
Analyzing Dynamic Information with Spy and
Roassal: An Experience Report

Alison Fernandez1, Diego Gabriel Nuñez Duran1, Alejandro Infante2, Alexandre Bergel2

1University of San Simon, Bolivia
2Pleiad Lab, DCC, University of Chile

Abstract—Dynamic analyses tools are seldom crafted by
practitioners. This paper discusses the benefits of supporting
the practitioners to build their ad-hoc tool and presents our
experience to lower the barrier to gather dynamic information.
The experience we present is driven by the combination of the
Spy profiling framework and the Roassal visualization engine,
two frameworks used in industry and academia. We conclude
with two question to discuss at the workshop.

I. EXPERIENCES IN DYNAMIC ANALYZES

Analyzing the execution of a software is often a non-trivial
activity due to numerous technical aspects to consider. Over
the last three years, we have built over a dozen of code
execution profilers that cover a wide spectrum of analyses.
Our profilers employ Spy, a lightweight profiling framework to
gather dynamic information. Collected data is then represented
using the Roassal visualization engine.

This paper describes the key points of our frameworks
and highlights the experience we have gained. Since Spy and
Roassal are written using the Pharo programming language1 [1],
all the examples are given in Pharo. Pharo is a dynamically
typed language, with a syntax close to Objective-C and Ruby.

II. PROFILING AND VISUALIZING

Spy. Spy is a profiling framework which features the following:
(i) profilers made with Spy share the same memory space than
the application itself; (ii) instrumentation code may be executed
for each method of the base-code; (iii) after the execution, a
profile is structured along packages, classes, and methods.

We chose Spy over other non-invasive technologies like
aspect oriented programming for the data analysis, mainly
because the Spy framework is thought to create profilers. Spy
takes care of creating a meta-model that simplifies the querying
and organization of the gathered data and also it ensures the
consistency of the system. We noticed that simplifying the
use of the tools and orienting the user is fundamental for the
adoption of the tool in a development process.

As a running example, we will build a profiler to expose
dependencies between methods. First we generate a new profiler
with the following instruction:

Spy generate: 'Dep' category: 'DependencyProfiler'

The method #beforeRun:with:in: is invoked before invok-
ing a method of the base code. We therefore have to properly
define it to incoming calls:

1http://pharo.org

DepMethod>>beforeRun: methodName with: args in: receiver
| caller |
hasBeenExecuted := true.
caller := self spySender.
caller ifNotNil: [

self incomingCalls add: caller.
caller outgoingCalls add: self]

The class DepMethod offers facilities to store data related
to a method, such as incomingCalls and outgoingCalls. The
only missing bit is the initialization of the hasBeenExecuted

variable:
DepMethod>>initialize

super initialize.
hasBeenExecuted := false.

The Dep profiler may now be employed to profile method
invocations for a given program execution.

Roassal. Roassal is a visualization engine. Roassal features the
following: (i) a visualization lives in the same memory space
than the represented domain; (ii) support polymetric views [4]
and a charting library to visually represent software-related
metrics; (iii) offer a large range of interactions to let the user
navigate and browse a visualized domain.

Roassal supports a number of domain-specific languages,
including Mondrian [5], a dedicated language for rendering
polymetric views. Consider the following Mondrian script:

1 Dep>>visualizeOn: aView
2 | executedMethods b |
3

4 executedMethods := self allMethods select:
#hasBeenExecuted.

5 b := RTMondrian new.
6 b view: aView.
7

8 b nodes: executedMethods.
9

10 b shape line color: (Color blue alpha: 0.2).
11 b edges
12 moveBehind;
13 connectToAll: #outgoingCalls.
14

15 b layout force.
16

17 b normalizer
18 normalizeSize:
19 [:m | m numberOfOutgoingCalls + m

numberOfIncomingCalls];
20 normalizeColor:
21 [:m | m numberOfOutgoingCalls / (m

numberOfIncomingCalls + m numberOfOutgoingCalls + 1)
]

http://pharo.org

22 using: { Color blue . Color red };
23 alphaColor: 0.7.
24 b build.
25 ˆ b

The method #visualizeOn: is defined on the class Dep, our
profiler. The self pseudo-variable therefore refers to a profile.
Line 4 gets all the methods executed during the execution. Line
5 creates the Mondrian interpreter. Line 8 associates a node to
each executed method. Line 10 sets a translucent blue color to
lines. For each executed method, Line 11 creates lines from a
method and the methods it calls. Line 15 selects a force based
layout. Lines 18-19 normalizes the size of each node: a small
method is a method that receives / sends a few calls and a
big method receives / sends many. Lines 20 - 22 gives a color
ranging from blue to red to each method: blue indicates many
receiving calls and red many emitting calls.

The profiler and the visualization may be simply invoked
using the expression:

Dep
profile: [”Code to profile here”]
onPackagesNamed: ”Packages to instrument”

A

B
C

Fig. 1: Execution example: each box is a method; lines are
dependencies between methods; blue box is a method that
receive messages; red box is a method that send messages.

Figure 1 shows a relatively short program execution that
involves only 128 methods. The visual aspect of each method
and their connections illustrate the differences between methods
in the way they are involved in the computation. Several method
invocation chains may be found. The red and large method
at the center of the figure, marked A, invokes many methods
as indicated by the size and color of A. This method is the
entry point of the execution, i.e., the main method. Inspecting
its source code (accessible by simply clicking on the element)
reveals a particularly long method.

Heavily interconnected methods has been manually marked
on the figure. Each of the four groups belongs to a particular
component made of several classes. The method C is another
entry point of a component.

Blue methods are methods that do not call any method
(such as variable accessors and call to primitives). Method B

is a primitive method, invoked by several other methods.

In Figure 2 we can appreciate the execution of the tests
of Roassal and Glamour and we can see the most evaluated
methods are bigger and that could hint the developer about
critic methods that call many methods or are highly called.

Charting. A profiler may offer several visualizations. Grapher
is another domain-specific language offered by Roassal. The
following script plots the methods along the number of
incoming and outgoing calls:

1 b := RTGrapher new.
2

3 ds := RTDataSet new.
4 ds interaction popupText.
5 ds dotShape circle color: (Color red alpha: 0.3).
6 ds points: (self allMethods select: #hasBeenExecuted).
7 ds dotSize: [:m | m numberOfOutgoingCalls + m

numberOfIncomingCalls] min: 5 max: 20 using: #yourself.
8 ds x: #numberOfOutgoingCalls.
9 ds y: #numberOfIncomingCalls.

10 b add: ds.
11

12 b axisX title: '#Out'.
13 b axisY title: '#In'.

A

B

C

Fig. 3: Method scatterplot

Figure 3 illustrates the result of the script: each dot is a
method; size of a dot is the sum of incoming and outgoing
calls; horizontally is the number of outgoing calls; vertically is
the number of incoming calls. Methods A, B, and C are marked
in the scatterplot.

We have used three metrics so far (numberOfOutgoingCalls
, numberOfIncomingCalls, and the sum of these two). A metric
is defined as a simple block function, taking as input a Spy
element. Advanced metrics about source code are offered by
the Moose platform for software and data analysis2.

2http://moosetechnology.org

http://moosetechnology.org

Fig. 2: Visualization of some large executions

III. GAINED EXPERIENCE

Several profilers made with Spy and Roassal are used in
industry and in open source communities. This adoption has
been key to evolve Spy and Roassal to offer a satisfactory
usability experience.

Drilling down. Each visual element represents an element of the
profile, itself representing a structural element of the application
(i.e., a package, a method or a class). Thanks to the Glamour [1]
and GTInspector [3] frameworks, source code behind each
visual element is one-click away. Source code is displayed
within the same window than the visualization, to minimize
cognitive context switching.

Execution overhead. The overhead introduced by the profiler
is about 80%, which means that an application run about twice
slower when being profiled. This overhead is acceptable is
many of the case we have dealt with.

Memory space. The profiler, the visualization and the source
code application live in the same memory space. Having the
profiler, the visualization and the application sharing the same
memory space has not been perceived as being a problem.

Excessive memory consumption may happen. The Pharo
system analyzers easily indicate where the memory or the
CPU time is being spent on. For example, in case of a large
amount of visual nodes may be a burden for some graph layout
algorithms. In such a case, the computation may be simply
interrupted and the visualization scripting adequately adjusted.

Integration in the IDE. Profilers are essentially made to assist
software engineers in a particular task. Making sure that a
profiler is easily inserted in a development workflow is essential

to ease its adoption. For example, a source code editor may
be opened on any represented source code entities. A method
represented in a visualization may be modified and the profiler
be run again to update the visualization. This approach has
been addressed by some IDEs like Eclipse. Visual Studio, and
others.

In addition to source code editing, our profiler seamlessly
integrates the Pharo debugging framework and the inspector
framework. Debugging [6] and inspecting [3] are two essential
operations in Pharo. Integrating Spy in the debugger enables
domain-specific debugging [2].

Easy to customize. Spy favors the creation of multiple small
and focused profilers. Most of the profilers we have built are
below less one hundred lines of code. Roassal favors short
scripts and rapid development cycles for data visualization.
Following the trends of live programming, visualization scripts
are iteratively tried and adjusted. In our experience, the same
programming fashion applies when analyzing profiling data.

IV. CONCLUDING WORDS

Both Spy and Roassal are keys in many software analyze
activities carried out both in an industrial and academic context.
Spy is made to extract information from a program execution
while Roassal is designed to map metrics and properties to
inter-connected objects.

During the workshop, we hope to discuss on the following
questions:

• How to expose execution analyses data to average
programmers? – Measuring test coverage and software
performance are probably the most well-known execu-
tion profiling techniques. However, much more than

be extracted from a program under execution. The way
we expose dynamic execution to programmers is by
using focused visualizations, however we are looking
for alternative way to expose dynamic analyses.

• How to efficiently insert program execution analysis
in University curriculum? – Both Spy and Roassal are
used in various lectures on advanced programming. The
number of shipped examples, related research papers,
and the documentation make both frameworks acces-
sible to undergraduate students with little knowledge
about profiling and visualization. However, students
and young engineers do not think about crafting their
own tool for their punctual need. To conclude, we are
convinced that is a skill that would enhance the way
of handle a Software Engineering problem.

ACKNOWLEDGMENTS

This work was partially supported by FONDECYT project
1120094 - Chile and by Program U-Apoya, University of Chile.

REFERENCES

[1] Alexandre Bergel, Damien Cassou, Stéphane Ducasse, and Jannik Laval.
Deep Into Pharo. Square Bracket Associates, 2013.

[2] Andrei Chiş, Tudor Gı̂rba, and Oscar Nierstrasz. The Moldable Debugger:
A framework for developing domain-specific debuggers. In Benoı̂t
Combemale, DavidJ. Pearce, Olivier Barais, and JurgenJ. Vinju, editors,
Software Language Engineering, volume 8706 of Lecture Notes in
Computer Science, pages 102–121. Springer International Publishing,
2014.

[3] Andrei Chiş, Oscar Nierstrasz, and Tudor Gı̂rba. The Moldable Inspector:
a framework for domain-specific object inspection. In Proceedings of
International Workshop on Smalltalk Technologies (IWST 2014), 2014.

[4] Michele Lanza and Stéphane Ducasse. Polymetric views—a lightweight
visual approach to reverse engineering. Transactions on Software
Engineering (TSE), 29(9):782–795, September 2003.

[5] Michael Meyer, Tudor Gı̂rba, and Mircea Lungu. Mondrian: An agile
visualization framework. In ACM Symposium on Software Visualization
(SoftVis’06), pages 135–144, New York, NY, USA, 2006. ACM Press.

[6] Jorge Ressia, Alexandre Bergel, and Oscar Nierstrasz. Object-centric
debugging. In Proceeding of the 34rd international conference on Software
engineering, ICSE ’12, 2012.

	Experiences in Dynamic Analyzes
	Profiling and Visualizing
	Gained Experience
	Concluding Words
	References

