
Evaluating a Visual Approach for
Understanding JavaScript Source Code

Martin Dias
University of Chile

Diego Orellana
University of Chile

Santiago Vidal
ISISTAN-CONICET

Leonel Merino
University of Stuttgart

Alexandre Bergel∗

Dept. of Computer Science,
University of Chile

ABSTRACT

To characterize the building blocks of a legacy software system (e.g.,
structure, dependencies), programmers usually spend a long time
navigating its source code. Yet, modern integrated development
environments (IDEs) do not provide appropriate means to eiciently
achieve complex software comprehension tasks. To deal with this
unfulilled need, we present Hunter, a tool for the visualization
of JavaScript applications. Hunter visualizes source code through
a set of coordinated views that include a node-link diagram that
depicts the dependencies among the components of a system, and
a treemap that helps programmers to orientate when navigating
its structure.

In this paper, we report on a controlled experiment that eval-
uates Hunter. We asked 16 participants to solve a set of software
comprehension tasks, and assessed their efectiveness in terms of
(i) user performance (i.e., completion time, accuracy, and attention),
and (ii) user experience (i.e., emotions, usability). We found that
when using Hunter programmers required signiicantly less time
to complete various software comprehension tasks and achieved
a signiicantly higher accuracy. We also found that the node-link
diagram panel of Hunter gets most of the attention of program-
mers, whereas the source code panel does so in Visual Studio Code.
Moreover, programmers considered that Hunter exhibits a good
user experience.

CCS CONCEPTS

· Software and its engineering → Integrated and visual de-

velopment environments; Software reverse engineering; Soft-
ware maintenance tools; Software evolution; Maintaining software.

KEYWORDS

Software visualization, Software comprehension, JavaScript

∗Corresponding author: abergel@dcc.uchile.cl

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speciic permission and/or a
fee. Request permissions from permissions@acm.org.
ICPC ’20, October 5ś6, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7958-8/20/05. . . $15.00
https://doi.org/10.1145/3387904.3389275

ACM Reference Format:

Martin Dias, Diego Orellana, Santiago Vidal, Leonel Merino, and Alexandre
Bergel. 2020. Evaluating a Visual Approach for Understanding JavaScript
Source Code. In 28th International Conference on Program Comprehension

(ICPC ’20), October 5ś6, 2020, Seoul, Republic of Korea. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3387904.3389275

1 INTRODUCTION

Software developers interact with mainstream programming envi-
ronments essentially through textual elements. Typically, structural
elements, including iles, classes, and packages, are presented as
an expandable list widget on the left-hand side of the IDE and
the content of a selected element is displayed in the center as a
large textual panel. Visualization is known to be efective at as-
sisting practitioners in carrying out software comprehension and
maintenance tasks [2, 8, 12, 21, 22].

This paper seeks to complement the classical IDE layout with
simple but efective visualizations to support some non-trivial com-
prehension tasks. Our prototype of such an IDE augmentation is
called Hunter. Hunter is useful to navigate, analyze, and compre-
hend JavaScript applications. The approach is based on an interac-
tive dependency visualization graph that is intuitive and technically
easy to implement. Hunter is designed to assist developers in the
process of software comprehension. For example, Hunter allows de-
velopers to quickly characterize the relevant structures of a software
system and their dependencies. Hunter supports multiple interac-
tions to display detailed information on demand. While there exist
some commercial applications that help to visualize dependencies
in software systems, such as Structure 1011 and Understand2, most
of them do not support JavaScript.

Hunter is an interactive visual environment. Due to the limita-
tion of a printout to adequately describes visual interactions, we
recommend our readers to watch a short video about Hunter, at
http://bit.ly/2N4933e.

We evaluated Hunter by deining a robust experimental design.
We carefully measure the impact and beneits of the approach with
practitioners:

(1) After deining some code comprehension tasks, we con-
ducted a controlled experiment with 16 software developers
that evaluate Hunter against Visual Studio Code, a popular
code editor.

(2) We analyzed the performance of the developers when solving
a set of tasks with Hunter and Visual Studio Code.

1https://structure101.com
2https://scitools.com/

https://doi.org/10.1145/3387904.3389275
https://doi.org/10.1145/3387904.3389275
http://bit.ly/2N4933e

ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea Martin Dias, Diego Orellana, Santiago Vidal, Leonel Merino, and Alexandre Bergel

(3) We monitored what are the relevant parts of Hunter that are
efectively used by practitioners. We used a gaze tracker for
that purpose.

(4) We measured the user experience of using Hunter by collect-
ing developers’ emotions and by illing a post questionnaire
about the usability of the tool.

Our experiments indicate that using the visualizations provided
by Hunter greatly decreases the time needed by developers to con-
duct some software comprehension tasks when compared to classi-
cal IDEs. Along this line, the main contributions of this paper are
Hunter and a thorough evaluation of it from diferent perspectives.

Outline. Section 2 describes in detail the visualizations provided by
Hunter. Section 3 presents the experiment design and operations.
Section 4 describes the results of the experiment. Section 5 discusses
the threats to the validity of our results. Section 6 analyzes related
work. Section 7 presents the conclusions and outlines future work.

2 HUNTER

Hunter3 is a standalone visualization tool designed to complement
modern integrated development environments. Hunter can help
programmers to understand JavaScript applications by analyzing
dependencies and their structure. In this section, we elaborate on
the features available in Hunter and discuss our design decisions.

2.1 In a Nutshell

To illustrate Hunter, we use the Hexo JavaScript application4. Hexo
is a blog framework that consists of 266 JavaScript iles, with a size
of 22 kLOC. Like most JavaScript applications, Hexo’s source code
is structured into nested folders.

Figure 1 gives an overview of Hunter. Its graphical interface is
composed of ive panels. The left-most one (FB) is a File Browser,
present in most IDEs. On the igure, the ile index.js is selected.
The panel in the center is the File Dependencies View (V), which
represents dependencies between JavaScript source code iles. The
top-right panel (O) gives the ile Outline that shows the structure
in terms of functions nesting of a selected ile. In the example, a
function has been selected by the user. The left-bottom panel (S) is
a Search box that can be used to identify speciic iles or functions
in V. Finally, the right-bottom panel (SC) shows the Source Code of
a selected ile. In it, the selected function is highlighted.

2.2 File Browser

To improve the usability of Hunter, we included a ile browser (FB
in Figure 1) that is well-known for most users. We augmented the
browser with colored bullets. A distinctive color is given to each
root folder and its inner elements. We consistently used these colors
in the ile dependencies view (described below) as a visual cue that
can help users to identify macro-structures in the repository.

3Hunter is available to be downloaded from http://bit.ly/2H95eWB
4https://github.com/hexojs/hexo

2.3 File Dependencies View

The File Dependencies View, marked V in Figure 1, represents (i) de-
pendencies between JavaScript iles, (ii) the size of the iles, (iii) in-
teractions between macro-components, and (iv) references to ex-
ternal libraries.

Figure 2 highlights a particular portion of the V panel given
in Figure 1. Each circle is a JS ile that belongs to the analyzed
application. The color of a circle identiies a particular root folder
that can be inspected in the ile browser. The size of a circle indicates
the number of lines of code of a represented JS ile. For example,
ile lib/models/post.js is signiicantly larger than lib/models/asset.js.
This view is designed to support programmers to compare the sizes
of the represented JS iles. The exact ile size (i.e., the number of
lines of code) may be obtained in the SC panel.

Boxes represent external iles from libraries, i.e., a ile that is used
by the application but does not belong to it. Figure 2 indicates that
both post.js and asset.js use the ile warehouse.js, which belongs
to Node.js5. Representing external iles is relevant when assessing
dependencies to externally provided libraries.

Edges among the nodes represent their dependencies in terms of
usage. We place the nodes in the node-link diagram by using a force-
based layout algorithm. In it, each node behaves like a repulsing
magnet and edges act as springs.

Dependencies computation. Since Hunter analyzes depen-
dencies between js iles, they are computed based on the require

and import declarations provided by Node.js and ES66. We take into
account both the declarations made at the beginning of the js iles
and the declarations nested into the source code.

2.4 File Outline View

When a ile is selected, either in the ile browser system view (FB in
Figure 1) or the ile dependencies view (V), then a ile Outline view
(O) is built. The outline is a treemap visualization technique, which
uses a set of nested tiles to represent hierarchical structures. The
outline represents the JavaScript functions and classes deined in a
selected ile. The size of the structural elements is represented by
the size of the tiles of the treemap. We employed a treemap because
it was shown that this visual technique is efective at representing
the inner and hierarchical structure of a JavaScript ile [2].

2.5 Interaction

Hunter’s visualizations are highly interactive, which we exemplify
by elaborating on two representative interactions.

When selecting a ile, in the ile browser or the ile dependency
view, the ile is highlighted with a thick cyan border (Figure 3).
Outgoing and incoming dependencies are highlighted in blue and
red respectively. These interactions can be used by programmers
to analyze software metrics such as fan-in, fan-out and identify
components that, for instance, need to be refactored.

When selecting a folder in the ile browser, all the JavaScript
iles that belong to the folder (or its subfolders) are highlighted
(Figure 4). This interaction can be useful to identify components
that are not used by others, and that eventually can be removed
(e.g., dead code).

5https://nodejs.org
6http://www.ecma-international.org/ecma-262/6.0/index.html#sec-imports

http://bit.ly/2H95eWB
https://github.com/hexojs/hexo

Evaluating a Visual Approach for

Understanding JavaScript Source Code ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea

FB
V

O

SC

S

Figure 1: Overview of Hunter

lib/models/post.js

lib/models/asset.js

Figure 2: File dependency view

2.6 Requirements for Reverse Engineering
Tools

Reverse engineering is very important to facilitate software compre-
hension tasks [5]. Building a tool for software reverse engineering
is known to be a particularly diicult task [13, 18]. Kienle and
Müller [17] have explored the issue of building tools for reverse
engineering, and have identiied several requirements and łgeneric
quality attributes that reverse engineering tools should strive to
meetž. This section discusses how Hunter addresses these require-
ments and quality attributes.

Scalability. Hunter can cope with medium-sized projects. We
measured the loading and visualization building time of 10 JavaScript

Figure 3: Selecting a ile

projects, whose size ranges from 100 LOC to 104k LOC. Hunter’s
processing time is linear to the project size and the visualization is
smooth and snappy with 104k LOC spread in 273 JS iles.

Interoperability. Currently, Hunter is only able to deal with
comprehension tasks that normally precede more complex reverse
engineering tasks. One avenue of future work is to enable Hunter to
interoperate directly with an existing programming environment.

Customizability. Custom and domain-speciic rules may be de-
ined, e.g., the ile dependencies view may be tailored using a set
of rules to consider some aspects of the analyzed application. For
example, Angular uses a particular convention to express depen-
dencies, for which Hunter can accommodate with using regular
expression matching over the abstract-syntax-tree of the analyzed
application. Though, we did not include customized visualizations

ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea Martin Dias, Diego Orellana, Santiago Vidal, Leonel Merino, and Alexandre Bergel

Figure 4: Selecting a folder

in our evaluation due to the speciicities of customizations. Cus-
tomized visualizations are therefore out of the scope of this paper.

Usability. The design and implementation of Hunter were
driven by ive dry runs with professional JavaScript developers.
The goal of these runs was to collect feedback that allowed us to
improve the usability of the tool. Furthermore, details of the usabil-
ity experienced by participants of our controlled experiment are
discussed in Section 4.2.

Adoptability. The ive dry runs were conducted with pro-
prietary commercial JavaScript applications. The development of
Hunter was guided by addressing the requirements for software
maintenance and comprehension in the context of the develop-
ments of these software systems. Notice that this paper focuses on
the subsequent larger evaluation we carried out, thus we do not
discuss these runs any further.

3 CONTROLLED USER EXPERIMENT

The goal of our experiment is to measure and characterize the
impact of using Hunter’s visualizations to support some represen-
tative code comprehension tasks. Consequently, we designed a
controlled user experiment to analyze the efectiveness of devel-
opers that use Hunter compared to a baseline framework, Visual
Studio Code7 (VSC), a popular IDE used for the development of
JavaScript software systems. We choose VSC for several reasons:

• Popularity. According to the Stack Overlow 2019 Developer
Survey, VSC is ranked as the most popular programming
environment8.
• Standard layout. VSC uses a panel layout that has become
standard among other popular development environments
such as Eclipse and IntelliJ IDEA. As shown in Figure 5, the
VSC interface is composed of four diferent panels: (FB) a ile

7https://code.visualstudio.com
8https://insights.stackoverlow.com/survey/2019

FB

S

SC

O

Figure 5: Overview of Visual Studio Code (VSC).

browser that lists the iles in the workspace; (SC) the source
code editor; (O) an outline of the functions and variables
deined in the ile shown in (SC); and (S) a search panel.
• Navigation and search. Like any modern environment, VSC
ofers a large range of options for source code navigation
and search. Notice that Hunter only supports the code navi-
gation and search functionalities described before. As such,
we constrained our comparison to such features included in
a full-ledged environment (VSC) to the ones in our minimal
environment (Hunter).
• Production vs comprehension environment. Previous stud-
ies that analyzed how programmers develop software sys-
tems [15, 19, 31] found that programmers use development
environments to carry out code comprehension tasks. Based
on these existing results, we decided to compare Hunter,
which is designed to support software comprehension, with
the capabilities ofered in VSC.

Next, we describe the design, operation, and results of our ex-
periment following the guidelines proposed by Wohlin et al. [38].

3.1 Design

We adopted the framework proposed by Wohlin et al. [38] and
then adapted by Merino et al. [25] to describe the scope of our
experiment:

łAnalyze the <Hunter> visualization tool that supports <soft-
ware comprehension tasks> using a <node-link diagram> and a
<treemap> displayed on a <standard computer screen> for the pur-
pose of <comparison to functionalities available in Visual Studio

Code> with respect to <efectiveness> in terms of <user perfor-
mance> and <user experience> from the point of view of software
<developers>.ž

We invited professional software developers to our experiment
who freely opted to participate. The experiment uses a within-
subjects design. That is, each participant in the experiment was
asked to solve a set of tasks using Hunter and VSC. Therefore, the
independent variable is the considered treatment (Hunter or VSC).

The dependent variables we consider relate to user performance,
that we measured not only in terms of traditional variables such as
correctness and time that participants need to solve comprehension

https://insights.stackoverflow.com/survey/2019

Evaluating a Visual Approach for

Understanding JavaScript Source Code ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea

Application Treatment

Name #LOC #JS iles Hunter VSC

LocalForage11 16,265 46 Group 1 Group 2
Hexo12 22,325 266 Group 2 Group 1
es6-mario13 2,015 44 Group 3 Group 4
serverless14 55,258 390 Group 4 Group 3

Table 1: Applications and treatments

tasks, but also in terms of attention that we measure using eye-
tracking. We also analyze variables of user experience in terms of
usability and emotions.

To validate the protocol and contents of the experiment, we
conducted a pilot study with a postdoctoral researcher before the
actual experiment. Based on the feedback, we made adjustments
and improvements in the protocol and questions. To facilitate the
veriiability and reproducibility of our results, we provide a replica-
tion package that contains the used applications, questionnaires,
raw data sets, and recordings of the participant sessions9.

Apparatus/tools. All participants used the same laptop during the
experiment, an Apple MacBook Pro Retina with a resolution of
2880 × 1800 pixels. Also, each participant used a Pupil Labs Core
headset10 with two cameras: one pointing to an eye (to track eye
gaze) and a second camera to capture the view of the world. To
interact with Hunter and VSC, participants used the keyboard and
the touchpad on the laptop.

Target systems.We selected four open-source JavaScript applica-
tions of various sizes to conduct our experiment to mitigate possible
threats to the validity of our experiment. Each selected application
meets the following criteria: (i) it is open-source, (ii) it is written in
pure JavaScript (e.g., not CofeeScript or TypeScript), and (iii) it is
structured in more than one folder. This last requirement is a cheap
way to ilter out applications for which packaging and modularity
were ignored by their developers. Moreover, we prioritized popular
applications based on GitHub’s stars. Table 1 summarizes informa-
tion about the applications used in our study and the treatments.

Tasks. Each participant was asked to perform a set of nine tasks
using Hunter and another nine tasks using VSC. We observe that
inding a set of representative tasks involved in a software com-
prehension process is diicult. As far as we are aware, no standard
benchmark of tasks has been proposed yet. We, therefore, formu-
lated our tasks inspired on tasks described in previous studies. In
particular, Sillito et al. [31] and Kubelka et al. [19] observed practi-
tioners and identiied a set of frequent questions that arise when
carrying out a software evolution process. Table 2 lists the tasks15.
To avoid fatigue among participants, we included only nine tasks,
which could be solved in less than 90 minutes (that we tested in a
pilot study).

9http://bit.ly/2OWkMDC
10https://pupil-labs.com/
14https://github.com/localForage/localForage
14https://github.com/hexojs/hexo
14https://github.com/JuniorTour/es6-mario
14https://github.com/serverless/serverless
15Angled brackets indicate names that are speciic to each application.

ID Description

T1 What is the most invoked JS ile?
T2 What is the JS ile that most invokes other iles?
T3 How many iles does the <ileName> ile invokes?
T4 By how many iles is the ile <ileName> invoked?
T5 What JS ile has the most lines of code?
T6 Which JS ile in the source folder contains the <function-

Name> function?
T7 How many JS iles do not invoke or are invoked by other

JS ile?
T8 Identify the folder that contains the highest number of JS

iles
T9 What functions call the function <functionName> deined

in <path>?

Table 2: Experiment’s tasks

3.2 Research Questions and Hypotheses

Our experiment is designed to answer the following research ques-
tions (RQ):

RQ#1 How does using Hunter afect the user performance of devel-
opers to complete software comprehension tasks?
RQ#1.1 How does using Hunter afect the accuracy of devel-

opers to complete software comprehension tasks?
RQ#1.2 How does using Hunter afect the time that develop-

ers need to complete software comprehension tasks?
RQ#1.3 Which panels of Hunter and VSC are most used to

complete software comprehension tasks?
RQ#2 How does using Hunter afect the user experience of devel-

opers?
RQ#2.1 What are the emotions that developers feel when

using Hunter?
RQ#2.2 How useful developers consider Hunter?

To analyze user performance (RQ#1), we measured the accuracy
of developers and their needed time to complete software compre-
hension tasks using Hunter and VSC. Also, we analyzed in which
panels they focused their attention during the tasks. To analyze
user experience (RQ#2), we collected impressions of the emotions
and subjective scores of usability of developers who carried out
software comprehension tasks using Hunter and VSC.

From the research questions, we formulate ive null hypotheses
(the alternative hypotheses follow analogously):

H10: Developers perform equally to complete software compre-
hension tasks using Hunter and VSC.

H20: Developers require the same time for completing tasks with
Hunter and VSC.

H30: Developers pay equal attention to all the panels of Hunter
and VSC when completing tasks.

H40: Developers have equally positive than negative emotions
about Hunter.

H50: Developers do not consider Hunter useful.

http://bit.ly/2OWkMDC
https://pupil-labs.com/

ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea Martin Dias, Diego Orellana, Santiago Vidal, Leonel Merino, and Alexandre Bergel

3.3 Participants

In total, sixteen experienced software engineers participated in
our experiment (2 females). Their average age was 29 years old
(std. dev. 4.7). Participants were from industry and they exhibited
various levels of experience. To recruit participants, we send an
invitation to an e-mail list of graduates from the university in which
the experiment was conducted.

We deined four groups of participants, each group having four
participants. The participants were assigned to one of the four
groups by random assignment. Before the experiment started, we
asked each participant to ill out a demographic questionnaire.
Participants self-assessed their experience by using a Likert scale of
ive steps, i.e., 1 (no experience) to 5 (expert). The average experience
using JavaScript was 2.5 (G1), 2.5 (G2), 2.3 (G3), and 2.8 (G4) with
std. dev. 0.5, 0.5, 0.43, and 1.09 respectively. Thus, it is fair to assume
that expertise is almost equally distributed within the groups.

During the experiment execution, we alternate between groups
that are irst presented with Hunter and those that are irst pre-
sented with VSC. For example, the tasks using Hunter are presented
irst for Group 1 (G1) and Group 3 (G3) while the tasks using VSC
are irst introduced to Group 2 (G2) and Group 4 (G4) (Table 1).

3.4 Procedure

The experiment consisted of two phases. First, we asked background
information of participants and gave them a tutorial to train them in
the use of Hunter. Secondly, in the experimental session participants
were asked to solve a set of software comprehension tasks, and
were asked of their emotions and impressions of usability.

Background and tutorial. Before starting the experiment, each
participant signed a consent form that informed them about the
characteristics of the study, and in which they explicitly agree to
participate in the study. Then, each participant illed in a short ques-
tionnaire to collect demographic data such as their age, gender, and
level of experience in software development. After these questions,
a video tutorial of Hunter was shown to participants. Then, they
had a training phase to familiarize themselves with Hunter and
VSC. To this end, participants were provided with a łtutorialž appli-
cation called Madge16. While Hunter and VSC were presented to
the participants, they had the freedom of using other tools usually
employed in development activities such as a terminal window.

Experimental session. During the interview, we recorded a video
of the screen and the audio of the laptop used by participants. These
recordings were used later for analyzing the reasoning process
followed by participants, and also they were used to measure the
time employed to complete the tasks. Each question was read by the
experimenter. The answers of participants were registered using
a Google form questionnaire. Participants were free to spend as
much time as they felt necessary to complete the tasks. Also, they
were informed that they could ask questions at any time during
the session. The session ended with a post-questionnaire about the
usability of Hunter. Finally, with the goal of measuring the user
experience of using Hunter, participants were asked to approach a
table on which we placed 270 paper labels. Each label described a
word to represent an emotion. Positive emotions were placed on

16https://github.com/pahen/madge

the left side of the table, and negative emotions on the right. We
organized the labels into eight groups of positive and also eight of
negative emotions. We asked participants to collect ten emotions,
that they experienced when using Hunter, from the table and to
sort them according to the intensity of the emotion. We observe
that participants engaged with this method and were willing to
spend a fair time to introspect into their emotions.

Along the session, we monitored the attention that participants
paid to the diferent panels of Hunter and VSC. To this end, partici-
pants wore an eye-tracking device.

Oracle. Employing dedicated scripts, we programmatically extracted
correct answers for each task. For example, to identify the ile that
has the most lines of code we used the combination of ind, grep, wc
-l, and other commands. We made sure that our scripts were correct
by running them on Madge, the application used in the tutorial,
and checking those results with manual inspection. Notice that to
build the oracle we did not use VSC nor Hunter.17

4 RESULTS

Next, we present and discuss the results that we collected in our ex-
periment. To organize the section, we revisit the research questions
by grouping them into user performance and user experience.

4.1 User Performance

We analyzed user performance in terms of (i) time that participants
needed to carry out software comprehension tasks, (ii) accuracy
of their answers, and their overall (iii) attention when using our
proposed tool.

To analyze statistically signiicant diferences in the results, we
used a two-tailed Student’s t-test when the distribution is normal
and a Mann-Whitney U-test when it is not. In both cases, we use
a probability of error (or signiicance level) of α = 0.05. To test
whether the collected data follows a normal distribution, we used
the Shapiro-Wilk test. Also, we ensure independence observations
based on the design of the study.

RQ#1.1: accuracy.We had sixteen participants, each completing
eighteen tasks, nine with VSC and nine with Hunter. Thus, we col-
lected 144 answers (16 × 9) related to Hunter and the same number
of answers for VSC. Figure 6a shows the number of correct answers
of participants for each task, using Hunter and VSC. As it is shown,
the results of participants using Hunter are more accurate than
when using VSC (in all tasks except T3 and T6). In fact, when using
Hunter, at least 75% of the participants answered correctly all tasks.
In the case of VSC, only four tasks (i.e., T3, T4, T6, T9) were correctly
answered by at least 75% of the participants. Interestingly, in some
tasks (e.g., T1, T5, and T7) Hunters greatly improves the accuracy of
participants. Moreover, while in Hunter only one participant could
not give an answer in one of the tasks, using VSC twenty-four (i.e.,
∼17%) tasks were not answered. The tasks that participants mostly
struggled to answer were T1 (×4), T5 (×3), and T7 (×11). These
results could indicate that VSC provides users with little support
for dealing with this kind of tasks, and therefore, programmers can
beneit from complementing it with a visualization approach such
as Hunter. In 79% of the tasks (=115) participants exclusively used

17The oracle containing the correct answers for each task can be found at
http://bit.ly/2N4zZQu

https://github.com/pahen/madge

Evaluating a Visual Approach for

Understanding JavaScript Source Code ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea
#C

or
re

ct
 a

ns
w

er
s

0

5

10

15

20

T1 T2 T3 T4 T5 T6 T7 T8 T9

Using Hunter Using Visual Studio Code

(a) The accuracy of participants by task and treatment

Ti
m

e
(in

 s
ec

on
ds

)

0

2000

4000

6000

8000

T1 T2 T3 T4 T5 T6 T7 T8 T9

Using Hunter Using Visual Studio Code

(b) Completion time by task and treatment

Figure 6: Comparison by task and treatment

Using.Hunter Using.Visual.Studio.Code

3
4

5
6

7
8

9

#
C

o
rr

e
c
t
a
n
s
w

e
rs

(a) Correct answers by user

Using.Hunter Using.Visual.Studio.Code

5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

T
im

e
 (

in
 s

e
c
o
n
d
s
)

(b) Time spent by user

Figure 7: Participants’ performance

VSC (without any other complementary tool). That is, only six par-
ticipants complemented VSC with other tools in some of the tasks.
Among these complementary tools, participants used a terminal
window (×23), the Pharo18 programming environment (×5), and
a combination of VSC, Pharo, and the terminal (×1). Notice that
when using Hunter, participants did not require complementary
tools. We relect that this could be due to a construction bias since
participants knew that our goal was to evaluate Hunter against a
well-known baseline, so they did not leave Hunter.

Since only two women participated in the experiment, we do
not make a gender distinction in our results. However, we could
not observe evident diferences between men and women results.

18https://pharo.org

We also analyzed the number of correct answers for each par-
ticipant when they used Hunter and VSC. The median of correct
answers by participant is 8 and 6.5 (Figure 7a) when using Hunter
and VSC, respectively. To validate H10 we tested the data for nor-
mality and concluded that the data deviates from normality (p-value
= 7.102e-05). After running the Mann-Whitney test we were able to
reject the null hypothesis with p-value = 2.307e-05. Thus, the ratio
of correct answers using Hunter and VSC is signiicantly diferent.

In summary, we can answer RQ#1.1 by saying that participants
solved software comprehension tasks more accurately when
using Hunter than when using VSC.

RQ#1.2: completion time. Figure 6b shows the sum of the time
spent by participants to solve each task. The igure shows that
except for T9, participants spent more time to solve the tasks with
VSC than with Hunter. Since we did not impose a time limit to
solve the tasks, the gap is quite large in those tasks that several
participants did not answer when using VSC (i.e., T1, T5, and T7).
Nevertheless, the diference in the time spent is still observable in
tasks that were answered by all the participants such as T2 and T3.
In these cases, when solving the tasks using Hunter participants
spent half of the time than when using VSC.

We also compared the aggregated time spent by each participant
to solve the nine tasks using Hunter and VSC using its median value.
As shown in Figure 7b, the median of the time that participants
spent using Hunter is less than any measured time spent when
using VSC (i.e., 393 vs 1,386.5 seconds). To verify if this diference
is signiicant, we irst tested the data for normality. We observed
that the data deviates from normality (p-value = 0.0001081). Then,
we ran the Mann-Whitney test, and we were able to reject the null
hypothesis H20 with p-value = 3.549e-06.

We can answer RQ#1.2 by saying that Hunter helps developers
to complete software comprehension tasks faster than VSC.

RQ#1.3: atention. Using the data obtained from an eye tracking
device, we examined the attention of participants on each panel of
Hunter and VSC graphical interfaces (see Figures 1 and 5). Specii-
cally, for each task, we measured the median time that participants
spent on each panel. Figure 8 uses glyphs to represent the attention
of participants on the panels of Hunter (above) and VSC (below).
Figure 8 shows the median of the percentage of time that partici-
pants spent on each panel when using Hunter and VSC. In the case
of VSC, the EX panel indicates the time developers spent using
complementary tools such as Pharo and terminal window.

As it is shown in Figure 8a, in the case of Hunter, developers
paid great attention to the File Dependencies View panel (V) in all
the tasks. Also, the Search Box panel was used with (V) in four of
the tasks. In the case of VSC (Figure 8b) we do not detect any panel
that was used in all the tasks. However, the Search Box panel (S)
was used in seven tasks.

We now analyze whether there is a statistically signiicant dif-
ference in the attention paid by the developers to the panels of
Hunter and VSC when completing software comprehension tasks
(H30). Speciically, we employ the Kruskal-Wallis non-parametric

ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea Martin Dias, Diego Orellana, Santiago Vidal, Leonel Merino, and Alexandre Bergel

(a) Hunter

(b) VSC

Figure 8: Heatmap Eye Tracking. The glyphs represents the physical panel layout of Hunter (Figure 1) and VSC (Figure 5). For

VSC, the EX panel represents the use of complementary tools to solve the task (e.g., terminal, Pharo).

test with a probability of error of α = 0.05. For both Hunter and
VSC, we obtained p-values < 0.05 for all tasks. It means that for
each task there is a signiicant diference in at least two panels.19

We also conducted Pairwise Wilcoxon Rank Sum Tests post-hoc
comparisons to determine which pairs of panels have signiicant
time diferences in the attention paid by developers. The post-hoc
tests revealed that, in the case of Hunter, there is a signiicant sta-
tistical diference to claim that the panel V is the most used in task
T1, T2, T3, T5, and T7. Whereas, in tasks T4, T8, and T9, V is the
most used panel together with other panels (panel S in T4, FB in
T8, and S and SC in T9). Diferently, in the case of VSC, there are
no signiicant diferences between the panels that caught the at-
tention of participants (except for panel O, which was rarely used).
Speciically, in tasks T1, T2, T5, and T7, there are no signiicant
diferences between the attention paid to panels FB, SC, S, and EX.
In the case of T3, T4, and T6, panel S is the most used one (whereas
in T3 there is not a statically diference with SC).

Interestingly, we noticed during the analysis of eye-tracking data
that when using VSC, participants tended to łjumpž more between
panels to solve a task than when using Hunter. Speciically, this
was more noticeable in T1, T5, and T7 (using FB, SC, S, and EX),
and in T9 (using SC and S). For the case of Hunter, this behavior
was only detected in T9 (using V, S, and SC).

In summary, these results indicate that users need to analyze
fewer panels in Hunter than VSC, exhibiting a higher eiciency.

We can answer RQ#1.3 by saying that the File Dependencies View
(V) is the most used pane in Hunter, while in VSC developers
used multiple panels to solve tasks.

4.2 User Experience

We analyzed user experience in terms of the emotions and the
usability perceived by participants in the study.

RQ#2.1: emotions. In Figure 9, we present a summary of the emo-
tions experienced by the participants of the user study. The chart
illustrates frequent emotions that were reported at least by two

19The results of the statistical tests for each task can be found at http://bit.ly/2KwXH60

participants. Positive emotions are represented with blue bars and
negative ones with red bars. The chart shows that participants
experienced mostly positive emotions (and only a few negative).

8

6 6

5

4 4 4 4 4

3 3 3 3 3 3 3 3 3 3

2 2 2 2 2 2

0

2

4

6

8

sa
tis

fie
d

co
mforta

ble

cu
rio

us

intereste
d

at e
ase

doubtfu
l

neutra
l

optim
ist

su
rpris

ed

anim
ated

attr
acte

d

ch
alle

nge

undecid
ed

inquisi
tiv

e

insp
ire

d

intrig
uing

rece
ptiv

e
sa

fe
quiet

anxio
us

asto
nish

ed

co
nfuse

d

co
nvin

ce
d

unintereste
d

great

Figure 9: A summary of emotions experienced by partici-

pants in the user study.

To analyze these emotions, as a irst approach, we applied a
Plain Algebraic Sum (PAS) of the number of positive and negative
emotions. However, we noticed that, in general, emotions are not
entirely positive or negative. For instance, a participant who reports
feeling safe might have a positive experience of being in control,
but at the same time, might have a negative experience of lacking
excitement. To deal with this fact, we used the SentiWordNet cata-
log, a lexical resource in which contextual emotions are associated
with positive and negative scores [10]. Consequently, in the Plain
SentiWordNet Sum (PSS), we used the scores speciied in the Senti-
WordNet catalog as weights to calculate the algebraic sum of the
number of emotions. However, as a result, we observed the difer-
ences among emotions that were noticeable before when using the
plain algebraic sum, now were barely distinguished.

Since we also asked participants to specify the intensity of their
emotions by sorting them in a ranked list, we applied the Weighted

Algebraic Sum (WAS) that was used in a previous study [23]. In

Evaluating a Visual Approach for

Understanding JavaScript Source Code ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea

it, the intensity of emotions is used as a weight in the algebraic
sum to score the overall emotions. The emotion score metric is
the sum of the top ten emotions (ranked by intensity) weighted
by their type (positive or negative). We then inspired on WAS but
used as weights the scores of each emotion in the SentiWordNet
catalog. Along this line, we deined a new metric, that we called
Weighted SentiWordNet Sum (WSS). WSS does not only include a
more ine-grained characterization of emotions by using the score
of SentiWordNet, but also considers their intensity. The formula to
calculate the WSS metric is shown in Equation 1.

score =

10∑

i=1

i × pos(emotioni) × neg(emotioni)

pos(emotion), neg(emotion) in SentiWordNet

(1)

We analyzed the emotions that participants felt during the user
study using four metrics in total that are shown in Figure 10.
The uniform shape of the red line that represents the PAS met-
ric impedes identifying diferences among the emotions of par-
ticipants. Instead, we observe that our proposed WSS metric can
help analyze emotions by taking into account two important as-
pects: positive and negative aspects of emotions, and their inten-
sity. In summary, most participants felt positive emotions such

0,00

0,25

0,50

0,75

1,00

S2 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S15

Plain Alegbraic Sum Plain SentiWordNet Sum Weighted Algebraic Sum Weighted SentiWordNet Sum

Figure 10: A line chart of the four metrics used to analyze

the emotions experienced by participants in the user study.

as satisfaction, comfort, and curiosity. On the other hand, two
participants reported several negative emotions. We conjecture
these emotions arise from a lack of ainity to exploratory tasks
that made them feel doubtful, undecided, and sometimes confused.

We can answer RQ#2.1 by saying that most participants who
used Hunter felt mostly positive emotions that contributed to
good overall user experience.

RQ#2.2: usability. To collect data for the analysis of the usabil-
ity of the system, we asked participants to specify their level of
agreement to the System Usability Scale (SUS) questionnaire [6]
statements listed in Table 3. The SUS questionnaire is a reliable tool
for measuring usability. To assess each statement participants used
a 7-step Likert scale (1 means completely disagree and 7 means
completely agree). The results are summarized in Figure 11. To
analyze the results, we grouped the statements into four categories:
(i) design śparticipants perceived that the style and features were

appropriate to accomplish comprehension tasks as well as that
they considered easy to browse data, however, in a few cases they
considered that the responsiveness of the user interface could be
improved; (ii) information ś participants considered that the infor-
mation provided by the tool is suicient, suitable, trustable, and
in an appropriate format, but for a few cases not very accurate;
(iii) quality śparticipants observed that implemented features are
robust and that since they trust in the information provided by the
tool they feel more certain, however, they missed features to obtain
details-on-demand; and (iv) immersion śthe tool is perceived to
promote curiosity and suitable for exploration, however, it seems
to ofer a moderate degree of immersion.

We can answer RQ#2.2 by saying that most participants per-
ceived that the tool ofers a high degree of overall usability.
Though, a few participants considered that the interface respon-
siveness, the accuracy of information, and a lack of details-on-
demand represent opportunities for improvement.

●

●

● ●

●

S
Y

Q
1

S
Y

Q
2

S
Y

Q
3

S
Y

Q
4

IN
Q

1

IN
Q

2

IN
Q

3

IN
Q

4

IN
Q

5

S
V

Q
1

S
V

Q
2

S
V

Q
3

P
P

1

P
P

2

P
P

3

P
P

4

P
P

5

P
P

6

P
P

7

1

2

3

4

5

6

7

A
g
re

e
m

e
n
t
le

ve
l

Figure 11: Results of the 7-step Likert scale questionnaire

administered to the participants in the study.

Theme Id Question

Design

SYQ1 The design style is appropriate
SYQ2 Browsing data is easy
SYQ3 The user interface is highly responsive
SYQ4 The included features are appropriate

Information

INQ1 The content is suicient for the required information
INQ2 The information is accurate
INQ3 The information is suitable
INQ4 The information is trustable
INQ5 The information has an appropriate format

Quality
SVQ1 The implemented features are robust
SVQ2 Hunter is trustable and reduces uncertainty
SVQ3 Hunter provides users details-on-demand

Immersion

PP1 I lost track of time while using Hunter
PP2 I do not perceive noises while using Hunter

PP3 I enjoy solving tasks while using Hunter

PP4 I have fun solving tasks while using Hunter

PP5 Hunter promotes my curiosity
PP6 Hunter helps with exploratory tasks
PP7 Hunter boosts my imagination

Table 3: Usability questionnaire.

ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea Martin Dias, Diego Orellana, Santiago Vidal, Leonel Merino, and Alexandre Bergel

5 THREATS TO VALIDITY

We grouped the threats to the validity of our study into four topics:
applications, participants, tasks, and tools.

Applications. the sizes and domains of the applications used could
inluence the results of the experiment. We mitigated this threat by
using applications of diferent sizes and domains, and by splitting
the participants into four groups that used diferent treatments.

Participants. the expertise of participants might not be representa-
tive of a real-world sample of professional software developers. To
mitigate this threat, we collected in the background questionnaire
data to assess their experience using JavaScript and IDEs. Another
threat is that the experience of the participants could not have been
equally distributed across the groups. To mitigate this threat, all
the participants were assigned randomly to each group. We also
checked that the expertise across groups was balanced.

Tasks. we found that tasks T1, T5, and T7, were diicult to be
carried out with VSC. This could indicate that (i) the tasks chosen
for the experiment could be biased towards one of the tools, or
(ii) VSC is indeed not adequate to solve these tasks. To mitigate
this threat, we chose tasks that usually arise during the software
comprehension process. Furthermore, we checked that all the tasks
were possible to be answered using either tool.

Tools. the degree of familiarity with the tools by participants could
represent a threat to the validity of the results. We mitigated this
threat by providing all participants the same tutorial, and by allow-
ing participants to continue using the tools until they felt conident
with both tools. Another threat could be that participants had an
ainity to Hunter based on our involvement in the construction
of the tool. Also, how dependencies are computed in Hunter could
be a possible threat. Speciically, some dependencies could be un-
resolved since they are created dynamically (e.g. require(base +

'../lib/extend/deployer')). We manually analyze the source code of
our case studies for this kind of cases and the number of them is
negligible.

6 RELATED WORK

In this section, we highlight some of the most relevant related work.
In it, we discuss the diferences of our work with previous studies in
terms of visualization techniques, problem domains, and conducted
evaluations, as it is a central aspect in our work. We restrict the
coverage of the discussed related work to approaches based on
static analysis.

Sotware visualization for comprehension. Software visualiza-
tion using multiple techniques and metaphors are commonly pro-
posed to support software comprehension tasks [20, 26, 33, 35].
For example, representing a software as a city has gained atten-
tion [24, 32, 36], due to the inherent intuition one can have about
a familiar environment. Software is naturally multi-concern as it
łinvolves a variety of activities carried out with a number of tools,
components and environment, that relate to many diferent aspects
of a systemž [7]. One way to comprehend multi-concern aspects
is to explore dependencies between components [29]. Treemap is
a 2D visual layout designed to represent hierarchical structures
(as a software system often complies with). Voronoi treemaps [3]
and tree visualization [2] are proven techniques that adequately

support comprehension. Although Hunter does not introduce a
novel visualization technique, it adequately combines proven visu-
alization techniques in coordinated views that packaged in a tool
enable their evaluation. Moreover, Hunter supports the visualiza-
tion of JavaScript applications, which despite its popularity it is
rarely supported by proposed software visualizations.

Sotware visualization evaluation. Visual environments to sup-
port software comprehension tasks are notoriously diicult to eval-
uate [25, 30]. Typically, software visualization approaches are eval-
uated through usage scenarios [1, 11, 27, 28, 34]. That is, a demon-
stration by the authors of visualizations to exemplify their beneits.
Usage scenarios can be helpful to identify and discuss the strengths
of a visualization approach, however, they should be considered
only a irst step towards validating the beneits of a visualization
approach. In fact, only a few software visualizations been evaluated
via thorough user studies [4, 9, 14, 16, 37]. Among them, most focus
on completion time and correctness. We think that the efect of a
visualization tool for software comprehension in human cognition
requires to involve other variables. Therefore, in our evaluation,
we decided to examine attention and emotion.

7 CONCLUSION AND FUTUREWORK

In this paper, we presented Hunter, a visualization approach that
supports developers on software comprehension tasks to under-
stand JavaScript applications.

To assess the beneits of Hunter, we conducted a thorough con-
trolled experiment driven by ive research questions. In total, 16
software developers participated in our experiment with a proper
background and experience. We ask each participant to solve nine
tasks using Visual Studio Code and using Hunter. We found that
when using Hunter, developers can increase their user performance
in terms of their accuracy to solve software comprehension tasks
(RQ#1.1), and the time that they need to perform such tasks (RQ#1.2).
In particular, we found that from nine tasks, the median of the
correctness of developers’ answers when using Hunter was eight
against only six and a half when using Visual Studio Code. Regard-
ing the completion time, we found that the median of the time spent
for participants using Hunter is 393 seconds against 1,386 of Visual
Studio Code. Moreover, we found that participants needed to use
fewer panels in Hunter than in Visual Studio Code to solve a task
(RQ#1.3). In the case of user experience, we found that developers
feel, in general, positive emotion when using Hunter (RQ#2.1) and
that they think that the tool is useful (RQ#2.2).

As future work, we plan to integrate Hunter’s visualizations
in an Integrated Development Environment (IDE), such as Visual
Studio Code. Also, we plan to conduct a long case study in the wild
with developers using Hunter on a daily basis, integrated into their
development environment to analyze their projects.

ACKNOWLEDGMENTS

This research is partially supported by STICAmSud project 18STIC-
02. Merino acknowledges funding by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) ś Project-ID
251654672 ś TRR 161. Bergel is very grateful to Lam Research and
Fondecyt Regular 1200067 for partially sponsoring this work. Dias
acknowledges Conicyt-Fondecyt project 3180386.

Evaluating a Visual Approach for

Understanding JavaScript Source Code ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea

REFERENCES
[1] Andrea Adamoli and Matthias Hauswirth. 2010. Trevis: A context tree visualiza-

tion & analysis framework and its use for classifying performance failure reports.
In Proceedings of the 5th international symposium on Software visualization. ACM,
73ś82.

[2] Ivan Bacher, Brian Mac Namee, and John D. Kelleher. 2016. On Using Tree
Visualisation Techniques to Support Source Code Comprehension. In 2016 IEEE
Working Conference on Software Visualization (VISSOFT). 91ś95. https://doi.org/
10.1109/VISSOFT.2016.8

[3] Michael Balzer, Oliver Deussen, and Claus Lewerentz. 2005. Voronoi treemaps
for the visualization of software metrics. In SoftVis ’05: Proceedings of the 2005
ACM symposium on Software visualization. ACM, New York, NY, USA, 165ś172.
https://doi.org/10.1145/1056018.1056041

[4] Titus Barik, Kevin Lubick, Samuel Christie, and EmersonMurphy-Hill. 2014. How
developers visualize compiler messages: A foundational approach to notiication
construction. In 2014 Second IEEE Working Conference on Software Visualization.
IEEE, 87ś96.

[5] Alexander Bergmayr, Hugo Bruneliere, Jordi Cabot, Jokin García, Tanja May-
erhofer, and Manuel Wimmer. 2016. fREX: fUML-based reverse engineering
of executable behavior for software dynamic analysis. In Proceedings of the 8th
International Workshop on Modeling in Software Engineering. ACM, 20ś26.

[6] John Brooke. 1996. "SUS-A quick and dirty usability scale." Usability evaluation in
industry. CRC Press. https://www.crcpress.com/product/isbn/9780748404605

[7] Tommaso dal Sasso, Roberto Minelli, Andrea Mocci, and Michele Lanza. 2015.
Blended, Not Stirred: Multi-concern Visualization of Large Software Systems. In
Proceedings of VISSOFT 2015 (3rd IEEE Working Conference on Software Visualiza-
tion). 106ś115. https://doi.org/10.1109/VISSOFT.2015.7332420

[8] Wim De Pauw, Richard Helm, Doug Kimelman, and John Vlissides. 1993. Visual-
izing the Behavior of Object-Oriented Systems. In Proceedings of International
Conference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA’93). 326ś337. https://doi.org/10.1145/165854.165919

[9] Niklas Elmqvist and Philippas Tsigas. 2003. Growing squares: Animated visual-
ization of causal relations. In Proceedings of the 2003 ACM symposium on Software
visualization. ACM, 17śf.

[10] Andrea Esuli and Fabrizio Sebastiani. 2006. Sentiwordnet: A publicly available
lexical resource for opinion mining.. In LREC, Vol. 6. Citeseer, 417ś422.

[11] Michael D Feist, Eddie Antonio Santos, Ian Watts, and Abram Hindle. 2016.
Visualizing project evolution through abstract syntax tree analysis. In 2016 IEEE
Working Conference on Software Visualization (VISSOFT). IEEE, 11ś20.

[12] Alison Fernandez and Alexandre Bergel. 2018. A domain-speciic language to
visualize software evolution. Information and Software Technology 98 (2018),
118ś130. https://doi.org/10.1016/j.infsof.2018.01.005

[13] Günter Fleck, Wilhelm Kirchmayr, Michael Moser, Ludwig Nocke, Josef Pichler,
Rudolf Tober, and Michael Witlatschil. 2016. Experience Report on Building
ASTM Based Tools for Multi-language Reverse Engineering. In 2016 IEEE 23rd In-
ternational Conference on Software Analysis, Evolution, and Reengineering (SANER),
Vol. 1. 683ś687. https://doi.org/10.1109/SANER.2016.33

[14] Carlos Gouveia, José Campos, and Rui Abreu. 2013. Using HTML5 visualizations
in software fault localization. In 2013 First IEEE Working Conference on Software
Visualization (VISSOFT). IEEE, 1ś10.

[15] Lile Hattori, Marco D’Ambros, Michele Lanza, and Mircea Lungu. 2013. An-
swering software evolution questions: An empirical evaluation. Information and
Software Technology 55, 4 (jan 2013), 755 ś 775. https://doi.org/10.1016/j.infsof.
2012.09.001

[16] Taimur Khan, Henning Barthel, Achim Ebert, and Peter Liggesmeyer. 2015. Visual
analytics of software structure and metrics. In 2015 IEEE 3rd Working Conference
on Software Visualization (VISSOFT). IEEE, 16ś25.

[17] Holger M Kienle and Hausi A Müller. 2010. The tools perspective on software
reverse engineering: requirements, construction, and evaluation. In Advances in
Computers. Vol. 79. Elsevier, 189ś290.

[18] Claus Klammer and Josef Pichler. 2014. Towards tool support for analyzing legacy
systems in technical domains. In 2014 Software Evolution Week - IEEE Conference
on Software Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE).
371ś374. https://doi.org/10.1109/CSMR-WCRE.2014.6747197

[19] Juraj Kubelka, Romain Robbes, and Alexandre Bergel. 2018. The Road to Live
Programming: Insights From the Practice. In Proceedings of the 40th ACM/IEEE
International Conference on Software Engineering (ICSE ’18).

[20] Adrian Kuhn, David Erni, and Oscar Nierstrasz. 2010. Embedding spatial soft-
ware visualization in the IDE: an exploratory study. In Proceedings of the 5th
international symposium on Software visualization. ACM, 113ś122.

[21] G. Langelier, H. Sahraoui, and P. Poulin. 2008. Exploring the evolution of software
quality with animated visualization. In 2008 IEEE Symposium on Visual Languages
and Human-Centric Computing. 13ś20. https://doi.org/10.1109/VLHCC.2008.
4639052

[22] Michele Lanza. 2001. The Evolution Matrix: Recovering Software Evolution using
Software Visualization Techniques. In Proceedings of IWPSE 2001 (International

Workshop on Principles of Software Evolution). 37ś42. https://doi.org/10.1145/
602461.602467

[23] Leonel Merino, Johannes Fuchs, Michael Blumenschein, Craig Anslow, Moham-
mad Ghafari, Oscar Nierstrasz, Michael Behrisch, and Daniel Keim. 2017. On the
impact of the medium in the efectiveness of 3D software visualization. In Proc.
of VISSOFT. IEEE, 11ś21.

[24] Leonel Merino, Mohammad Ghafari, Craig Anslow, and Oscar Nierstrasz. 2017.
CityVR: Gameful Software Visualization. In ICSME’17: Proceedings of the 33rd
IEEE International Conference on Software Maintenance and Evolution (TD Track).
IEEE, 633ś637. https://doi.org/10.1109/ICSME.2017.70

[25] Leonel Merino, Mohammad Ghafari, Craig Anslow, and Oscar Nierstrasz. 2018.
A Systematic Literature Review of Software Visualization Evaluation. Journal of
Systems and Software 144 (2018), 165ś180.

[26] Leonel Merino, Mircea Lungu, and Oscar Nierstrasz. 2014. Explora: Infrastructure
for Scaling Up Software Visualisation to Corpora.. In SATToSE. 25ś36.

[27] LeonelMerino,Mircea Lungu, andOscar Nierstrasz. 2015. Explora: A visualisation
tool for metric analysis of software corpora. In 2015 IEEE 3rd Working Conference
on Software Visualization (VISSOFT). IEEE, 195ś199.

[28] Katsuya Ogami, Raula Gaikovina Kula, Hideaki Hata, Takashi Ishio, and Kenichi
Matsumoto. 2017. Using high-rising cities to visualize performance in real-time.
In 2017 IEEE Working Conference on Software Visualization (VISSOFT). IEEE, 33ś
42.

[29] Doreen Seider, Andreas Schreiber, Tobias Marquardt, and Marlene BrÃĳggemann.
2016. Visualizing Modules and Dependencies of OSGi-Based Applications. In
2016 IEEE Working Conference on Software Visualization (VISSOFT). 96ś100. https:
//doi.org/10.1109/VISSOFT.2016.20

[30] Bonita Sharif, Grace Jetty, Jairo Aponte, and Esteban Parra. 2013. An empirical
study assessing the efect of SeeIT 3D on comprehension. In 2013 First IEEE
Working Conference on Software Visualization (VISSOFT). IEEE, 1ś10.

[31] Jonathan Sillito, Gail CMurphy, and Kris De Volder. 2006. Questions programmers
ask during software evolution tasks. In Proceedings of the 14th ACM SIGSOFT
international symposium on Foundations of software engineering. ACM, 23ś34.

[32] Frank Steinbrückner and Claus Lewerentz. 2013. Understanding software evolu-
tion with software cities. Information Visualization 12, 2 (April 2013), 200ś216.
https://doi.org/10.1177/1473871612438785

[33] Alexandru Telea and Lucian Voinea. 2008. An interactive reverse engineering
environment for large-scale C++ code. In Proceedings of the 4th ACM symposium
on Software visualization. ACM, 67ś76.

[34] Simon Urli, Alexandre Bergel, Mireille Blay-Fornarino, Philippe Collet, and
Sébastien Mosser. 2015. A visual support for decomposing complex feature
models. In 2015 IEEE 3rd Working Conference on Software Visualization (VISSOFT).
IEEE, 76ś85.

[35] Bradley Wehrwein. 2013. Lightweight software reverse engineering using aug-
mented matrix visualizations. In 2013 First IEEE Working Conference on Software
Visualization (VISSOFT). IEEE, 1ś4.

[36] Richard Wettel and Michele Lanza. 2007. Program Comprehension through
Software Habitability. In Proceedings of ICPC 2007 (15th International Conference
on Program Comprehension). IEEE CS Press, 231ś240.

[37] Richard Wettel, Michele Lanza, and Romain Robbes. 2011. Software systems as
cities: a controlled experiment. In Proceedings of the 33rd International Conference
on Software Engineering (ICSE ’11). ACM, New York, NY, USA, 551ś560. https:
//doi.org/10.1145/1985793.1985868

[38] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, and Bjöorn Regnell.
2012. Experimentation in Software Engineering. Springer. IśXXIII, 1ś236 pages.

https://doi.org/10.1109/VISSOFT.2016.8
https://doi.org/10.1109/VISSOFT.2016.8
https://doi.org/10.1145/1056018.1056041
https://www.crcpress.com/product/isbn/9780748404605
https://doi.org/10.1109/VISSOFT.2015.7332420
https://doi.org/10.1145/165854.165919
https://doi.org/10.1016/j.infsof.2018.01.005
https://doi.org/10.1109/SANER.2016.33
https://doi.org/10.1016/j.infsof.2012.09.001
https://doi.org/10.1016/j.infsof.2012.09.001
https://doi.org/10.1109/CSMR-WCRE.2014.6747197
https://doi.org/10.1109/VLHCC.2008.4639052
https://doi.org/10.1109/VLHCC.2008.4639052
https://doi.org/10.1145/602461.602467
https://doi.org/10.1145/602461.602467
https://doi.org/10.1109/ICSME.2017.70
https://doi.org/10.1109/VISSOFT.2016.20
https://doi.org/10.1109/VISSOFT.2016.20
https://doi.org/10.1177/1473871612438785
https://doi.org/10.1145/1985793.1985868
https://doi.org/10.1145/1985793.1985868

