
Imprecisions Diagnostic in Source Code Deltas
Guillermo de la Torre

∗

DCC, University of Chile

Santiago, Chile

gdelator@dcc.uchile.cl

Romain Robbes

SwSE Research Group, Free

University of Bozen-Bolzano

Bolzano, Italy

rrobbes@unibz.it

Alexandre Bergel

DCC, University of Chile

Santiago, Chile

abergel@dcc.uchile.cl

ABSTRACT
Beyond a practical use in code review, source code change detec-

tion (SCCD) is an important component of many mining software

repositories (MSR) approaches. As such, any error or imprecision

in the detection may result in a wrong conclusion while mining

repositories. We identified, analyzed, and characterized impressions

in GumTree, which is the most advanced algorithm for SCCD. After

analyzing its detection accuracy over a curated corpus of 107 C#

projects, we diagnosed several imprecisions. Many of our findings

confirm that a more language-aware perspective of GumTree can

be helpful in reporting more precise changes.

CCS CONCEPTS
• Software and its engineering→ Software libraries and repos-
itories; Software maintenance tools;

KEYWORDS
source code change detection, differencing, quality, GumTree

ACM Reference Format:
Guillermo de la Torre, Romain Robbes, and Alexandre Bergel. 2018. Impreci-

sions Diagnostic in Source Code Deltas. InMSR ’18: 15th International Confer-
ence on Mining Software Repositories, May 28–29, 2018, Gothenburg, Sweden.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3196398.3196404

1 INTRODUCTION
Adequately characterizing source code changes across multiple

software revisions is an activity essential both in software devel-

opment and in MSR research. For instance, developers routinely

review source code changes before deciding whether to integrate

them, using tools such as pull requests in Git [12]. In MSR research,

approaches based on change data are too numerous to list (Kagdi

provides a summary of early MSR research [16]).

The version control systems commonly used by developers treat

source code as textual files and thus discard the semantics of the

programming language [23]. As a consequence, a versioning system

such as Git can only express changes in terms of textual content

∗
Guillermo de la Torre is supported by CONICYT-PFCHA/Doctorado Nacional/2018-

21181919 (Chile).

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

MSR ’18, May 28–29, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5716-6/18/05. . . $15.00

https://doi.org/10.1145/3196398.3196404

whereas a code change may express a complex structural changes,

such as a code refactoring. To address that limitation, the modern

approaches to SCCD [9, 10] instead operate on the source code’s

abstract syntax tree (AST): these approaches compute the differ-

ences between two successive versions of the code (two ASTs) and

express changes in terms of an edit script, a sequence of operations

to transform the first AST into the second.

While these approaches are a vast improvement over text-based

change detection, even the most advanced techniques of AST-based

SCCD suffer from imprecisions, of which some examples are found

in Section 2. As SCCD is an early step in many MSR approaches, im-

precisions during that step have the potential to carry over, leading

to variations in their results [15, 17, 28]. To improve on the state of

the art, developing an understanding of the issues affecting SCCD

is crucial (for additional background on SCCD, see Section 3).

The goal of this paper is two-fold: 1) to gain a better understand-

ing of the kind of imprecisions that affect SCCD algorithms (Section

4), and 2) to estimate the impact of the said imprecisions by devel-

oping heuristics to detect these imprecisions in a large corpus of

source code (Sections 5–8). The subject of our study is GumTree [9],

a state of the art SCCD algorithm, applied to a corpus of 107 C#

projects. This paper investigates two research questions:

ResearchQuestion #1:What are the issues affecting the GumTree
algorithm? In order to better understand the imprecisions that affect

GumTree, we first analyzed 86 file revision pairs originating from a

single project. Out of these 86 pairs, we found 23 cases (27%) where

GumTree produces incorrect or sub-optimal results. We also cate-

gorized the imprecisions found in 4 categories: Spurious changes,

Arbitrary Changes, Redundant Changes, and Ghost Changes. This

initial evidence suggests that there is still lots of room to improve

upon the state of the art in SCCD.

Research Question #2: What is the extent of the issues identi-
fied during RQ1? While the initial evidence gathered in the first

part of the paper is enough to give us an intuition on the issues

that affect SCCD algorithms and GumTree in particular, it is not

enough. An extensive diagnostic is needed in order to gauge the

relative importance of the issues encountered. Without such a di-

agnostic the improvements depend more of the intuition and will

not necessarily be tackling the most relevant issues. To do so, we

developed heuristics to detect the imprecisions that we identified,

and ran them on a large source code corpus (107 systems, 143,419

file revision pairs). We then manually evaluated the accuracy of

the heuristics on a subset of the result. This allowed us to: 1) con-

firm our preliminary finding that there is room for improvement in

SCCD, and 2) estimate the impact of each issues in the corpus and

get a sense of their relative importance.

Section 9 concludes our diagnostic by summarizing the issues

found and commenting on possible solutions that deserve to be

https://doi.org/10.1145/3196398.3196404
https://doi.org/10.1145/3196398.3196404

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Guillermo de la Torre, Romain Robbes, and Alexandre Bergel

studied in a future research effort. One of the key reasons for the

issues that we observed is that GumTree under exploits the syntax

and the semantic of the source code. In the same manner that

versioning systems treat source code as “just text”, GumTree treats

source code as “just an AST”. Adding more knowledge about the

syntax and semantics of the programming language to an SCCD

algorithm should allow it to make better decisions.

Finally, we close this paper by documenting the limitations of

this study (Section 10), and presenting related work (Section 11),

before concluding (Section 12).

2 MOTIVATING EXAMPLE
One reason for the suboptimal performance of GumTree is that it

considers the AST as “just a tree”, and ignores most of the domain

knowledge. This domain knowledge includes, for instance, the type

of changes that are likely to occur for each type of source code

element, as well as common programming conventions.

While conducting our exploratory study (Section 4), we encoun-

tered the example shown in Listing I. It highlights parts of pull

request #123 made to project AjaxControlToolkit 1
. In this listing as

well as in Listing II, we colored the code according to the AST

changes: deletions, insertions, updates, and moves.

Using GumTree to calculate the differences of file AjaxFileUpload

.cs yields several imprecisions (Listing I, top), compared to the

ideal behavior (Listing I, bottom). In particular, GumTree concludes

that OnInit(EventArgs) was renamed to AreFileUploadParamsPresent().

The latter is in fact a regular method, while the former is an event
handler which is conceptually very different. In fact, the code in

AreFileUploadParamsPresent describes only a substep of the original

event processing logic. To make matters worse, GumTree infers

that a new OnInit(EventArgs) event handler was inserted, instead

of preserving the identity of the event handler accross versions.

The reason for this is that GumTree gives too much weight to the

content of the methods, as opposed to their conceptual type.

GumTree’s behavior (top) contrasts with the expected behavior

(bottom): method AreFileUploadParamsPresent is created, and the logi-

cal step is moved to it. The consequences are that GumTree found

some changes that were unnecessary (the ones colored at top—such

as IsDesignMode being deleted then inserted—, but in black at bottom,

lines 1–3), while others were reported incorrectly (the ones with

different colors at top and bottom). The reduced number of changes

in the expected behavior makes the code actually added (lines 5–6,

bottom right), much easier to spot. Describing the change in this

way might have made the pull request reviewer’s job easier. Indeed,

while reviewing the pull request, the reviewer did mention the code

in lines 5–6 (see the second comment of pull request #123
2
). This

clearly indicates that the distinction between regular methods and

event handlers is important; failing to take this into account leads

to a suboptimal description of the changes. Note that Listing II

(Section 4) contains additional examples of imprecisions.

3 BACKGROUND
Source code change detection generally works at the file level. Con-

sider two file version pairs (file revision pairs), the first describing

1
the entire pull request is available at: http://tinyurl.com/ybbuh67d

2
https://tinyurl.com/y9rebqnp

an older version (the original) and a newer version (the modified).
We refer to the ASTs of the original and modified versions, as T1
and T2, respectively.

A conceptual element ti may exist both in T1 and T2 (e.g., the

method call on lines 2 at left and right, Listing I), only in T1 (e.g.,
the IF of line 4 at left), or only in T2 (e.g., the two statements on

lines 5 and 6 at right). The original version of ti (denoted ti1) is its
occurrence inside T1, while ti2 denotes the modified version of ti
inside T2. That is, ti=⟨ti1, ti2⟩, ti1∈T1 (or ti1=� due to ti does not
occur in T1), and ti2∈T2 (or ti2=� due to ti does not occur in T2).

If ti does not occur in T1 (i.e., ti= ⟨�, ti2⟩) its original version
never existed, then ti was inserted. Similarly, if ti does not occur in
T2 (i.e., ti= ⟨ti1,�⟩) its modified version will never exist again, then

ti was deleted. If ti exists both in T1 and T2 (i.e., ti1,� and ti2,�),
then ti1 may be exactly or approximately equal to ti2. For example,

lines 2 at left and right are exactly equal, while the IF’s condition in

lines 3 at left and right are approximately equal. In the first case, the

conceptual element ti is unmodified, so no change should transform
ti1 into ti2. Otherwise, ti was modified, and part of the reported

changes should transform ti1 into ti2. In addition, when ti1 and ti2
belong to different parents or belong to a same parent but have

different positions, ti was moved (e.g., the condition on line 4, left,

moves to line 9, right).

An edit script is made of element insertions, element deletions,

and transformations (updates, moves) among elements. The edit

script describes how to transform T1 into T2 and consequently the

changes that occurred. The actions that make up the edit script de-

pend on the approach of change detection used. Classical text-based

approaches delete, insert and update textual units, such as lines

(e.g. unix diff), characters, or tokens. Tree differencing approaches

delete, update and insert nodes, but also move entire subtrees. We

use the tree differencing actions defined in Chawathe et al. [4].

GumTree. GumTree [9] is a SCCD approach oriented to the com-

mon sense of the developers. GumTree locates the larger modified

contexts first, and later identifies concrete changes. To do that,

the algorithm prioritizes the matches among bigger subtrees in a

top-down pass (comparing their hashed values and using Dice as a

tie-breaker). Subsequently, it looks for smaller matches in a bottom-

up fashion, in which it also integrates the generic tree differencing

algorithm RTED [22] on the smallest subtrees. GumTree works on

any source code represented as an AST, for which it needs an ad

hoc parser. The support of GumTree
3
for C# relies on SrcML [5].

4 EXPLORATORY STUDY
4.1 Methodology
Project selection. In order to get a better understanding of the

issues that affect GumTree, we started this study by analyzing the

results of 86 file revision pairs of the AjaxScriptToolkit project. The

analysis of the differences produced by GumTree is a time intensive

process, as it requires a degree of understanding of the project’s

specificities. In essence the person reviewing the differences has

to acquire some domain knowledge about a project to be able to

review it. This is why we limited our exploratory study to a single

project. Preserving domain knowledge is also the reason why this

3
We use a snapshot compiled on 25-may-2017

http://tinyurl.com/ybbuh67d
https://tinyurl.com/y9rebqnp

Imprecisions Diagnostic in Source Code Deltas MSR ’18, May 28–29, 2018, Gothenburg, Sweden

Listing I: MOTIVATING EXAMPLE (original at left, modified at right)
GumTree’s Behavior: It mistakenly matches one method that handles a web page event (“OnInit”) with other method that is not an event

handler (“AreFileUploadParamsPresent”). This because they share a lot of original code moved there through refactorings. GumTree does

not know about conventions as the event handlers, but it relies on the heuristic that the subtrees are very similar.

1 protected override void OnInit(EventArgs e){

2 base.OnInit(e);

3 if(!IsDesignMode){

4 if(!string.IsNullOrEmpty(Page.Request.QueryString[“contextkey”])

&& Page.Request.QueryString[“contextkey”] ==

ContextKey && Page.Request.QueryString[“controlID”]

== ClientID)

5 IsInFileUploadPostBack = true;

6 }

7 }

But, “OnInit” is still present in the version modified! It could have

been correctly matched by a simple mapping among same named

methods.

1 protected override void OnInit(EventArgs e){

2 base.OnInit(e);

3 if(IsDesignMode | | !AreFileUploadParamsPresent()) return;

4 IsInFileUploadPostBack = true;

5 var processor = new UploadRequestProcessor {...};

6 processor.ProcessRequest();

7 }

8 bool AreFileUploadParamsPresent() {

9 return

!string.IsNullOrEmpty(Page.Request.QueryString[“contextkey”])

&& Page.Request.QueryString[“contextkey”] ==

ContextKey && Page.Request.QueryString[“controlID”] ==

ClientID;

10 }

Expected Behavior: The second IF (line 4, left) was deleted, but its condition was moved to a new method (line 8, right). The first IF
(line 3, left) expanded its condition with an OR expression where the new method is called. The line 5 (left) moved to the line 4 (right). The

lines 5-6 (right) were inserted.

1 protected override void OnInit(EventArgs e){

2 base.OnInit(e);

3 if(!IsDesignMode){

4 if(!string.IsNullOrEmpty ... [“controlID”] == ClientID)

5 IsInFileUploadPostBack = true;

6 }

7 }

“OnInit” did not modify its signature, moved the parameter list and

the line 2, nor inserted and deleted the body’s punctuations.

1 protected override void OnInit(EventArgs e){

2 base.OnInit(e);

3 if(IsDesignMode | | !AreFileUploadParamsPresent()) return;

4 IsInFileUploadPostBack = true;

5 var processor = new UploadRequestProcessor {...};

6 processor.ProcessRequest();

7 }

8 bool AreFileUploadParamsPresent(){

9 return !string.IsNullOrEmpty ... [“controlID”] == ClientID;

10 }

work was carried out only by the first author of this paper, who

in addition to being an expert in C#, possesses expertise that the

other authors lack.

Corpus selection. AjaxControlToolkit has 466 file revision pairs, so

we selected a subset of these for inspection. To guide our selection,

we used the intuition that file revision pairs where GumTree pro-

duces “larger than normal” or “smaller than normal” edit scripts

may highlight cases where the algorithm has issues. This intuition

relies on the existence of a “normal”, i.e., a baseline for comparison.

A natural baseline is a textual difference, as opposed to the AST edit

script. Thus we computed the Levenshtein distance between the

466 file revision pairs as a baseline. We then computed the ratio of

the edit script size divided by the Levenshtein distance to find out

which file revision pairs had AST edit scripts considerably larger

or smaller than their textual edit distance. We then inspected the

24 outliers of this distribution (9 high, 15 low).

We complemented this data with a set of 14 revision pairs that

were within 10% of the median ratio value, and with an additional

random sample of 10% of the file revision pairs (48 pairs), for a total

of 86 file revision pairs (18% of all revision pairs).

Analysis. The first author then analyzed the edit script produced

by GumTree, using the swingdiff interface supported by GumTree

and going change by change, to determine whether the edit script

produced was optimal (“good”) or if it could be improved (“bad”).

The first author also categorized the issue in four categories de-

scribed next, and made notes of the observations about each case.

Preliminary results. Our first observation is that in more than

a quarter of the cases (23 out of 86: 27%), GumTree produced sub-

optimal results. The issues varied in severity, from minor issues to

major issues such as the example in Listing I.

We further determined that the vast majority of the issues af-

fecting GumTree were due to mismatches, in which GumTree’s

matching step would fail to recognize that a source code entity in

the original version was still present in the new version of the code,

for a variety of reasons (a missed match). Another, less frequent
type of mismatches is due to GumTree inferring that two distinct

entities are the same entity across versions, while they are not (a

spurious match).
While we have very limited evidence of the effectiveness of the

intuition described above, note that the category of high outliers

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Guillermo de la Torre, Romain Robbes, and Alexandre Bergel

(i.e., the edit script was comparatively larger than the textual dis-

tance) is the one for which the proportion of sub-optimal results

was highest (4 out 9, 44%), while the low outlier category had the

lowest proportion of sub-optimal results (2 out of 15, 13%). Further

study is however needed to confirm whether this intuition holds.

4.2 Imprecisions: Causes and Effects
Missed and spurious matches. As mentioned above, the main

reason for GumTree’s issues is due to mismatches. Recall (Section
3) that ti1 denotes a conceptual element in the original version

T1, while ti2 denotes the same conceptual element in the modified

version T2. A missed match happens when GumTree does not asso-

ciate ti1 with ti2 as it should. In this case, the algorithm ignores the

existence of the conceptual element ti inT2. A spurious match asso-

ciates version ti1 of conceptual element ti with tj2 that belongs to
a different conceptual element tj (ti,tj). This means that GumTree

confuses one conceptual element (ti) with another (tj).
Isolated mismatches. The simplest cause of imprecision is an

isolated missed match where the algorithm partitions ti in two

versions wrongly disconnected. So, GumTree deletes ti1 and inserts
ti2 (e.g., Listing I, the conceptual IF in the lines 3). The spurious

matches also cause imprecisions themselves. Listing II, case A,

shows a Width property that was spuriously matched to a different

property (UseShadow). As result, several updates are detected instead

of the expected deletion of Width and insertion of UseShadow.

Compoundmismatches. However, inmany cases, themismatches

combine with one another. A conceptual element ti can be both

the source of a missed match, and be at the same time spuriously

matched. Since GumTree failed tomatch ti1 with ti2, it may still seek

to match ti1 or ti2 with a different conceptual element tj=⟨tj1, tj2⟩.
This can lead to a variety of outcomes:

• If GumTree matches ti1 with tj2, it will infer that ti1 was
updated to tj2 and/or moved to the tj2’s position, and that

ti2 was inserted.
• If GumTree matches tj1 with ti2, it will infer that tj1 was
updated to ti2 and/or moved to the ti2’s position, and that

ti1 was deleted—e.g., Listing I, the method OnInit.

• If GumTree matches ti1 with tj2 and tj1 with ti2, GumTree

will issue multiple updates and/or moves.

In the worst cases, GumTreemay confuse both versions of ti with
two conceptually different elements tj=⟨tj1, tj2⟩ and tk=⟨tk1, tk2⟩;
this leads it to update ti1 to tj2 and/or move ti1 to the tj2’s position,
and to update tk1 to ti2 and/or move tk1 to the ti2’s position.

4.3 Categories of Imprecisions
The imprecisions are caused by isolated missed matches, isolated

spuriousmatches or the combination ofmissed and spuriousmatches.

By analyzing the effect of themismatches at a higher level, we found

four categories of imprecisions that we detail below.

Redundant Changes. Redundant changes are in principle caused

by missed matches. The consequences are a group of changes that

redo what another group of changes undo. A single missed match

may be the cause of a rather large set of redundant changes. Listing

II, case A shows an example. The missed match of Combine leads to:

1) a spurious match between GetFullPath and Combine, 2) a missed

match for outPutDir, and 3) mismatches between parentheses. This

leads to a large number of redundant changes, obscuring the real

ones (e.g. the insertion of Replace).

Spurious Changes. These are caused by spurious matches. They

take the shape of changes that transform two different conceptual

elements into one another. Listing II, case B, shows an example. Two

C# properties were spuriously matched, due to their high source

code similarity. However the similarity is due to the verbose way

that these properties were defined. Themost relevant aspects are the

name and type of the property, which are markedly different. The

correct behavior in this case is to treat these conceptual elements

as different, meaning that the first one should be deleted, and the

second one inserted. Note that this would likely result in a larger

edit script. This conflicts with a common goal in evaluating SCCD

algorithms, which is to compare the size of their edit scripts (the

shortest one being assumed to be the best).

Arbitrary Changes. These are spurious matches that trigger trans-

formations that are extremely unlikely, as they update very different

source code elements into one another. We see two examples in

Listing II, case C. The first is caused by the algorithm matching

two unrelated assignment operators. As a result, GumTree infers

that the operator has moved from one line to another, although

it could not reconcile the very different operator arguments. The

other arbitrary match is between a string literal (a complex regular

expression) and a boolean, resulting in an unlikely update from the

expression to the boolean.

Ghost Changes. These changes involve conceptual elements that

were not modified. They are side-effects of other changes. Ghost

changes are the black portions in the expected detection, that are

colored in the algorithm’s output (e.g., Listing I and Listing II case A).

Since they are side effects of the other imprecisions, the remainder

of this paper focuses on spurious, arbitrary and redundant changes.

This characterization is not exclusive. In many missed matches

at least one conceptual version is spuriously matched. Arbitrary

changes are spurious by definition, while some ghost or redun-

dant changes are additionally spurious. However, we separated

these kinds of imprecision to analyze them following a divide-and-

conquer approach. The next section presents a battery of heuristics

to recognize the effects of imprecisions, and evaluate their impact.

5 DETECTING AND QUANTIFYING ISSUES
WITH HEURISTICS

The Corpus. We built our corpus based on several sources. We

started with the projects developed by Microsoft from the .NET
Foundation 4

, selecting those that were hosted on Github. We com-

plemented these by a selection of projects from three other sources:

GitHub C# Trending Projects5; Up-for-grabs6; and Open Source Mi-
crosoft 7. In all three cases, we restricted our selection to projects

having at least 1,000 commits, and 1 year of development.

Our corpus contains 143,419 file revision pairs over 107 projects.

From 292,935 unique pairs initially extracted, we considered those

having real source code modifications: 147,945 (50.50%). For in-

stance, simple path renames may originate new but unmodified file

4
https://dotnetfoundation.org/

5
https://github.com/trending/csharp: pp 1–5, order by stars

6
http://up-for-grabs.net, tagged “C#” or “.NET”

7
https://opensource.microsoft.com/, first 9 pages with tag “C#”

https://dotnetfoundation.org/
https://github.com/trending/csharp
http://up-for-grabs.net
https://opensource.microsoft.com/

Imprecisions Diagnostic in Source Code Deltas MSR ’18, May 28–29, 2018, Gothenburg, Sweden

Listing II: IMPRECISION EXAMPLES (original at left, modified at right)
Case A (Redundant changes due to missed matches): In the first line, the call to “Combine” failed to match, leading to a spurious

match between “GetFullPath” and “Combine”, and several entities being deleted and inserted (“Combine”, “outPutDir”), and others moved

(“filePrefix”, parentheses). Expected behavior: second lines, left and right. This makes the actual changes (e.g., “Replace”) much easier to

see.

1 var staticFilesDirName = Path.GetFullPath(Path.Combine(outputDir,

filePrefix));

1 var staticFilesDirName = Path.Combine(“../” + outputDir,

filePrefix).Replace(“/”,@“\”);

1 var staticFilesDirName = Path.GetFullPath(Path.Combine(outputDir,

filePrefix));

1 var staticFilesDirName = Path.Combine(“../” + outputDir,

filePrefix).Replace(“/”,@“\”);

Case B (Spurious changes due to spurious matches): GumTree matches the properties “Width” and “UseShadow” since they involve

several lines of rather repetitive code. Domain knowledge is necessary to recognize which are the most important parts of the AST that

describe a property (i.e., its name). Expected behavior: The Property “Width” was deleted and the property “UseShadow” was inserted.

1 public int Width {

2 get { return GetPropertyValue(“Width”, 300); }

3 set { SetPropertyValue(“Width”, value); }

4 }

1 public bool UseShadow {

2 get { return GetPropertyValue(“UseShadow”, true); }

3 set { SetPropertyValue(“UseShadow”, value); }

4 }

Case C (Arbitrary changes due to spurious matches): Operators “=” (line 2 at left, line 4 at right) should not match, neither the string

literal (line 4 at left) and the boolean literal (line 2 at right). Some elements cannot simply match everywhere. Expected behavior: The
lines 2 and 3 were completely deleted at the left. The lines 2-4 were completely inserted at the right.

1 ... CleanAttributeValues(HtmlAttribute attribute){...

2 attribute.Value = Regex.Replace(...); ...

3 ... Regex.IsMatch(attribute.Value, “\s*e\s*x\s*p\s*r\s*e\s*s\s*s”“\s*i\s*o\s*n\s*”,

...);

4 ...}

1 ... CleanAttributeValues(HtmlAttribute attribute){

2 var hasMatch = true;

3 if(Regex.IsMatch(attribute.Value, ...)

4 hasMatch = true;

5 ...}

revision pairs. However, 4,526 (3.06%) additional revision pairs were

later filtered out because they had only modifications of comments.

The curated corpus represents 48.96% of the initial one.

Heuristics. For each of the 3 categories of imprecisions we de-

scribed, we developed detection heuristics that we ran on the entire

corpus. This allows us to estimate how wide-spread each of the

issues are. We describe the heuristics in the next 3 sections.

Manual Rating. Imprecise heuristics could severely overestimate

the magnitude of the issues. To increase the precision of our es-

timates, we manually investigate a random sample of the issues

highlighted by the heuristics, to gauge their accuracy. This revision

is performed by the first author of the paper (a C# expert). The rater

analyzes the revision pairs of the random sample, looking at the

matches of the heuristics, rating them as:

• Correct: The source code location singled out by the heuris-

tic shows a sub-optimal behavior by GumTree, whether di-

rectly or indirectly related to the heuristic.

• Incorrect:The source code location singled out by the heuris-
tic does not show a sub-optimal behavior by GumTree.

Sampling. We calculate sample sizes according to a standard for-

mula [27]. We draw samples from the population of file revision

pairs where each heuristic found matches, aiming for a confidence

interval of 10% with a confidence level of 95%. We use a 10% interval

due to the large amount of heuristics to check, to keep the workload

manageable (the rating process took several months).

Diagnostic. The first author took notes of observations about each
case; these are briefly discussed in the quantitative results.

6 REDUNDANT CHANGES
6.1 Redundancy Checking
To recognize redundancy changes, it is necessary to identify the

conceptual element ti that was implicitly missed by the SCCD

algorithm. However, figuring out the matches ⟨ti1, ti2⟩ is precisely
one of the major challenges in change detection. We simplified

the problem: we check for conceptual elements that kept the same

name across the original and the modified versions.

Algorithm 1 checks for redundant changes produced byGumTree.

The entry point is FindRedundantRenames. The algorithm searches

for potentially missed matches in all the changes (the delta) pro-

duced by a SCCD algorithm on a file version pair (lines 11–12). Then

it checks combinations of changes. The intention is to recognize

names that were deleted, moved out, or updated (i.e., overwritten),

but were later (re)inserted, moved back, or (re)updated with an in-

correct new name (the incorrect new names being rather old names

that should not have been updated). Each combination defines one

of 10 redundancy patterns (lines 13–22, see next subsection), that is

checked by MissedNames. In addition, each combination may have

a different way to test name equality, this is the third argument

passed to MissedNames’s calls on lines 13–22.

Given two changes and a way to test for equality of names,

MissedNames performs the actual test. Two conceptual element

versions ei1 and ej2, could describe the same (and hypothetically

missed) conceptual element if:

• (a) they both are of one of the types in Table 2;

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Guillermo de la Torre, Romain Robbes, and Alexandre Bergel

• (b) their names of interest are equal. We assume that develop-

ers rarely eliminate one element type and introduce another

semantically different element with an equal name;

• (c) their names are related by one redundancy pattern pre-

sented in the next subsection;

• (d) they have one common ancestor. The name is unique in

all the well delimited syntactical scopes.

The recognition starts from lower ancestors and goes increasing

the levels until it finds the first symptom of redundancy (line 7).

Matched ancestors (line 6) estimate the conceptual scopes. As they

are traversed bottom-up (line 3), it is expected that the redundancy

symptoms will be encountered on the lower matches (i.e., the small-

est conceptual scopes) delimited by GumTree. If two names are

equal and they were suspiciously changed under a same scope (line

4), they probably represent a missed match for the same conceptual

element. This fact itself is reported as a symptom of imprecision.

Algorithm 1 Redundancy checking

Require: Original and modified subject versions (E1 and E2),
equal (x, y) determines if two conceptual versions are compatible.

1: function MissedNames(E1, E2, equal)
2: R ← {}
3: A(z) ← z’s ancestors ordered bottom-up

4: for each { ⟨e1∈E1, e2∈E2 ⟩ : equal (e1, e2)} do
5: for each a2∈A(e2) do
6: if ∃a1∈A(e1) such that a1 matches a2 then
7: R ← R ∪ ⟨e1, e2 ⟩
8: break
9: return R
10: end function

11: function FindRedundantRenames(δT1,T2)
12: I, D, U , M ← the elements inserted, deleted, updated, or moved

in δT1,T2, respectively.
13: return MissedNames(D, I, name(x)=name(y)) ∪
14: MissedNames(D, U , name(x)=newname(y)) ∪
15: MissedNames(D, M, name(x)=[new]name(y)) ∪
16: MissedNames(U , I, oldname(x)=name(y)) ∪
17: MissedNames(M, I, [old]name(x)=name(y)) ∪
18: MissedNames(U , U , oldname(x)=newname(y)) ∪
19: MissedNames(U , M, oldname(x)=[new]name(y)) ∪
20: MissedNames(M, U , oldname(x)=newname(y)) ∪
21: MissedNames(M, M, oldname(x)=[new]name(y)) ∪
22: MissedNames(M, M, oldname(x)=newname(y))
23: end function

6.2 Redundancy Patterns
ASCCD algorithmX maymismatch a conceptual element ti=⟨ti1, ti2⟩
according to 10 redundancy patterns:

DI)X partitions ti in two false elements tj=⟨ti1,�⟩ and tk=⟨�, ti2⟩.
Effect:X deletes ti1 and inserts ti2. For example, outputDir in Listing

II, case A. The remaining cases must follow more complex trans-

formations, of ti1 into tk2 (tk=⟨tk1, tk2⟩) and/or of tj1 (tj=⟨tj1, tj2⟩)
into ti2.

DU) X mismatches ti2 with a tj , where tj1’s value , ti2’s value
(a spurious match). Effect: X deletes ti1 and updates tj1 to ti2. For
example, Combine in Listing II, case A.

Table 1: REDUNDANT PATTERNS (S: Symptoms, F: File Re-
vision Pairs)

Pattern Population % of TOTAL
S F S F

DI 95445 3922 71.01% 40.48
DU 6030 1560 04.49% 16.10

DM 2069 547 01.54% 05.65

UI 8819 3769 06.57% 38.90
MI 3361 1036 02.50% 10.69

UU 7302 1557 05.44% 16.07

UM 515 326 00.38% 03.36

MU 458 285 00.34% 02.94

MM 3270 232 02.44% 02.39

M 6978 2574 05.20% 26.57
TOTAL 134247 9688

DM) X mismatches ti2 with a tj , where tj1’s position , ti2’s
position. Effect: X deletes ti1 and moves tj1 to ti2’s position.

UI) X mismatches ti1 with a tk , where ti1’s value , tk2’s value.
Effect: X updates ti1 to tk2 and inserts ti2. See OnInit in listing I.

MI) X mismatches ti1 with a tk , where ti1’s position , tk2’s
position. Effect: X moves ti1 to tk2’s position and inserts ti2. For
example, the second (in Listing II, case A.

UU) X mismatches ti1 with a tk , where ti1’s value , tk2’s value,
and mismatches ti2 with a tj where tj1’s value , ti2’s value. Effect:
X updates ti1 to tk2 and updates tj1 to ti2.

UM) X mismatches ti1 with a tk , where ti1’s value , tk2’s value,
and mismatches ti2 with a tj where tj1’s position , ti2’s position.
Effect: X updates ti1 to tk2 and moves tj1 to ti2’s position.

MU) X mismatches ti1 with a tk , where ti1’s position , tk2’s
position, and mismatches ti2 with a tj , where tj1’s value , ti2’s
value. Effect: X moves ti1 to tk2’s position and updates tj1 to ti2.

MM) X mismatches ti1 with a tk , where ti1’s position , tk2’s,
and mismatches ti2 with a tj , where tj1’s position , ti2’s position.
Effect: X moves ti1 to tk2’s position and moves tj1 to ti2’s position.

M) X does not mismatch ti but mismatches ti ’s parent, for
instance after a DI pattern. Effect: X moves ti1 to ti2’s position, a
side effect (and a ghost change) of a mismatch among the parents.

In Listing II, case A, filePrefix moves due to the missed match of

Path.Combine.

6.3 Results and Diagnostic
Overall and pattern-level analysis. Table 1 summarizes the re-

dundant names found for each redundancy patterns. The heuristics

find matches (S) in 9,688 file revision pairs (F), or 6.75% of the total.

A large majority (71.01%) of the issues come from the first and sim-

plest pattern,DI. Gumtree simply fails to match a large number
of conceptual elements. All other patterns contribute in minor

proportions. The second most common pattern is UI, which af-

fects 6.57% of the total. Note that the amount file revision pairs
affected by UI (38.90%) is almost as significant as the one of
DI (40.48%). A third pattern of interest is the M pattern, affecting

5.20% of the elements but more than a quarter of files (26.57%).
Since these are collateral effects of other redundancy patterns, we

see that some of the patterns indeed tend to spread.

Imprecisions Diagnostic in Source Code Deltas MSR ’18, May 28–29, 2018, Gothenburg, Sweden

Precision of the heuristics. We evaluated the precision of the

heuristics on a per element type basis to determine whether some

element types need particular attention. Thus we divided the results

according to each (named) element type affected, and inspected a

sample of each (or the whole population if small enough). We clas-

sified the cases in true bad behaviors (Issues) or not. Table 2 shows
the results. Each column pair describes the counts of symptoms (S)
and affected file revision pairs (F). Let the accuracy a= bad cases

inspected cases ,

the confidence interval c , and the total of modified element types

(E) across the entire corpus (Corpus). We estimate imprecisions in

the corpus (%Issues) as ⌊(a−c)/100⌋
Corpus

∗100 both for S and F.
The accuracy is very high overall: it hovers above 95% for most

categories, with some at 100% (since the whole population was

inspected for those). Two categories have comparatively subpar

accuracy: formal arguments (73.51%) and variables (86.94%), but

both remain high. This increases our confidence that the heuristics

are not overstating the issue (they may understate them, as we have

no way to account for false negatives).

Affected elements. Table 2 shows that the most frequent prob-

lems of redundant names in GumTree are in variables, fields, and

methods. In particular, variable mismatches are widespread at the

file level. Methods seem to have less potential mismatches, but

these may be actually more worrisome, since a mismatch at that

level may trigger further issues below it, see Listing I.

In general, the size of an element influences the matching be-

havior. The larger it is, the more information the algorithm has

to discover a good match. This largely explains the high accuracy

in most of the type definitions (classes, structs, interfaces). As the

textual extension decreases, the number of issues increases. For

instance, properties are more challenging than the type definitions,

but less challenging than variables or formal arguments. Another

factor is how many potential matches to choose from. There are

usually few classes, constructors, or destructors in a file. Methods,

fields, and variables on the other hand are numerous.

Detailed observations. From our notes, we list some particular

situations that foster imprecisions on different element types:

Split or merged declarations: Listing I shows a case where the

original method splits its implementation between its modified

counterpart and a new method. Alternatively, two method’s im-

plementations can be merged in one modified version, while the

other is deleted. The most similar subtrees are not always the same

conceptual element, leading to mismatches.

Stub first, implementation later : Some elements start as stubs to

be implemented later, e.g., a method that throws an exception or

returns a constant to show it has still not been implemented. The

concrete implementation may drastically differ from the stub, lead-

ing to a mismatch between the original and the modified versions.

This mismatch may even propagate up to the ancestors, so that

their container type definitions do not match either.

Members moved up across a hierarchy: Due to refactorings, meth-

ods, properties and fields can move from a subclass to a superclass.

Occasionally, the modified subclass diverges from the original; the

original subclass may even look textually closer to the modified

superclass. As a result, the subclass match is missed, and it may

even by spuriously matched with the superclass.

Textually dissimilar, but conceptually similar : Some changes do

not affect the conceptual identity of the statement. For example,

a variable declaration List<string> _parameters = new List<string>()

; may be modified by adding the namespace System.Collections.

Generic to the type, or changing it to an implicit type (var keyword).

7 SPURIOUS CHANGES
Spurious changes are changes between two conceptually different

source code elements. They happen when the algorithm spuriously

matches them, and as a consequences “forces” the conversion of

one source code element into the other.

To detect potential spurious changes, we measure the amount of

changes affecting a given entity, and pinpoint entities that change

“too much”. The heuristic computes a transformation coefficient
for each entity, and for entities that are usually stable (have few

changes), reports outliers that have much more changes.

Transformation Coefficient. Let the in-actions be the insertions,
updates or moves affecting one original conceptual version, and

the out-actions be the deletions or moves from it. We defined a

transformation coefficient as the ratio between in-actions and out-

actions, filtering out the elements that were entirely inserted or

deleted (i.e., in−actions ≥ 0 and out−actions ≥ 0 is required).

Finding Outliers. Intuitively, in the element types where the trans-

formation coefficient is stable, coefficients higher than a certain

threshold may highlight imprecisions. We computed the transfor-

mation coefficientCi j (tj , ⟨T1i ,T2i ⟩) for each element type tj in each

file revision pair ⟨T1i ,T2i ⟩. Subsequently, we averaged these coef-

ficients to inhibit the influence of large file revision pairs. To pick

the transformation coefficient threshold C(t), we used the method

of Oliveira et al. [21] to compute thresholds of the form “80% of the

systems in the corpus should have C(t) ≤ M”.

Results. The results are shown in Table 3. We apply the heuristic

only to elements where the threshold is over 80%. We find that

23.78% of file revision pairs may have spurious change according to

the heuristic. However, a preliminary manual inspection shows that

the accuracy of the heuristic is lower than for redundant changes.

Out of 243 file revision pairs inspected, 164 were indeed rated as

spurious (67%). Assuming a representative sample, we estimate that

16% of file revision pairs could be subjected to spurious changes,

still an important portion. While GumTree economizes transforma-

tions by moving subexpressions from deleted statements (e.g., from

method calls), the conceptual expressions moved are not always

good matches, but rather arbitrary updates.

8 ARBITRARY CHANGES
Arbitrary changes are particularly spurious matches that foster

transformations that are particularly hard to believe.While conduct-

ing the exploratory study, we kept notes of particular transitions

between specific elements or element types, and systematically

searched for them. We defined 9 such heuristics. During our man-

ual inspection, we posed two questions to evaluate the credibility of

a change. First, Does the change express an action a developer would
do? e.g., an operator or a parenthesis moving from one method

to a conceptually different method is rarely credible according to

this criterion. Converting a boolean to another type is also unlikely.

Then, Does the change have a believable semantic? e.g., a rename

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Guillermo de la Torre, Romain Robbes, and Alexandre Bergel

Table 2: REDUNDANT NAMES PER ELEMENT TYPES (S: Symptoms, F: File Revision Pairs)

Types Population Sampling Issues Accuracy ± Confidence (95%) Corpus %Issues
S F↓ S F S F S F E F E F

destructors 5 5 5 5 5 5 100% 100% 163 103 03.07% 04.85%

struct 151 13 151 13 151 13 100% 100% 2015 1602 07.49% 00.81%

enum values 278 58 96 36 96 36 100% 100% 4965 1000 05.60% 05.80%

interface 32 26 32 26 32 26 100% 100% 1741 1437 01.84% 01.81%

enum 94 92 94 92 94 92 100% 100% 5146 4794 01.83% 01.92%

class 955 352 133 83 128 81 96.24% ± 03.00 97.59% ± 02.89 120230 100796 00.74% 00.33%

constructors 1100 510 137 85 132 83 96.35% ± 02.94 97.65% ± 02.94 19167 12767 05.34% 03.78%

property 2809 539 961 42 951 40 98.96% ± 00.52 95.24% ± 06.19 37645 13785 07.34% 03.47%

field 7737 684 502 73 475 70 94.62% ± 01.91 95.89% ± 04.31 13147 6090 54.55% 10.28%

formal args. 8829 866 268 75 197 53 73.51% ± 05.20 70.67% ± 09.55 145268 40825 04.15% 01.30%

methods 43740 3952 306 115 294 115 96.08% ± 02.17 100% 256648 91631 16.00% 04.31%

variable 25994 4789 245 107 213 104 86.94% ± 04.20 97.20% ± 03.09 43550 14797 49.38% 30.45%
TOTAL 134247 9688 2897 680 2644 654 91.27% 96.18%

Table 3: SPURIOUS CHANGES IN STABLE ELEMENT TYPES (S: Symptoms, F: File Revision Pairs)

Types C(t) Population Sampling Issues Accuracy
p% ≤M S F↓ S F S F S F

condition 80 - 0.50 3622 2400 40 22 28 18 70.00% 81.82%

init 84 - 0.50 6333 3924 32 28 17 14 53.13% 50.00%

expr_stmt 86 - 0.50 13237 6874 34 23 18 13 52.94% 56.52%

decl 84 - 0.46 12992 7292 45 34 32 26 71.11% 76.47%

name 80 - 0.09 21631 8421 38 24 26 17 68.42% 70.83%

argument 84 - 0.34 24179 10057 34 22 26 17 76.47% 77.22%

method 85 - 0.61 15915 11085 71 45 38 27 53.52% 60.00%

call 85 - 0.34 30514 12255 130 75 71 47 54.61% 62.67%

TOTAL 355441 34110 424 243 256 164 60.38% 67.49%

between two elements should involve elements with semantically

consistent names and capture the intention of developers.

Results. The heuristics are shown in Table 4. Our manual analysis

shows an accuracy of 82% at the file level, allowing us to estimate

that 8.5% of file revision pairs may have arbitrary changes pin-

pointed by our heuristisc. Most of the times, these are textually

optimal but semantically imprecise or controversial.

Renames between instance expressions (“this” and “base”) and
simple names (e.g., of variables or methods): The instance expressions
are represented in SrcML’s trees as simple names and they can

match indiscriminately with simple names, for example of variables,

fields, properties, or methods.

Arbitrary updates, for example between boolean and non-boolean

literals, or null literal and arbitrary names. These literals may even

move among unrelated scopes (e.g., different methods). A surprising

number of built-in types are updated from, or to user types. In prac-

tice, many of them are spurious and arbitrary changes. Classifying

packages might help, but requires C# knowledge.

Arbitrary renames among incompatible element types: The re-

names must respect the semantic relationship between the old

name and the new name. Sometimes, there are updates among

type names that are conceptually incompatible. These violate a gen-

eral rule: two elements should match if at least they are of a same

type. For instance, GumTree may rename a method call with the

name of an accessed property. There are exceptions to this general

rule: some types are compatible, such as a variable switching to a

field, but handling these cases however requires knowledge of the

programming language.

9 DISCUSSION
Space for improvement. The estimated extent of our heuristics

show that there is space for improvement over GumTree: more than

6% of file revision pairs were highlighted by our redundant change

heuristic. Spurious changes could affect 16% of file revision pairs,

and 8.5% of file revision pairs could be affected by arbitrary changes.

These values do not consider false negatives, and a pair may exhibit

several mismatches. Furthermore, methods appear to be affected

by redundant changes. These changes to high-level source code

entities could have a larger impact, as shown in Listing I.

Edit scripts are not enough. Spurious and arbitrary changes are

caused by the SCCD algorithm finding a match between elements

that should not exist. A possible reason for this is that a common

evaluation metric for SCCD algorithm is the size of the edit script

that it produces. In some cases, a spurious match may actually

produce a smaller edit script than a correct absence of match (issu-

ing updates rather than a set of deletions followed by insertions).

Barabucci [2, 3] argues that the edit script is not necessarily the

best metric, and proposes additional metrics.

Imprecisions Diagnostic in Source Code Deltas MSR ’18, May 28–29, 2018, Gothenburg, Sweden

Table 4: ARBITRARY UPDATES (S: Symptoms, F: File Revision Pairs)

Between Population Sampling Issues Accuracy
S F↓ S F S F S F

base and simple names 370 259 40 33 35 29 87.50% 87.88%

false and non-boolean literals 886 540 27 25 25 23 91.67% 92.59%

true and non-boolean literals 865 588 28 21 27 20 96.43% 95.24%

non-boolean but different literals 2833 1238 36 22 36 22 100% 100%

different simple names 2431 1441 33 23 29 21 87.88% 91.30%

this and simple names 3310 1479 65 42 59 39 90.77% 92.86%

null and simple names 2399 1567 61 45 45 36 73.77% 80.00%

system and user type names 17166 7259 161 94 113 70 70.19% 74.47%

operators 17160 7488 169 96 121 73 71.60% 76.04%

TOTAL 47422 14766 620 352 490 289 79.03% 82.10%

Tree-based vs Language-based. Two generic conceptual versions
should match if they share enough information. In tree differenc-

ing this holds if their similarity overcomes pre-determined metric

thresholds (in the case of GumTree, obtained through hashing and

Dice comparisons). However, this favors the most similar subtrees

even in contexts apparently better resolved by language rules and

development conventions, such as Listing I. This makes GumTree

fail in several patterns of refactoring, such as extracting methods.

More specific information could improve matching. Embedding

in the algorithm knowledge of specific language rules (e.g., event
handlers are more similar than other methods) could prevent spu-

rious matches. Other examples include: increasing the weight of

the name of properties (Listing II, case B); recognizing system pack-

ages and compatible types; recognizing this and base; reducing the

weight of access modifiers. This suggests a new approach in SCCD:

be more language-aware, and not only tree-aware.

Per-element matching. Following the previous recommendation

to the fullest, a way to reduce the number of mismatches could be

to make the matching polymorphic according to the element type.

The elements vary not only in the type, but also in the average size

of their contents (with an impact on performance, see Table 2), the

naming conventions, their syntactical structure, or their semantic

role. Different elements are modified with distinct frequencies and

in distinct ways. State of the art SCCD algorithms such as GumTree

and Change Distiller [10] are limited in this regard: They propose

SCCD strategies based on whether the element to match is a tree

leaf or an internal node, or the size of the subtree below it.

Tuning the matching procedure to the type of elements would

allow to select the best matching techniques for each one, vary-

ing, for instance: the similarity techniques (e.g., monograms [4] or

bigrams [10, 29]; hashing [9, 13], Dice [9], or longest common subse-

quence [4]); the testing thresholds (static [4, 9] or dynamic [8, 10]);

and discriminant parts (e.g., [29]).

10 LIMITATIONS
Preliminary study. Our preliminary study was conducted on a

single system to gain and preserve knowledge about the system.

Other systems may have different issues. On the other hand, our

corpus for the follow-up study is much larger than the one used in

related work (3 systems for [10], 16 systems for [9]), which increases

our generalization in another dimension. During the manual in-

vestigation of a random sample on those 107 systems, we did not

encounter cases of issues that seemed drastically different than

what we observed during the preliminary study.

GumTree specific. Our diagnostic is specific to the current behav-
ior of GumTree and not of any other algorithm nor configuration.

Our heuristics will detect the same issues on other algorithms;

comparable results would indicate similar issues. A preliminary

exploratory study as we did in Section 4 would be needed to ensure

additional issues do not affect other algorithms.

GumTree’s support for C#. The support of GumTree for C# has

some limitations stemming from the ASTs produced by SrcML. We

detected two of those that we were able to work around. Comments

were not associated with the entities that they described, but with

their parents, resulting in a large number of ghost moves; we filtered

out the comments and re-processed the data. Some enum declara-
tions contained nested classes, which caused redundant changes

in enum values. These cases were filtered out from the heuristics,

although they may affect some elements that SrcML nested under

the enums. While we mitigated the impact of these two issues,

there might be additional issues we did not detect. We think this is

unlikely, as we have done an extensive amount of manual analysis

and have not detected anything else, but we cannot exclude it out-

right. We note that this outlines an additional limitation of SCCD

algorithms: their sensibility to the topology of the AST, topology

that is rarely documented in the papers.

False positives. Our analysis may suffer from false positives re-

turned by heuristics. This could lead us to overstate the importance

of the issues. To mitigate this, we manually evaluated the output of

the heuristics, finding that redundant changes were generally very

accurate, with spurious and arbitrary changes somewhat less so.

An additional issue is that the rating was done by the first author

only—however, the first author is the only author to possess the

required C# experience to reliably do this rating.

False negatives. Our heuristics may not return all the impreci-

sions, leading us to understate the importance of the issues. Some

spurious changes may satisfy the relative thresholds of our spurious

change heuristic. Moreover, redundant changes are not exclusive

to elements with identical names. Algorithm 1 can be customized,

for example to support more flexible forms of matching to reflect

this. The redundant change heuristic also likely suffers from false

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Guillermo de la Torre, Romain Robbes, and Alexandre Bergel

negatives due to the filtering out of elements nested under enums

by SrcML. Thus, it is likely that the “space for improvement” over

GumTree that we identified is greater than our estimate.

Imprecise symptoms. The symptoms of redundancies can be im-

precise. Ideally, each should describe a single mismatch. However,

in some cases, several mismatches combine together (e.g., an UM
pattern and an UU pattern). In other cases, several conceptual ele-

ments can be simultaneously redundant if they have equal names

but belong to different scopes. The most commonly affected ele-

ments are variables and fields. For example, n variables may exist

with the same name in different methods. The heuristic does not

discriminate and may report in the worst case n2 symptoms instead

of n (if all variables changed at once). Since variables may be moved

among different methods, these situations cannot be automatically

resolved. We mark an issue as a true bad behavior if at least one of

the versions is truly involved in a bad behavior. This may lead to

overestimating some symptoms in Tables 1 and 2, particularly for

variables and fields. We thus refrain from making strong conclu-

sions about the number of symptoms. The number of files is not

affected by this issue.

11 RELATEDWORK
11.1 Change Detection
Change detection in trees. Zhang and Shasha [30] introduced an
early algorithm to compute the edit distance between two trees.

Chawathe et al. [4] introduced the preliminary notions and algo-

rithms of change detection in hierarchically structured information

(e.g., Latex documents), splitting the general problem in the match-

ing phase, and the minimum conforming edit script subproblems.

Pawlik and Augsten introduced RTED [22], one of the best algo-

rithms to detect the minimum-cost edit script on ordered, labeled

trees. RTED is agnostic to the syntax and the kind of the nodes;

it can detect incompatible changes, such as updates between two

different kinds of nodes. This is why algorithms extending it, such

as GumTree, must filter its output.

Source code change detection. Beyond GumTree [9] that we

covered extensively, other algorithms have been developed. UmlDiff

by Xing and Stroulia [29] reports design changes for attributes or

dependencies between packages, classes, interfaces, methods and

fields. They combine name-based with structure-based measuring

and identify a taxonomy of changes. Neamtiu et al. [19] report

changes at the level of the AST, comparing types and variable names.

The approach fails when there are a lot of changes and the ASTs

being compared have very different shapes. Fluri et al. [10] show

the limitations of Chawathe et al.’s approach when applied to source

code. They then adapt the algorithm to source code by changing

its matching criterion and similarity computations. Hashimoto and

Mori [13] present Diff/TS, a tool supporting fine-grained analysis;

it extends the work of Zhang and Shashas [30] with control based

on heuristics related to a given programming language. A recent

addition to the state of the art is the work of Dotzler and Philippsen

[7], which introduces generic optimizations to tree differencing

algorithms to more precisely detect moves.

Barabucci et al. [3] argue that the size of the edit script is only

one aspect with which to measure the quality of a change detection

algorithm. They introduce additional metrics that measure other

aspects, that may be more adequate for different usage scenarios.

11.2 Beyond change detection
Several approaches address some of the shortcomings of change de-

tection, many via post-processing edit scripts. These could likely be

improved by higher quality edit scripts. Origin analysis approaches

focus on detecting entities that were split or merged [11]. Sev-

eral approaches (too many to list) detect refactorings in software

repositories—an early example is the approach by Weissgerber and

Diehl [28]; a more recent one is RefDiff [25]. Hora et al. studied

how often refactorings threatened to break the continuity of en-

tity histories, finding it very common [15]. Missed matches have

the same effect, while spurious matches may lengthen the entity’s

history. Kim and Notkin detect systematic changes [18] that can

be described more succinctly by rules (e.g., add a method to an en-

tire class hierarchy). Kawrykow and Robillard detect non-essential

changes, changes in edit scripts beyond refactorings that do not

affect functionality [17]. Herzig and Zeller separate the tangled

changes in logical units of functionality [14].

Others proposed radical departures from the status quo. Nguyen

et al. proposed a versioning system that stores the structure of

object-oriented programs, rather than merely its source code as

text [20]. A follow-up version also explicitly stored refactoring

operations [6]. Apel et al. proposed an intermediate solution, the

semi-structured merge, where the higher level of the structure is

used for merging, with text below it [1]. Others advocated recording

changes as they were made to a system, instead of storing versions

[24]. The systematic mapping study of approaches using first-class

changes by Soetens et al. [26] provides a comprehensive overview.

12 CONCLUSIONS
Source Code Change Detection algorithms are an essential building

block for many MSR approaches. Any imprecision that they have

may be amplified in subsequent steps. As such, improving SCCD

is an important goal in MSR. We presented an empirical study

characterizing the limitations of GumTree, a state of the art SCCD

algorithm. We first applied GumTree to one C# software system.

An exploratory study in which we manually analyzed the issues

present in GumTree edit scripts found that 27% the 86 file version

pairs we analyzed were not optimal.

We then classified the imprecisions in four categories: redundant,

spurious, arbitrary, and ghost changes. For each category (except

ghost changes), we developed detection heuristics. We applied the

heuristics on a corpus of 107 C# systems, manually rated their

precision, and estimated the extent of imprecisions in the corpus.

The imprecisions pointed out by the heuristics were common

enough that there are opportunities to improve GumTree. In partic-

ular, our results indicate that GumTree has issues in the matching

phase; a matching phase tailored to the specific element types to

match may yield promising results. GumTree, and other SCCD

algorithms, mostly treat source code as “just an AST”, and do not

consider many language features. We are currently actively work-

ing on the development of a SCCD approach that is tailored to the

specificities of the C# programming language, to improve on the

state of the art in SCCD.

Imprecisions Diagnostic in Source Code Deltas MSR ’18, May 28–29, 2018, Gothenburg, Sweden

REFERENCES
[1] Sven Apel, Jörg Liebig, Benjamin Brandl, Christian Lengauer, and Christian Käst-

ner. 2011. Semistructured merge: rethinking merge in revision control systems. In

Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference
on Foundations of software engineering. ACM, 190–200.

[2] Gioele Barabucci. 2013. Introduction to the universal delta model. In Proceedings
of the 2013 ACM symposium on Document engineering - DocEng ’13. ACM Press,

New York, New York, USA, 47. https://doi.org/10.1145/2494266.2494284

[3] Gioele Barabucci, Paolo Ciancarini, Angelo Di Iorio, and Fabio Vitali. 2016. Mea-

suring the quality of diff algorithms: a formalization. Computer Standards &
Interfaces 46 (2016), 52–65. https://doi.org/10.1016/j.csi.2015.12.005

[4] Sudarshan S. Chawathe, Anand Rajaraman, Hector Garcia-Molina, and Jennifer

Widom. 1996. Change detection in hierarchically structured information. ACM
SIGMOD Record 25, 2 (jun 1996), 493–504. https://doi.org/10.1145/235968.233366

[5] Michael L Collard, Huzefa H Kagdi, and Jonathan I Maletic. 2003. An XML-

based lightweight C++ fact extractor. In Program Comprehension, 2003. 11th IEEE
International Workshop on. IEEE, 134–143.

[6] Danny Dig, Kashif Manzoor, Ralph Johnson, and Tien N Nguyen. 2007.

Refactoring-aware configuration management for object-oriented programs. In

Proceedings of the 29th international conference on Software Engineering. IEEE
Computer Society, 427–436.

[7] Georg Dotzler and Michael Philippsen. 2016. Move-optimized source code tree

differencing. In Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering. ACM, 660–671.

[8] AdamDuley, Chris Spandikow, andMiryung Kim. 2012. Vdiff: a program differenc-

ing algorithm for Verilog hardware description language. Automated Software En-
gineering 19, 4 (may 2012), 459–490. https://doi.org/10.1007/s10515-012-0107-6

[9] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Mar-

tin Montperrus. 2014. Fine-grained and accurate source code differencing. In

Proceedings of the 29th ACM/IEEE international conference on Automated soft-
ware engineering - ASE ’14. ACM Press, New York, New York, USA, 313–324.

https://doi.org/10.1145/2642937.2642982

[10] Beat Fluri, Michael Wuersch, Martin PInzger, and Harald Gall. 2007. Change

Distilling:Tree Differencing for Fine-Grained Source Code Change Extraction.

IEEE Transactions on Software Engineering 33, 11 (nov 2007), 725–743. https:

//doi.org/10.1109/TSE.2007.70731

[11] Michael W Godfrey and Lijie Zou. 2005. Using origin analysis to detect merging

and splitting of source code entities. IEEE Transactions on Software Engineering
31, 2 (2005), 166–181.

[12] Georgios Gousios, Andy Zaidman, Margaret-Anne Storey, and Arie Van Deursen.

2015. Work practices and challenges in pull-based development: the integra-

tor’s perspective. In Proceedings of the 37th International Conference on Software
Engineering-Volume 1. IEEE Press, 358–368.

[13] Masatomo Hashimoto and Akira Mori. 2008. Diff/TS: A Tool for Fine-Grained

Structural Change Analysis. In 2008 15th Working Conference on Reverse Engi-
neering. IEEE, 279–288. https://doi.org/10.1109/WCRE.2008.44

[14] Kim Herzig, Sascha Just, and Andreas Zeller. 2016. The impact of tangled code

changes on defect prediction models. Empirical Software Engineering 21, 2 (2016),

303–336.

[15] Andre Hora, Danilo Silva, Marco Tulio Valente, and Romain Robbes. 2018. As-

sessing the Threat of Untracked Changes in Software Evolution. In Proceedings
of the 40th International Conference on Software Engineering. ACM, in press.

[16] Huzefa Kagdi, Michael L Collard, and Jonathan I Maletic. 2007. A survey and

taxonomy of approaches for mining software repositories in the context of

software evolution. Journal of Software: Evolution and Process 19, 2 (2007), 77–
131.

[17] David Kawrykow and Martin P. Robillard. 2011. Non-essential changes in version

histories. In Proceeding of the 33rd international conference on Software engineering
- ICSE ’11. ACM Press, New York, New York, USA, 351. https://doi.org/10.1145/

1985793.1985842

[18] Miryung Kim and David Notkin. 2009. Discovering and representing systematic

code changes. In 2009 IEEE 31st International Conference on Software Engineering.
IEEE, 309–319. https://doi.org/10.1109/ICSE.2009.5070531

[19] Iulian Neamtiu, Jeffrey S. Foster, and Michael Hicks. 2005. Understanding source

code evolution using abstract syntax tree matching. In Proceedings of the 2005
international workshop on Mining software repositories - MSR ’05, Vol. 30. ACM
Press, New York, New York, USA, 1–5. https://doi.org/10.1145/1083142.1083143

[20] Tien N Nguyen, Ethan V Munson, and John T Boyland. 2004. Object-oriented,

structural software configuration management. In Companion to the 19th annual
ACM SIGPLAN conference on Object-oriented programming systems, languages,
and applications. ACM, 35–36.

[21] Paloma Oliveira, Marco Tulio Valente, and Fernando Paim Lima. 2014. Extracting

relative thresholds for source code metrics. In 2014 Software Evolution Week -
IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineer-
ing (CSMR-WCRE). IEEE, 254–263. https://doi.org/10.1109/CSMR-WCRE.2014.

6747177

[22] Mateusz Pawlik and Nikolaus Augsten. 2011. Rted. Proceedings of the VLDB
Endowment 5, 4 (dec 2011), 334–345. https://doi.org/10.14778/2095686.2095692

[23] Romain Robbes and Michele Lanza. 2005. Versioning systems for evolution

research. In Principles of Software Evolution, Eighth International Workshop on.
IEEE, 155–164.

[24] Romain Robbes and Michele Lanza. 2007. A change-based approach to software

evolution. Electronic Notes in Theoretical Computer Science 166 (2007), 93–109.
[25] Danilo Silva and Marco Tulio Valente. 2017. RefDiff: detecting refactorings in

version histories. In Mining Software Repositories (MSR), 2017 IEEE/ACM 14th
International Conference on. IEEE, 269–279.

[26] Quinten David Soetens, Romain Robbes, and Serge Demeyer. 2017. Changes as

First-Class Citizens: A Research Perspective on Modern Software Tooling. ACM
Computing Surveys (CSUR) 50, 2 (2017), 18.

[27] Mario F Triola. 2006. Elementary statistics. Pearson/Addison-Wesley Reading,

MA.

[28] Peter Weissgerber and Stephan Diehl. 2006. Identifying refactorings from source-

code changes. In Automated Software Engineering, 2006. ASE’06. 21st IEEE/ACM
International Conference on. IEEE, 231–240.

[29] Zhenchang Xing and Eleni Stroulia. 2005. UMLDiff: An Algorithm for Object-

Oriented Design Differencing. In Proceedings of the 20th IEEE/ACM international
Conference on Automated software engineering - ASE ’05. ACM Press, New York,

New York, USA, 54. https://doi.org/10.1145/1101908.1101919

[30] Kaizhong Zhang and Dennis Shasha. 1989. Simple Fast Algorithms for the Editing

Distance between Trees and Related Problems. SIAM J. Comput. 18, 6 (dec 1989),
1245–1262. https://doi.org/10.1137/0218082

https://doi.org/10.1145/2494266.2494284
https://doi.org/10.1016/j.csi.2015.12.005
https://doi.org/10.1145/235968.233366
https://doi.org/10.1007/s10515-012-0107-6
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1109/TSE.2007.70731
https://doi.org/10.1109/TSE.2007.70731
https://doi.org/10.1109/WCRE.2008.44
https://doi.org/10.1145/1985793.1985842
https://doi.org/10.1145/1985793.1985842
https://doi.org/10.1109/ICSE.2009.5070531
https://doi.org/10.1145/1083142.1083143
https://doi.org/10.1109/CSMR-WCRE.2014.6747177
https://doi.org/10.1109/CSMR-WCRE.2014.6747177
https://doi.org/10.14778/2095686.2095692
https://doi.org/10.1145/1101908.1101919
https://doi.org/10.1137/0218082

	Abstract
	1 Introduction
	2 Motivating Example
	3 Background
	4 Exploratory Study
	4.1 Methodology
	4.2 Imprecisions: Causes and Effects
	4.3 Categories of Imprecisions

	5 Detecting and Quantifying Issues with Heuristics
	6 Redundant Changes
	6.1 Redundancy Checking
	6.2 Redundancy Patterns
	6.3 Results and Diagnostic

	7 Spurious Changes
	8 Arbitrary Changes
	9 Discussion
	10 Limitations
	11 Related Work
	11.1 Change Detection
	11.2 Beyond change detection

	12 Conclusions
	References

