph representations are heavily
used in UML (throughout all software development stages)
and DSM is often used to identify dependencies cycles (often
used in software maintenance activities).

As a consequence, we are not claiming that VisualID glyphs
are the optimal representation for the considered task. Which is

Fig. 9: The Pharo SystemBrowser

why we do not compare VisualID against a clustering algorithm
performed on statically extracted dependencies. The fact that
VisualID is significantly more precise and has a significant
higher recall suggests that glyphs may be used in conjunction
with other visual representations for which identifying classes
having the same dependencies is relevant.

IV. CONTROLLED EXPERIMENT: CLASS BEHAVIOR
SIMILARITY

Identifying similarities between class behavior is known to
be a relevant issue in software engineering [9]. Silito et al. [10]
identified a number of questions related to the need to identify
similar class behavior. For example, it has been been shown
that the following question is frequently asked by software
engineers: “Where is the code involved in the implementation of
this specific behavior?”. Identifying duplicated code behavior
is a natural way to answer that question.

The assumption we will use in this experiment is that if
two classes define the same set of methods, then they are
likely to share a similar behavior. It has been shown that this
assumption holds in the case of classes that belong to the
same class hierarchy [11], [12]. This section answers Research
Question Q2.

A. Experiment design

Baseline. The Pharo programming environment proposes the
SystemBrowser as the main code programming tool [13].
Software engineers write and navigate through the source code
within the SystemBrowser. Figure 9 depicts a browser open on
the class Collection. The top four upper list panel indicates,
from left to right, the list of packages, the list of classes, the
list of method protocols, and the list of methods. The text panel
located in the middle of the browser gives class and method
source code.

The System Browser is not unlike other browsers in other
IDEs. The code navigation supported by the System Browser
is similar to the Eclipse’s Package Explorer.



Classes are listed in such a way that the class hierarchy is
explicitly apparent. The second upper panel in Figure 9 lists
the classes as follows:
Collection

Bag
HashBag
IdentityBag
IdentityHashBag
MalTerms

BitmapCharacterSet

A superclass is located above its subclasses and the indentation
indicates branches in the class hierarchy. The class Collection

is a direct superclass of Bag and BitmapCharacterSet, and Bag

has 4 subclasses. Structure of the class hierarchy will play an
important role in our experiment since a cross-cutting concern
often happens at the same level in a class hierarchy.

The baseline we consider in this experiment is to use
the SystemBrowser to navigate through a class hierarchy.
Participants can use all the navigation control used in a
plain programming activity (e.g., using the arrow keys on
the keyboard to move the class selection, mouse clicking to
select a particular class).
Code to evaluate. We consider the Pharo collection class
hierarchy in our experiment. It is composed of 149 subclasses
that are relevant for our experiment (we excluded classes with
no method). The collection hierarchy is known to contain a
fair amount of duplicated code among different branches. This
large hierarchy therefore constitutes an appealing codebase that
has already been extensively studied in the literature [11], [12].
Similarity. In this experiment, we are interested in measuring
the ability of VisualID to represent classes with a similar set of
methods. We have therefore lowered the threshold to produce
a new glyph at 0.5, i.e., two classes c1 and c2 having a Jaccard
similarity on the methods names < 0.5 will have distinct glyphs.
If their similarity is equal or greater than 0.5 then one of the
glyphs will be a mutation of the other.
Pilot study and similarity threshold. This controlled exper-
iment uses the ability of participants to measure similarity
between pair of elements. Determining a relevant similarity
threshold is therefore important since it determines the frontier
between distinctness and similarity. We use as similarity
threshold the average similarity of the pairs chosen by the
participants in a pilot study.

We picked six classes ci, i ranging from 1 to 6. We asked
three participants to identify pair of classes that they consider
similar using SystemBrowser. The participants identified four
class pairs in total. The four participants reported the same pair
and it has a similarity of 0.71. The fourth pair has a similarity
of 0.35. The average similarity between the different class pairs
is 0.53 (= (0.71 + 0.35)/2). We rounded down this value and
used 0.5 as the similarity threshold for the glyph generation.

The six classes we picked belong to a code package in
which similarity was expected to be found. Since we wanted
the three participants to participate in the full study, the six
classes we selected are not within the codebase used for the
full experiment.

Work session. Each participant evaluates the same codebase
twice: the first time using the Pharo IDE and the second time
using VisualID. Each work session is organized as follows:

• Each participant begins with a couple of questions about
their personal experience with Pharo and as a software
engineer. To carry out the experiment, each participant
must be familiar with the Pharo SystemBrowser.

• Exercise: The participant is offered a Pharo System-
Browser that shows the collection class hierarchy. The
method source code has been hidden to let the larger part
of the screen show the class hierarchy and the list of
methods. Only 5 minutes were allowed for this exercise.

• Description of VisualID. This description is the same as
in the previous experiment.

• Exercise: Class similarities are evaluated using the Vi-
sualID representation. The 149 glyphs are located on a
grid. Figure 10 illustrates the exercise set of a participant.
Participants can zoom-in and out, drag-and-drop each
glyph. This is intended to let a participant group glyphs.
Again, 5 minutes were allowed for this activity. Each
glyph has a numerical identifier, ranging from 1 to 149.

Each participant has a new set of randomly generated glyphs,
and therefore a unique set of glyphs to evaluate. Similarly as
in the previous experiment, participants were not aware that
the same codebase is used for the two exercises.

B. Results

Participant profile. In total we analyzed the result of 12
participants and discarded one participant answer because one
exercise answer was missing. The analysis presented below
is therefore based on 11 participants. The participants are a
subset from the participants we had in the first experiment. All
the participants operated the very same computer setup, with
same screen size, the same mouse and the same keyboard. We
did so to avoid bias related to the use of the desktop computer.
No female participated in the experiment.
Raw data. Figure 11 gives the result of the controlled
experiment. The first column lists the participant identifiers.
The second column (SB-p) gives the precision when using the
SystemBrowser while the third column (SB-r) indicates the
recall. The fourth column (Vid-p) indicates the precision of
using VisualID and the last column (Vid-r) gives the recall.
Analyze. The two samples SB-p and Vid-p have a similar
average (0.49 and 0.41). The Shapiro-Wilk test indicates that
both SB-p and Vid-p are normally distributed. The standard
t-test indicates no significant difference between these samples
(P = 0.3301), implying that the SystemBrowser and VisualID
perform equally for the precision when identifying classes with
a similar method set.

The sample SB-r has an average of 0.06 while Vid-r has
an average of 0.32. The Shapiro-Wilk test indicates that the
sample SB-r is not normal, whereas Vid-r is normal. We
therefore cannot use the t test. The Mann-Whitney U test is a
nonparametric statistical test that operates over two samples
of the same size. It does not assume normality of the samples.



Fig. 10: Glyphs representing class methods

Par. SB-p SB-r Vid-p Vid-r
1 0.67 0.11 0.44 0.57
2 0.75 0.09 0.12 0.51
3 0.5 0.11 0.47 0.26
4 0 0 0.13 0.17
5 0.57 0.11 0.61 0.31
6 0.5 0.03 0.67 0.17
7 0.8 0.11 0.82 0.26
8 0.2 0.03 0.4 0.06
9 0.25 0.03 0.34 0.37

10 1 0.03 0.31 0.46
11 0.25 0.03 0.27 0.4

Fig. 11: Result of the controlled experiment 2

Sy
st
em
Br
ow
se
r-p

Vi
su
alI
D-
p

0.0

0.5

1.0

Representation

P
re
ci
si
on

SystemBrowser-Visual-Precision

Fig. 12: Precision of SystemBrowser and VisualID



Sy
st
em
Br
ow
se
r-r

Vi
su
alI
D-
r

0.0

0.2

0.4

0.6

0.8

1.0

Representation

R
ec
al
l

SystemBrowser-VisualID-Recall

Fig. 13: Recall of SystemBrowser and VisualID

The test indicates a significant difference between SB-r and
Vid-r (P < 0.0001).

Conclusion. Our analysis indicates that when using System-
Browser, the participants were slightly more precise indicating
classes with the same group of methods. However, this
difference is not significative. On the other hand, participants
had a significantly higher recall using VisualID.

Participants had 5 minutes per exercise. The number of
answers provided for exercise using SystemBrowser is usually
very low while for the exercise using glyphs participants gave
many more similar groups of classes. Participants were much
faster using VisualID than SystemBrowser. This difference in
speed to carry out the exercises explains the difference of the
recall: participants reported many more similar pairs using
VisualID than when using SystemBrowser.

We gave complete freedom to the participants to interpret
whether two classes were similar or not. We have seen that this
notion of similarity varies across participants. Independently of
the degree of similarity taken by each participant, the precision
is comparable while the recall is significantly higher with
VisualID.

Visually measuring the similarity inherently leads to a
subjective interpretation. Some of the participants were unsure
about whether two glyphs were similar enough to be reported
during the experiment. One possibility to remove doubt about
similarity would be to let the participant check the actual
source code could in case of uncertainty about similar glyphs.
However, this could be interpreted as a serious measurement
bias in our experiment since the two exercises would not be
that different anymore. To preserve our experiment from such
a breach, we forbade participants to look at the code when
using glyphs.

Glyphs are located on a grid using a randomly generated
order. Using another order (e.g., using a clustering algorithm)
would favor the pattern visual recognition, and therefore likely
to increase VisualID’ score. We envision the use of VisualID
as a visual aid to complement a larger software engineering
activities that makes use of inferring behavior similarity. For
example, the physical location of classes is often determined by

a hierarchical layout involving packages and nested packages,
as it often happens in a UML class-diagram. By not relying
on a determined grid layout (i.e., a layout that drives the
spacial location of each glyph), our result shows that the visual
representation of UML classes may be augmented with glyphs
to enjoy its property, without affecting the overall spatial layout.

V. IMPLEMENTATION

Roassal. VisualID is implemented in the Roassal visualization
engine [14]3. Roassal has been extended with a new shape,
called RTVisualID. The example given in Figure 1 is produced
by the following script written in Pharo using Roassal:

shape := RTVisualID new.
shape basedOn:

[ :aClass | aClass name piecesCutWhereCamelCase ].
shape score: 0.4.

c := RTCompositeShape new.
c add: RTLabel new.
c add: shape.
c vertical.

v := RTView new.
v addAll: (c elementsOn: {RTMultiLine . RTMultiColoredLine .

RTRoundedBox . RTOSM . RTSparkline . RTDirectedLine} ).
RTGridLayout on: v elements.
v

Code marked in bold involves the use of VisualID. A glyph
shape is configured with a given score, 0.4 in our example,
and a function that produces a collection. This collection is
used as a seed to generate the glyph. In our example, the
function simply cuts down a name class into pieces. The glyph
shape is instantiated into the actual visual elements using the
message elementsOn:. We take a set of six Pharo classes as the
represented object model. Classes written in Java or any other
programming language would be equally relevant if coupled
with the Moose platform4.

Our implementation is available under the MIT License. The
source code is accessible from the Pharo forge5.
Lesson learnt. Some challenges we faced were in gathering
sufficient background knowledge for implementation and
development of a faster algorithm. JP Lewis et al. [1] explain
very clearly what VisualID does and how it is beneficial.
However, the essay does not explain in great detail how to
draw the glyphs. It assumes the reader has some background
in visual programming. To gain a clearer understanding of
VisualID, we used the source code written by Joshua Rosen
as reference6. Even then, we still had to modify it for our
purpose.

VI. RELATED WORK

Chuah and Eick [2] have applied glyphs to track software
errors, isolate problems, and monitor development progress.
The glyph is based on a face-like glyph in which software

3http://agilevisualization.com
4http://moosetechnology.org
5http://smalltalkhub.com/#!/∼ObjectProfile/Roassal2
6http://www.hackerposse.com/∼rozzin/VisualIDs/

http://agilevisualization.com
http://moosetechnology.org
http://smalltalkhub.com/#!/~ObjectProfile/Roassal2
http://www.hackerposse.com/~rozzin/VisualIDs/


metrics are mapped on different elements of the face such as
the hair, nose, and mouth.

Stardinates [15] is a mechanism to visualize data described
with a set of metrics. Each visualization looks like a start,
similar to a kiviat. Axes originate from a unique points and
are located at a regular angle. A stardinate is a visualization
that combines geometric and glyph. A stardinate is interactive
since axes may be added and removed, manipulate the “record
line”, changing the orientation of the axes, modifying scales.

Semanticons [16] generates a file icon that are both mean-
ingful and easily distinguishable. This generation reflects an
estimation of the semantics of the file, which depends on its
name, location, and content. This semantics is then used to
formulate a query performed on an image database. Obtained
images are simplified by segmenting them and removing
unimportant regions. A user study shows that search tasks
may proceed faster in some situations.

Kolhoff et al. [17] propose a technique to generate icons for
music files. The icon is automatically generated using a neural
network to determine the graphical parameters from some
acoustic features of the waveform stored in the represented
audio file.

VII. CONCLUSION AND FUTURE WORK

Advanced visualization techniques offered by the Human
Computer Interaction community are unfortunately rarely
applied to address software engineering problems. The work
presented in this paper evaluates the use of randomly generated
and mutated glyphs to address some common problems in
software maintenance. Our result indicates that VisualID
significantly helps reduce the number of false positives when
identifying matching pairs.

The two controlled experiments evaluate the expressiveness
of VisualID’s glyphs to convey some software-related informa-
tion. Our results suggest that glyphs are applicable to a wide
range of usages involving similar and exact software element
matching.

As future work, we plan to:

• Extend a programming environment, such as Eclipse or
Pharo, with glyphs. Glyphs may then be used to visually
tag software elements (e.g., packages, classes, methods)
to easy retrieval.

• Replace the random number generation by a particular
metric to produce glyph complexity. Such a metric
would then produce visually complex glyphs for complex
elements.

• Coloring glyphs to add a new cognitive dimension. Colors
will be defined as new rules that may be subject to
mutation and cloning.
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