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Abstract Genetic algorithms are commonly employed to generate unit tests.
Automatically generated unit tests are known to be an important asset to
identify software defects and define oracles. However, configuring the test gen-
eration is a tedious activity for a practitioner due to the inherent difficulty
to adequately tuning the generation process. Furthermore, evolution processes
are most of the time compared solely using the final results, while discarding
all the details of the iterations that are themselves important for an adequate
tuning.

This paper presents TestEvoViz, a visual technique to introspect genetic
algorithm-based test generation processes. TestEvoViz offers the practitioners
a visual support to expose the process and decisions made by the generation
algorithm. We first present a number of case studies to illustrate the expres-
siveness of TestEvoViz. We then conducted a user study involving 22 par-
ticipants including researchers, students and professional software engineers.
Participants use our visual approach to analyze, compare and tune test gener-
ation algorithm executions. All participants were able to complete the tasks.
Our findings show that participants focus more on the visual components that
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depict information about the test similarity, individuals coverage increments,
and the final generation code coverage.

Keywords Automated test generation · Genetic algorithms · Software
visualization · Unit testing

1 Introduction

Unit tests have become essential in the software development process. They
allow us to verify on a fine-grained level if each unit (i.e., class, method, func-
tion) is behaving as expected. Executed automatically on a regular basis as
regression tests, they provide a tightly knit safety net for implementing changes
and detecting bugs early in the development cycle—but only if various unit
tests are available and test all possible usage scenarios.

Unit test can be created manually or automatically. Both ways have their
advantages and disadvantages in practice. In a manual test creation, practi-
tioners prepare a set of test scenarios that they believe are needed to be eval-
uated. Therefore, this activity, besides requiring high manual effort, is limited
to a specific perspective of a single developer or tester. Complementary, au-
tomatic unit test generation helps to reduce the time to create unit tests and
cover scenarios that might be overlooked in the manually crafted unit tests.

A wide spectrum of techniques are commonly employed to generate tests,
in particular fuzzing [1], test amplification [2], and genetic algorithms [3, 4].
This paper focuses on supporting the activity of test generation using ge-
netic algorithms. EvoSuite1 [3] is a popular genetically-based test generation
tool. The effort related to EvoSuite has significantly strengthened the field
of genetically-based test generation. EvoSuite is considered a reference in the
field and it has remarkable traction by using genetic algorithms to generate
tests [5]. However, it is surprising to see that EvoSuite does not provide much
tooling for understanding and assessing how tests are effectively generated. In
particular, EvoSuite does not provide any mechanism to precisely expose the
decision made by the genetic algorithm. As a consequence, developers have
difficulties understanding the roots of the final generated tests, and the effects
of the hyper-parameters in the generation process.

TestEvoViz. We propose TestEvoViz, a visual introspection mechanism for
genetically-based test generation. In particular, it helps developers introspect
the whole test suite generation approach implemented by the EvoSuite tool.
Introspection refers to the “observation or examination of one’s own mental [...]
process” and “the act of looking within oneself”2. We qualify our visualization
an introspection tool since TestEvoViz is meant to support the observation
and reflection of the evolution process of the test generation. Figure 1 gives
an example of TestEvoViz on a generation of unit tests for the classical class
Stack, describing a stack data structure. The visualization reads from top to

1 http://www.evosuite.org
2 https://www.dictionary.com/browse/introspection
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Fig. 1: TestEvoViz - Test generation process for the Stack class as an illus-
trating example. The left-most panel shows the degree of static and dynamic
similarity between the unit tests (i.e., individuals) of the evolving population.
The next panel, titled Generation Evolution, indicates the coverage variation
at project level between a given generation and its direct previous generation.
The middle panel, titled Test Case Evolution, contains generated tests repre-
sented as boxes. Links associate each test with its parents. A thick box border
highlights tests that have greater coverage than their parents. The value of
each box gives the percentage of code covered by the generated test. Inner
circles are new discovered methods of the tested application that are directly
called by unit tests and inner boxes are new discovered methods that are indi-
rectly called by unit tests. Colors represent a method. The right-most panel,
called Coverage Evolution reports the coverage evolution along generations by
rendering the average, lowest and fittest coverage reached in each generation.

bottom in which each line represents an iteration of the algorithm. TestEvoViz
provides a range of glyphs detailing some aspects of the test generation. The
figure shows that the test evolution goes through 6 iterations, since there are
6 rows.

TestEvoViz is composed of four panels, reading from left to right. The
first panel titled “Test Case Similarity”, located on the left-most of the visual-
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ization, represents the static and dynamic similarity between test individuals
along the genetic evolution. Second panel indicates the contributions made for
each of the 6 iterations. The contribution of each iteration is expressed using a
spark circle [6], which summarizes three metrics related to test coverage: a big
spark circle indicates a significant contribution of the generation in terms of
covered code. The panel located in the middle represents the evolving unit tests
that contribute to the final iteration. The right-most panel plots the evolution
of test coverage evolution in terms of the best, average, and worse fitness.
These curves are relevant for assessing the diversity of the genetic information
in the unit tests at each iteration of the algorithm. This right-most panel in-
dicates that the generated tests cover 86.7% of the base component under test
in the last iteration. TestEvoViz helps developers to understand the impact
of the genetic algorithm decisions in the coverage, diversity, and individuals
across generations. This information is useful when analyzing, comparing, and
tuning test generation processes.

We have applied TestEvoViz to a number of non-trivial examples and con-
ducted a user study with 22 participants. Participants performed three tasks
that consist in analyzing, comparing and tuning test generation processes of
four real-life software projects. The scope of this study is to comprehend the
usage of TestEvoViz from the point of view of a developer, a student, and a re-
searcher. By observing participants behavior, we found that participants focus
more on the visual elements that help spot crossover and mutation operations
that help increase the population coverage, together with the visual compo-
nent that shows the similarity between tests. This behavior stems from the
relevance for our participants to consider the coverage and the test diversity
as important attributes of the generated tests.

Previous work. This article is an extension of a conference paper presented
at the eighth IEEE Working Conference on Software Visualization (VISSOFT
2020) [7]. Our previous work is extended in a number of different ways: (i)
this article improves our visualization by highlighting the similarity between
test individuals along the genetic evolution; (ii) we extend our case studies
to illustrate the usefulness of the similarity visualization; (iii) we performed a
user study to assess the usability of our visualization approach.

Artifact. This article is accompanied with an artifact, publicly available on
https://github.com/andreina-covi/TestEvoViz. The artifact contains the
video tutorial we used to train the participants, the software TestEvoViz for
three different platforms,and the case studies we used in our experiment.

Outline. The paper is structured as follows: Section 2 gives the necessary back-
ground to readers unfamiliar with genetically-based test generation; Section 3
describes the TestEvoViz visualization and the introspection mechanism; Sec-
tion 4 presents some examples that illustrate TestEvoViz in practice; Section 5
presents some real world case studies that highlight the benefits of TestEvoViz;
Section 6 summarizes the user study we perform with 22 participants to assess
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int var0 = 0;

int var1 = 1;

Point var2 = new Point(var0,var0);

Point var3 = new Point(var1,var0);

int var5 = var2.x;

double var4 = var2.distance(var3);

primitive

statement kind

primitive

constructor
constructor
method call
access field

Generated Unit Test

assertEquals(var5,var0);

assertEquals(var4,1);

Assertion
Assertion

assertEquals(var2.toString(),”0,0”); Assertion

Fig. 2: Unit test as individual of the Population

the usefulness of our proposed approach; Section 8 gives an overview of the
works related to this paper; Section 9 concludes and presents our future work.

2 Background: genetically-based unit-test generation

2.1 Unit-test generation

A number of techniques have been proposed to automatically generate tests [3,
8, 9, 4, 10]. In this paper, we voluntarily focus on EvoSuite [3], a testing tool
suite, which uses a genetic algorithm to generate unit tests. In particular, the
whole suite approach [11, 12] evolves unit tests by applying genetic operation
to maximize the test coverage of a class belonging to the base application
code. Such a class represents the target component EvoSuite is generating and
evolving tests for. The coverage of the target class is considered the fitness
function that the genetic algorithm is optimizing. A population of tests is
evolved by EvoSuite using primitive genetic operations.

Each individual of the population is a test, which is composed of a num-
ber of executable source code statements. The statements contained in each
test represent the genetic information, commonly referred to as chromosomes.
There are four kinds of statements considered by EvoSuite: primitive to rep-
resent a literal value (e.g., number, boolean, string), constructor to create an
object from a class of the application under test, method call to send a message
to an object, and access field to access an object variable. After having built
the tests, another algorithm generates assertions by using values produced by
the statements.

Each test contained in a unit test is composed of an initialization code
portion and a set of assertions. Figure 2 gives an example of a test method.
Test methods are generated to maximize the execution coverage and the whole
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test generation is oriented to executing the largest portion of the target class.
TestEvoViz does not visualize information related to the assertions statements
within the test. However, this point is part of our future work.

Initial Population. First, the algorithm creates N tests, and each test has
M randomly generated statements. Each statement tries to benefit from the
previous statements contained in the same test by using variables previously
defined. Figure 2 gives an example of a test in which the third statement uses
the variable var0 defined in the first statement.

Evolution. Once the initial population is defined, four steps are performed to
produce a new iteration, and therefore a new population of evolved tests, by
the algorithm:

– Coverage measurement – Each test is executed and the code coverage of
that test is measured through three different metrics, as we will see later
on.

– Selection – In a given population of tests, only the better-performing tests
are evolved. The selection algorithm determines which tests have to be
evolved. Many algorithms are available (e.g., ranking selection, roulette,
tournament).

– Crossover – The genetic information of two selected unit tests are com-
bined using the crossover genetic operation. A crossover between two tests
consists in merging their statements to generate two new tests.

– Mutation – The tests resulting from a crossover may be randomly altered
using a mutation genetic operation. A mutation replaces a statement with a
new one or a variation of it. Numerous mutation operators can be applied,
including changing a parameter for another (e.g., replacing a variable name
for another or changing a primitive literal value for another). Mutations
are necessary to produce diversity in the genetic information.

These operations are performed multiple times to produce a new and evolved
generation of unit tests.

2.2 Challenges

The complexity of the underlying genetic algorithm makes the activity of gen-
erating test difficult and tedious for a practitioner. In particular, a number of
technical issues have to be considered in order to properly generate unit tests
of a good quality:

– Hyperparameter tuning – A hyperparameter is a parameter whose value is
used to control the test generation process. Numerous hyperparameters are
associated with genetically-based test generation: statement mutation rate,
size of the population, selection algorithm, crossover rate, just to name a
few. Identifying adequate hyperpameter values is a process that typically
follows a try-and-adjust fashion, and the hyperparameters values may vary
depending of the class under test [9, 13].
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– Stopping the genetic algorithm – Generating unit tests may take hours or
even days for a non-trivial software component. A central question is when
to stop the evolution of the unit tests. This question is hard to answer
in practice. The behavior that is commonly followed by practitioners is
to maximize the number of generations in order to reach the best result.
However, it frequently happens that most of the best-performing tests (i.e.,
the ones with high coverage) are generated in an early iteration. Unit test
generation is a computationally intensive process and avoiding unnecessary
iterations has a significant practical impact [9].

– Evolution comparisons – Characterizing execution details of the genetic
algorithm is a key aspect to tune hyperparemeters and to determine the
stop condition. An evolution, expressed in terms of iterations, involves
many operations over the population and its individuals. Comparing dif-
ferent several evolutions and drawing actionable conclusions is therefore
crucial.

– Understanding the roots of the final output – Test generation tools have
different optimization objectives, for instance, maximize a coverage criteria
and the mutation score. However, if the output is not as expected, for
example, if there are very similar tests - tests without assertions, or tests are
asserting methods that do not belong to the target class (indirect tests) [14]
- it is difficult to debug and understand the roots of these odd situations.

These four problems cannot be easily solved. The coming section presents
TestEvoViz, which alleviates these problems by providing to practitioners es-
sential information about the test generation algorithm execution.

3 TestEvoViz

We propose TestEvoViz, a visual approach to represent the generation of unit
tests using genetic algorithms. TestEvoViz visually introspects the algorithm
internally to let a practitioner better understand decisions taken by the algo-
rithm. TestEvoViz has six main visual components to convey different aspects
regarding the iterative evolution of the population of unit tests. This section
describes a data model and each one of these components using as example
Figure 1, which illustrates the test generation for the Stack class. Table 1 de-
tails the relation between the genetic algorithm concepts and the proposed
visualization.

3.1 Data model and introspection

Our approach is designed to visualize how test cases are evolving across gen-
erations in order to achieve a higher coverage. Let Gn = {g0, g1, . . . , gn} be
the set of populations created by the genetic algorithm, where g refers to a
population of tests: the numerical subscript is the iteration index, and n is
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Table 1: Mapping genetic algorithm concepts in TestEvoViz

Initiali-
zation

Population is composed of N
tests, and each test is composed
of M statements.

_var0 := SStack newStack.

_var1 := _var0 firstLinkStack

Fitness

The fitness is given by the
branch coverage of each test and
is shown at the bottom of each
node. Each ring sector in the
generation evolution shows the
class, method and branch cover-
age variation of each generation.

66.667%

Selection

Each node in the middle panel
represents a test that con-
tributes to the final generation.
These tests were selected during
the generation process using a
selection criteria (i.e., rank se-
lection). Our visualization also
shows the number of nodes that
were discarded in each genera-
tion.

Crossover
Tests that participate in a
crossover operation are visually
linked to their child.

Mutation

Statements that were mutated
after a crossover operation may
be detected by contrasting the
source code of a given test with
the source code of their parents.

_var0 := SStack new.
_var1 := _var1 top.

_var0 := 25.
_var1 := SStack new.
_var2 := _var1 push: _var0.
_var3 := _var2 top.

_var0 := 0.
_var1 := SStack new.
_var2 := _var1 push: _var0.
_var3 := 'Ana'
_var4 := _var1 push: _var3.

8.33%16.67%

25%

Similarity

Each node is a test, and two
tests are connected if their Jac-
card similarity is above a thresh-
old. Left reflects method calls
contained in the tests, and right
reflects executed methods.

Test Case Evolution Coverage 
Evolution %

Test Case 
Similarity

Generation
Evolution

static      dynamic
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and
directly called (       )
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under test has associated 
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Fig. 3: A spark circle (left side) summarizes the coverage variations of a given
generation regarding the previous one. A node glyph (right-side) represents a
test and the method that it executes of the class under test.

the number of generations. The initial random population is denoted g0. Each
population gk consists of m tests gk = {t0, t1, . . . , tm}, where m is the size of
the population. A tuple (ti, gj) defines a test i of the population in the itera-
tion j. Let ancestors(ti, gj) be the set of ancestors of the tuple (ti, gj), each
tuple (ti, gj) may have one or two ancestors, depending on whether it results
from a crossover operation or not. We define ancestors(ti, gj) as the tests of
the previous population in iteration j − 1 that participate in the creation of
the test ti.

We have augmented the genetic algorithm to emit events at relevant steps
during its execution, e.g., before and after each iteration, application of a ge-
netic operation. These events are used to build a detailed logging facility from
which TestEvoViz extracts relevant information to build the visualization.

3.2 Test case evolution

The middle panel of TestEvoViz (Figure 1) details the unit test evolution along
the iterations. Inspired by previous works [15], we use a node-link graph visu-
alization. As in different domains, it is widely used to represent the evolution
between entities. A node-link graph representation does not only allow us to
show the relation between a test and its evolution, but also group the tests
corresponding to the same generation.

Nodes. Each node represents a test case of a particular generation (ti, gj).
Tests at a given iteration are horizontally aligned as represented in Figure 1
and Figure 4. In addition, each node is a glyph that displays the methods of
the target class and their branch coverage. Let Bcov(ti, targetClass) be the
ratio between the number of executed branches in the target class regarding
the total, and Bcov(ti,m) the branch coverage of a method m.
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We define the visual cues associated to a unit test node (Figure 3) as
follows:

– Border – A thick border indicates that a test case (ti, gj) has a higher
branch coverage than its ancestorsBcov(ti, targetClass) > Bcov(th, targetClass),
for all th ∈ ancestor(ti, gj). If the coverage remains the same or does not
improve then the box has a thin border. The goal is to highlight tests that
contribute to the generation goal, in this case, generated test that increase
the coverage regarding its parents.

– Inner nodes – Each colored inner node represents a method m of the target
class that improves its branch coverage regarding the ancestor unit tests
Bcov(ti,m) > Bcov(th,m), for all th ∈ ancestor(ti, gj). Circular inner
nodes represent methods that are called directly from the test case, and
Rectangular inner nodes are methods that are called indirectly by the gen-
erated tests. To differentiate the methods, each method of the target class
has a unique color. The objective is to help developers spot which tests are
executing the same methods. Note that different tests may increase their
coverage of the same methods.

– Value – The bottom value gives the class branch coverage obtained af-
ter executing a given test case Bcov(ti, targetClass). Since the coverage
variation between tests can be small, showing the exact coverage number
help developers understand the exact impact of a given mutation and/or
crossover in the evolution.

Edges. Edges connect tests and indicate the historical evolution of these tests.
An edge joins a unit test to its ancestors. A unit test may have one or two
ancestors. A unit test with two ancestors means that the unit test is the result
of a crossover operation of two previous unit tests. In some cases, a node
has only had one ancestor, because either (i) the unit test was the best of the
generation and it survives due to the elitism strategy; (ii) or produced children
have a lower coverage than their parents, in this case, the algorithm chooses
to let one of the two parents survive in the next generation.

Killed unit tests. To not overload the visualization, TestEvoViz does not
depict unit tests that do not contribute to the final generation. During the
evolution, many generated unit tests are poorly performing (i.e., have a low
coverage), and therefore have more probability to be killed (i.e., not consid-
ered or selected to be combined with other unit tests). This depends on the
selection strategy used by the algorithm, for instance, the rank selection algo-
rithm assigns more probability to survive to the test that have better fitness
function (i.e., higher coverage). However, a test with a low coverage may also
survive, this is important, since this test may cover branches that the test with
more coverage does not. The amount of killed unit tests for each generation is
represented as a horizontal bar, located on the right hand side of the middle
panel (Figure 1). The number of tests are discarded along each generation is
also indicated.
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Fig. 4: Highlighting ancestors and obtaining source code

Interaction. TestEvoViz provides a number of interactions to inspect the
source code and track a test case genealogical tree. Clicking on a node high-
lights their ancestors. Hovering the mouse over a unit test shows the generated
test code, and hovering the mouse cursor over an inner box shows the source
code of the corresponding method. Figure 4 shows all the ancestors of a test,
and also shows the source code of the selected test.

3.3 Test case similarity

In the case of unit test, one important aspect in the genetic evolution is the
similarity between tests [16, 17]. Understanding the diversity between the in-
dividuals of the population represents an opportunity to assess the decision
taken by the algorithm and to detect potential redundant generated tests. The
test case similarity panel visualizes the similarity between tests along genera-
tions. Although there are different alternatives to visualize similarity between
elements within a graph, most commonly used are maps and graphs. Our vi-
sualization uses network graph for this purpose, previous study shows that it
was effective for exploring complex dynamic graphs [18]. In addition, our goal
is to provide a general overview of the similarity, since fully understanding
how similar two test cases are may require more sophisticated and particular
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Test Case Evolution Coverage 
Evolution %

Test Case 
Similarity

Generation
Evolution

static      dynamic

Fig. 5: Static (left) and dynamic (right) similarity between unit tests of a given
generation. An edge indicates that the connected tests statically or dynami-
cally call to the same methods. In this example, t10 statically calls to the same
methods than other tests, but executes a different set of methods, likely the
result of using particular argument values.

tools. We do not discard that other alternatives may work similarly or better
for this purpose.

For instance, consider Figure 5, it depicts the similarity of the penultimate
generation in the Stack example (Figure 1). Each node within both graphs rep-
resent the resulting test after six iterations of the genetic algorithm. Each node
has a unique number within the graphs, therefore, two nodes with the same
number in both graphs represents the same test. Nodes have two background
colors: green for tests that participate in the creation of the next generation,
and white for the one that the algorithm discards (e.g., t3 ). Nodes in both
graphs are connected according to their similarity.

Static Similarity. Let be mc(ti) the set of method calls contained within
the source code of test ti. For each pair of test ti and tj of a given iteration,
we measure their static similarity using the Jaccard index:

static similarity(ti, tj) =
mc(ti) ∩mc(tj)

mc(ti) ∪mc(tj)

The Jaccard index, also known as similarity coefficient, is commonly used
for measuring the similarity of a sample set. It basically returns the percentage
of common elements in both sets. The static similarity measures the ratio
between the similar direct method calls between two tests, and the total of
distinct method calls done by both tests. We consider that two method calls are
similar if they invoke the same method. Note that this metric does not consider
the order on which the method calls are done and neither the argument of the
receiver. For instance, Figure 5 (left side) shows that there are a number of
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tests that directly invoke the same methods (static similarity(ti, tj) = 1).
Figure 5 (left side) shows that there are five tests that directly call to the
same methods (t7, t1, t6, t9, t10), t5 and t4 are also statically similar.

Dynamic similarity. To measure the dynamic similarity we detect methods
that where executed by a given test. These methods may be called directly or
indirectly. Let em(ti) be the set of executed methods by a test ti. We compute
the dynamic similarity also using the Jaccard index:

dynamic similarity(ti, tj) =
em(ti) ∩ em(tj)

em(ti) ∪ em(tj)

In this case, we are measuring the percentage of methods that were ex-
ecuted by both tests. For instance, Figure 5 (right side) shows that t7, t1, t6
and t9 cover the same methods during the execution. Note that t10 although
statically contain method calls to the same methods than t7, t1, t6 and t9 (as
shown with edges in the static similarity, Figure 5 left), during the execution
t10 calls different methods (as shown with no connecting edges in the dynamic
similarity), Figure 5 right.

Two test cases may statically call the same methods, but execute different
methods. This may be due to a number of factors, including, the methods are
invoked with different arguments, have a different object receiver, or are called
in a different order. This may be concluded with further analysis exploring the
source code of test t10.

In case both tests do not contain any method call, we consider both tests
as similar and assign a similarity of 1. This is an exception to the Jaccard
index, because in this situation the divisor of the formula would be zero.

3.4 Generation contribution

The middle panel already shows coverage information of the target class at
method level. In addition, inner nodes represent methods that increase their
coverage. However, there are other relevant information at the moment to
analyze a test execution, in particular, the branch and class coverage because
a method can have multiple branches, and a test may execute other classes
within the project. Since each generation has an impact on the coverage, we
summarize the variation coverage between generations using a spark circle, a
circular glyph that shows the variation of multiple metrics. This information
may be shown in different ways, but we chose a spark circle due its compact
size [19].

The second panel from the left-hand of TestEvoViz contains a spark circle
for each generation of the evolution (Figure 3, left-hand side). A spark circle is
a small bar chart drawn in a circular fashion. Our approach uses a spark circle
with three ring sections. Each spark circle summarizes the coverage variation
of a given population gj compared from its previous population gj−1 at three
levels of granularity:
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– Branch coverage – Let Bcov(gj) be the ratio between the number of exe-
cuted branches by all the tests of the generation and the number of existing
branches in the system. The total number of branches is the sum of the
branches of all methods of the application under test.

– Method coverage – Let Mcov(gj) be the ratio between the number of exe-
cuted methods and the number of methods of the application under test.

– Class coverage – Let Ccov(gj) be the ratio between the number of classes
that have at least one method executed regarding all the classes in the
application under test.

We define the coverage variation between gj and gj−1 as follows:

∆cov(gj , gj−1) = (cov(gj)− cov(gj−1))/(cov(gj−1))

This definition is used to measure coverage variation at branch (Bcov), method
(Mcov) and class (Ccov) level. In case that cov(gj−1) is zero, we consider that
the variation (∆cov(gj , gj−1)) is zero if cov(gj) is also zero, and 1 if cov(gj) is
greater than zero.

The execution of a generated test case may cover different methods and
classes of a system. Therefore, the height of each ring section is associated with
the variation of the three coverage metrics: branch coverage variation (green
section), method coverage (red section), and class coverage variation (blue
section), as indicated in Figure 3. In Figure 1, we see that the evolution brought
by the tests in generations 1, 2, and 5, contribute to significant increment the
branch coverage. In generation 1 we also see that the method coverage and the
class coverage reached its maximum since these two metrics did not change in
the later iterations.

In case that one coverage difference is negative the corresponding spark
circle ring will have a bold black border to highlighting this fact. Note that
the coverage variation has more probability to be positive because the selection
algorithm privileges the tests with more coverage, for instance, if a child has
less coverage than the parent, the child has more probability to be discarded.
In addition, our EvoSuite implementation applies elitism, which means that
the individual with more coverage will survive next to the next generation.

3.5 Coverage evolution

While the middle panel and spark circles show the coverage variation between
generations, none of them show the actual evolution of the coverage. The cov-
erage evolution panel shows the evolution of: the fittest unit test per generation
(green line), the average of the unit test coverage in a generation (blue line),
and the worst unit test per generation (pink line).

4 Examples

This section describes an application of TestEvoViz to introspect the test gen-
eration of two classes of the Pharo programming language: Stack and DataFrame.
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Fig. 6: TestEvoViz on the DataFrame class

These are two popular data structures implemented in Pharo. While the first
one is a classical linear data structure, the second one is a two-dimensional
structure commonly used for data analysis. We use TestEvoViz to generate
tests for these classes and introspect the generation process. Figure 1 and
Figure 6 depict the results obtained for Stack and DataFrame, respectively. The
following paragraphs detail the test generation as executed by EvoSuite.

Initial Population. The first row of the of middle panel depicts a set of the
first randomly generated test. Figure 7 shows the first population of the Stack

and DataFrame example. In the first generation, all tests create an object of the
class under analysis, and call a number of method within this class randomly. If
the method or constructor have some dependencies (i.e., object or primitives),
these are recursively created before calling the randomly selected method. The
methods called directly by each test are depicted with circles. For instance,
consider the first generation of the DataFrame example. There are three tests, the
first test (from left to right) directly calls only to one method, because there
is only one inner circle inside the test. However, there are eight inner boxes,
these represent methods that were called indirectly either by the constructor
or the method that is directly called.

In the Stack example, we can see that most of the covered methods are called
directly, simply looking to the circles. This is mainly because, most of the Stack
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Stack

DataFrame

Fig. 7: Initial Population: DataFrame and Stack example

methods are atomic, and do not call to other methods within the same class.
Inner box colors help to detect which tests are calling to the same methods. In
the DataFrame example, we can see that the test of the first generation directly
calls different methods, because the inner circles have different colors. In the
other hand, there are couple inner boxes with the same color along the three
tests. It means that even thought test directly call different methods, these
method indirectly call similar methods.

Crossover and mutation. The middle panel shows the parent-child relation
between test cases along the evolution. This relation is depicted by an edge
between two nodes. Figure 8 shows the crossover operations and mutation
done by the elements in the first generation of the DataFrame example.
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Fig. 8: Crossover and mutation in the first generation: DataFrame example

First note that each generation has ten individuals, however, in the case
of the DataFrame example only three individuals participate in the creation of
the final generation. The result of a crossover operation between two tests is
represented by the edges, once two tests are merged a mutation is executed
over the resulting test. The child of two tests may or not execute branches or
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methods that were not executed by their parents. This fact is depicted by the
inner nodes within the test. Therefore, we can categorize these nodes in two:

– With inner boxes – Nodes with inner boxes represent test cases that cover
new branches or methods regarding their ancestors. The color of inner
boxes helps us differentiate this situation. If a color does not appear before,
then it indicates that a new method is discovered, otherwise, a new branch
of a previously executed method is discovered. In addition, three of these
nodes add a new method call to a test, which is represented with a circle,
and these new statements indirectly call different methods in the target
class (i.e., rectangular inner nodes).

– Without inner boxes – A node without any inner box represents a test case
that has a better coverage than its parents, but does not cover any new
method or branch. This happens when its parents cover different branches
of the target class, and their child covers part of all these branches together
due to the crossover mechanism. For instance, the third iteration of the
DataFrame example has a node that increases its coverage and does not
have any new method calls.

Improving generation coverage. Although the inner boxes help to detect
which tests in an iteration have a better coverage than their parents. It is
possible that they are discovering new branches that may be already covered by
the others tests in the same iteration. The generation contribution panel helps
us identify this situation. Figure 1 shows this situation in generation 3 and 4,
although there are tests that cover new branches regarding their parents. The
coverage of the population does not increase at all. Therefore, these tests cover
branches already covered by other individuals of the population. On the other
hand, in the second and fifth iteration the new tests discover new branches
(i.e., not previously discovered). This fact is also reflected in the coverage
evolution component, every time that a new test covers new branches, both
the fittest and average coverage of the population increase.
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Fig. 9: Increasing method and class coverage: generation 5 - DataFrame example

Discovering dependencies. Sometimes, discovering a new branch is due to
code statements that involve method calls to method or classes that were not
covered in the previous iterations. This fact is also reflected in the generation
contribution panel, which shows the coverage variation at method and class
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level. For instance, consider the fifth generation in the DataFrame example (Fig-
ure 9). It shows that two tests increase the coverage of their parents, due to
a direct call to a method (inner circle), and an indirect call (inner box). In
addition, the spark circle shows that in fact new methods were covered, but
in addition, a new class was covered. This is indicated by the blue section in
the spark circle.

Discarding weak tests. In each generation, the selection algorithm replaces
tests with low fitness by evolved tests in a new population. This fact is shown
by the gray bars positioned at the right side evolution component. Since, the
purpose of the selection algorithm is to discard weak tests from the popula-
tion (i.e., poorly performing with a low coverage). The selection algorithm is
related to the metric lowest coverage on the population, which is shown by the
coverage evolution component. For instance, Figure 1 and Figure 6 show that
the selection algorithm does a good job, because at every generation, tests
with a low coverage are excluded, and the lowest coverage is increasing. A
particular situation is shown in the fourth iteration in Figure 6, because none
of the tests of that iteration improves their coverage. However, the lowest cov-
erage increases. This means that even though there was no improvement the
algorithm discards test cases with low coverage.

Population diversity. Test case similarity shows the diversity of the test
population along the evolution process. For instance, Figure 10 shows the
evolution of the static and dynamic similarity of the DataFrame example. Note
that the tests were becoming more similar along the evolution. In generation
four, there were two groups of tests. In generation five, most of the tests have
a strong similarity, but the last generation also has two groups of similar tests.
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Fig. 10: Test case similarity along generations - DataFrame example

Focusing on the generation of tests for the DataFrame example, TestEvoViz
shows the following aspects about the generation of tests for DataFrame:

– More indirect methods were invoked by tests in the initial population (Fig-
ure 7), when compared to direct method calls;

– Crossover and mutation increase the population coverage in generation two
(Figure 8) and generation five (Figure 9);
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– The similarity between tests converge to two groups of tests that invoke
similar methods, and three groups that directly invoke the same methods
(Figure 10).

5 Case Studies

This section presents two case studies on which we use TestEvoViz to analyze
the test generation of two Pharo projects. For each one of these projects, we
visualize the test generation process using a different set of hyperparameters
and describe the effects through TestEvoViz of these in the generation process.
We select these two projects because both are well know not only in the Pharo
community but in research and in general in the industry. Both projects have
a similar implementation in different programming languages and are used in
different domains.

For each case study, we generate tests for a given class using different
parameter configurations, then we use TestEvoViz to highlight the effects of
the parameter variation within the generation process. In particular, we focus
on three parameters: number of statements, population size, and mutation
rate.

Adequately selecting the hyperparameters is a complex task, as there is not
a unique best configuration for all kind of applications. Furthermore, it is often
necessary to tune the parameters according to a specific problem domain [9,
13]. In our cases study, we use a set of parameters that help us illustrate
through our visualization the effects of the parameter configuration. Although
we initially based our configuration with EvoSuite default values (i.e., mutation
rate) and a previous study of hyperparameter tuning [9], we choose relatively
small values for the population size and number of generations for didactic
purposes.

5.1 Regex

Regex is a standard Pharo library to parse and match regular expressions. In
this case study, we use the class RxMatcher as a target class. RxMatcher is
a recursive regular expression matcher that has 27 methods.

Baseline. For this case study, we use four configurations (Table 2). Figure 11
gives the result of running the algorithm with the previous configuration. As
we see, most of the methods and branches are covered at the beginning of the
first iteration. In the next generations there are new test cases that cover more
branches than their parents, however, the spark circles show that there were
already other test individuals that cover these branches. In the last generation,
the test individuals that survive have a similar coverage: this information is
represented in the right panel where the lowest, average, and highest coverage
of the population are close. After five iterations the tests with the highest
branch coverage are 19.78%. Finally, Figure 11 also shows that there are a
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Fig. 11: TestEvoViz – Regex project (Base Configuration);
number of statements = 5; number of iterations = 5;
selection algorithm = rank selection; population size = 10; and
mutation rate = 1/3

number of tests with similar method calls, and that all of the generated tests
cover similar methods.

Table 2: Regex Analyzed Configurations

Parameters Base Conf. Conf. 1 Conf. 2 Conf. 3

Number of Statements 5 3 5 5
Number of Generations 5 5 5 5
Selection Algorithm Rank Rank Rank Rank
Population Size 10 10 20 10
Mutation Rate 1/3 1/3 1/3 2/3

Number of statements. Figure 12 depicts the generation process using the
same base configuration, with the exception that this time we reduce the
number of statements from five to three. Figure 12 shows that in contrast to
the baseline (Figure 11), the population achieves the highest coverage in the
last generation. The green section of the spark circle in this generation shows
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Fig. 12: TestEvoViz – Regex project (Configuration 1);
number of statements = 3; number of iterations = 5;
selection algorithm = rank selection; population size = 10; and
mutation rate = 1/3

that the resulting test individuals cover new branches and methods of the
target class. Different from the baseline, the individuals are more diverse in
terms of method calls, but half of the individuals still cover similar methods
and have similar method calls.

Along the evolution eleven tests have more coverage than their ancestors,
notable when searching for nodes with a thick border. This particular visu-
alization shows that the crossover operations between individuals with less
statements achieve a higher coverage compared to the baseline. With this con-
figuration, the best generated test case covers 33% branches of the target class,
which is more than the baseline (19.78%).

Population size. Figure 13 depicts the generation process using the same
base configuration, with the exception that this time we increase the popula-
tion size from 10 to 20. The fourth generation in Figure 13 contains two tests
that cover new branches regarding their parents. These tests contribute to in-
creasing the branch coverage of the population, as indicated by the spark circle
in the fourth generation. Similarly to the baseline, the visualization shows that
there are few tests that have better coverage than their ancestors. But in this
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Fig. 13: TestEvoViz – Regex project (Configuration 2);
number of statements = 5; number of iterations = 5;
selection algorithm = rank selection; population size = 20; and
mutation rate = 1/3

case, the algorithm found a new test case which got better coverage than the
baseline. However, there are two groups in the last generation that have similar
method calls (statically) and cover similar methods (dynamically).

Mutation rate. Figure 14 gives the generation process using the base con-
figuration, but this time increasing the mutation rate from 1/3 to 2/3. Note
that this time, the coverage of the last population is 35.897%, which is greater
than the one obtained with previous configurations. In this case, an individual
of the second generation increases its coverage, then in the following genera-
tions the remaining individuals progressively increase their coverage, however,
no new branches were discovered after generation two. The similarity panel
shows that in the fourth generation most of the individuals contain and exe-
cute similar methods. However, in the last generation only half have covered
similar methods.

5.2 NeoJSON

NeoJSON is the standard JSON reader and writer of the Pharo programming
language. In this case study, we generate tests for the class NeoJSONOb-
jectMapping, which has 17 methods.

Baseline. We use four configurations (Table 3). Using a greater number of
generations and statements has the effect of producing a larger visualization.
Figure 15 shows the test evolution process for the class NeoJSONObjectMapping.
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Fig. 14: TestEvoViz – Regex project (Configuration 3);
number of statements = 5; number of iterations = 5;
selection algorithm = rank selection; population size = 10; and
mutation rate = 2/3

Table 3: Json Analyzed Configurations

Parameters Base Conf. Conf. 1 Conf. 2 Conf. 3

Number of Statements 10 20 10 10
Number of Generations 10 10 10 10
Selection Algorithm Rank Rank Rank Rank
Population Size 20 20 30 20
Mutation Rate 1/3 1/3 1/3 2/3

As we see, the population coverage slowly increases along generations. The
genetic algorithm is discarding tests with a lower coverage, and in the last
version, the coverage of the population is similar. This fact is shown through
the coverage evolution panel. Spark circles show that new branches were dis-
covered in generation three and five, and a new method and a new class was
executed by a test in the last generation.

In Figure 15, the similarity panel shows that at the beginning of the evo-
lution the tests cover different methods, but along the evolution, tests are
becoming dynamically and statically similar. This fact is due to the number of
statements configuration, since the number of statements is 10 and the num-
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Fig. 15: TestEvoViz – NeoJSON project (Base Configuration);
number of statements = 10; number of iterations = 10;
selection algorithm = rank selection; population size = 20; and
mutation rate = 1/3

ber of class methods is 16, there is a higher probability of calling the same
methods.

Number of statements. Figure 16 depicts the generation process using the
same base configuration, with the exception that this time we increase the
number of statements from ten to twenty. Figure 16 shows the visualization
of this change. First, we notice that (i) the last generation has a lesser cov-
erage than the baseline, and (ii) most of the branches are discovered in the
first generation. The similarity panel shows that due to the high number of
statements, tests tend to call to the same methods since the third generation.
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Fig. 16: TestEvoViz – NeoJSON project (Configuration 1);
number of statements = 20; number of iterations = 10;
selection algorithm = rank selection; population size = 20; and
mutation rate = 1/3

Therefore, we concluded that in this particular case, increasing the number of
statements did not help the generation process.

Population size. Figure 17 depicts the generation process using the same
base configuration, but uses a population size of 30 instead of 20. The coverage
of the population evolves from 20 to 40, similar to the baseline. In this case,
spark circles show that generation 8, 9 and 11 discover new branches and
methods. The similarity between tests varied during the evolution, but in the
last generation most tests cover similar methods.
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Fig. 17: TestEvoViz – NeoJSON project (Configuration 2);
number of statements = 10; number of iterations = 10;
selection algorithm = rank selection; population size = 30; and
mutation rate = 1/3

Mutation rate. Figure 18 details the generation process using the base config-
uration, but this time increasing the mutation rate from 1/3 to 2/3. Figure 18
shows that the coverage evolution is similar to the baseline. The similarity
between tests is lower in the first five generations, and new branches were
discovered in the fourth and seventh generations. The coverage of the last
population is similar to the baseline.
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Fig. 18: TestEvoViz – NeoJSON project (Configuration 3);
number of statements = 10; number of iterations = 10;
selection algorithm = rank selection; population size = 20; and
mutation rate = 2/3

6 User Study

In this section we describe the research questions and the methodology we
follow to conduct our study.
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6.1 Research Questions

The overall goal of this study is to examine the usage of TestEvoViz in the
context of analyzing, comparing and tuning genetic algorithm based test gen-
eration processes. Therefore, we state our main research question as follows:

How and how well do developers use TestEvoViz to analyze, compare, and tune
test generation evolution process?

The first part of the study is about analyzing developer perceptions of
usability and cognitive load of using our visualization. In addition, identify
problems and advantages they have while using TestEvoViz. Hence, the first
part of our study address the following research questions:

– RQ.1 What are developers’ usability perceptions of TestEvoViz?
– RQ.2 What are developers’ cognitive load perceptions of TestEvoViz?

The second part of the study is about understanding how developers use
the proposed visualization to analyze, compare and tune the hyper parameters
needed by the test generation algorithm. Hence, our third and fourth research
questions are:

– RQ.3 How do developers use TestEvoViz to analyze and compare test gen-
eration processes?

– RQ.4 How do developers use TestEvoViz to tune hyper parameters?

6.2 Experimental Setup

6.2.1 Methodology Overview

To answer our research questions, we propose a methodology structured along
six stages:

1. Project under Study.We select a number of projects over which participants
will perform the experiment.

2. Video Tutorials & Training Session.We made a video tutorial and designed
a training session in which participants use the visualization to answer a
number of questions in order to get familiar with the tool.

3. Task Design. We designed tasks focused on three dimensions: analysis,
comparison, and tuning test generation processes.

4. Pilot. We perform a pilot in order to find issues and improve the tutorial,
training session, and tasks design.

5. Participant Recruitment. We recruited 22 participants to participate in our
study with different backgrounds in academia and industry.
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6. Work Session & Data Collection. We design a work session for each par-
ticipant and define the instruments we use to collect the necessary data to
answer our research questions.

The remainder of this section elaborates on the stages described above.

6.2.2 Video Tutorial & Training Session

Before carrying out the training session, each participant receives by email
a survey about demography, a video tutorial, and a set of instructions to
download and run the artifacts needed for the experiment. During the training
session, a participant has to generate unit tests for a Stack class, which we
consider as a simple toy example. This small exercises requires the participant
to interpret the visualization and remember the meaning of each component.
In addition to its pedagogical purpose, this training sessions serves to evaluate
if the participants really understand the tutorial and gives them a chance to
ask for clarifications.

While participants were reviewing and interacting with TestEvoViz, we
clarified the doubts and questions that they asked us regarding particular com-
ponents. After the clarifications, all participants felt confident to understand
all visual components within the visualization.

6.2.3 Tasks

We define three tasks in order to evaluate our proposed visualization in three
dimensions: analyze, compare, and tune test generation processes. Table 4
describes each one of these three tasks, and their rationale. While all the tasks
focus on answering our research questions, the task T3 mostly focuses on
answering the research question RQ4.

6.2.4 Pilot

We perform a pilot with a software engineer that develops and maintains a
genetically based generator tool for Pharo. The pilot helped us: (1) clarify our
questionnaire; (2) reduce the tasks workload, since the pilot took two hours
longer than we initially hoped. Before the pilot task we asked participants to
describe the important facts they see in the test evolution of six generations.

We reduce the workload by reducing these tasks to analyze only three gen-
erations. But, we let participants select three generations which they consider
more interesting to analyze than others. In a similar fashion, task three com-
pared the evolution of five pairs of different configurations. We reduced the
task to compare only two pairs of configurations. After these adjustments,
we conducted a second pilot with a different engineer with experience in test
generation. The time needed to complete the task was 45 minutes, which also
helped reduce the fatigue effect between tasks.
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Table 4: Tasks

T1

Concern: Analysis

Description: Choose three generations that you consider more interesting
and describe the most important fact you saw in these generations.

Rationale: The goal of this task is to evaluate how developers use the vi-
sualization to assess the generation process, and understand how they relate
their conclusions with the visual components. In particular, we are interested
in understanding which aspects of the evolution process participants consider
in their conclusions and which aspects are not mentioned.

Associated Research Questions: RQ1 & RQ2 & RQ3

T2

Concern: Comparison

Description: Compare three different generation processes (each with dif-
ferent hyper-parameters), summarize the differences and similarities between
them.

Rationale: We provide participants three visualizations, each with a differ-
ent configuration. This task is about understanding the participant decision
process about the parameters in the configuration. In particular, we are inter-
ested in determining which factor participants are considering when choosing
one configuration over others. Subsequently, the participants have to describe
the similarities and differences. Finally, we ask participants to choose which
configuration is more suitable.

Associated Research Questions: RQ1 & RQ2 & RQ3

T3

Concern: Hyperparameter tuning

Description: Configure the hyperparameters in order to improve the gener-
ated tests of a given target class.

Rationale: We provide each participants three well know classes for which
they need configure the hyper-parameters and generate tests. Participants have
to select and tune the hyper-parameters until they were satisfied with the
generated tests.

Associated Research Questions: RQ1, RQ2, & RQ4

6.2.5 Projects under Study

To keep the task manageable, we use a code base that is relatively known
to all the participants of the experiment, since these projects are part of the
Pharo core. For task T1, we have a basket of four projects: NEOJSON, a JSON
parsing library. Regex, a regular expression library, DataFrame, a popular data
structure, Box2DLite, a small 2D physics engine. Each participant performs
task T1 and task T2 on a different project randomly assigned, in order to not
favor any project or task.

In case of task T3, hyper parameter tuning, participants need to have
strong knowledge about the class under test in order to assess the quality
of the generated tests. In addition, participants will generate tests multiple
times with different parameters, therefore, the project under analysis has to
be relatively small in order to reduce the overhead needed for the generator
tool. Otherwise, participants will spend more time waiting for the tool than
analyzing the generation process. For this reason, and inspired in previous
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works, for this task, we considered three popular classes as classes under tests:
ATM, Rectangle, and Vector. The first target class is taken from the Pharo
core package, the second is an implementation of the main functionalities of
ATM, and the third is taken from the PolyMath project.

6.2.6 Participants

We sent an open invitation to the Pharo developer community and the authors
university student and alumni mailing list. The Pharo community is composed
of academics, researchers, developers and student from different countries. In
addition, we invited researchers that work in test generation and software
testing, searching in them in conferences in the area.

In total, we have 22 volunteers that participate in our experiment. We
picked the participants according to their expertise in software testing and pro-
gramming experience. Six PhD students, two postdoctoral researchers, six pro-
fessional engineers, one associated professor, one university lecturer, a master
student, and four undergrad students. Their programming experience ranges
from 1 to 30 years. 19 of them have 5 years of experience or more, and only 3
of them have less than 5 years of experience. Note that the undergrad students
that participate in the experiment, already work in the software industry, in
parallel to their studies. Twelve of them are familiar with test generator tools,
and all of them have experience in unit tests.

Due the time constraints not all participants perform all the three tasks,
we balance the effort and we ensure that each task was performed by 14 par-
ticipants. Table 5 details the experience and the task each participant perform
during the experiment. Note that all participants participate in the video tu-
torial and in the learning session. These 22 participants are different, to the
ones that perform the pilot.

6.2.7 Work session & Data Collection

Figure 19 gives an overview of the work session and the data collection. The
session of each participant is structured as follows:

1. Demographic Questions – We first ask the participants to indicate their
current occupation, programming, testing, and test generation tools expe-
rience.

2. Video Tutorial & Training Session – All participants review the video tuto-
rial, and perform the training session on which analyze the test generation
process of one of the projects under study assigned randomly.

3. Task Execution – Due time constraints all participants could not execute
the three tasks. For this reason, each participant was assigned to perform
one or two tasks. Table 5 gives the task assigment of each participant.
Each task was performed by exactly 14 participants. For task T1 and T2, we
assign randomly a project under analysis, balancing the assigment across
participants. In case of task T3, participants perform the activity for the
three target classes, but we randomly assign the order.
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Table 5: Participants (P.E. = Programming Experience (years); T.E.= Testing
Experience (years); T.G. = Familiar with Test Generation Tools (Yes/No); T1,
T2, T3 = Participation in a particular task)

ID Position Research Area P.E. T.E. T.G. T1 T2 T3

P1 Postdoctoral Researcher Software Testing 20 15 ✓ ✓ ✓ ✗

P2 Postdoctoral Researcher Software Engineering 11 1 ✗ ✓ ✓ ✓
P3 Senior Professional Engineer (PhD) Software Engineering 22 14 ✗ ✓ ✓ ✓
P4 PhD Student Software Testing 14 2 ✓ ✓ ✓ ✗

P5 Senior Professional Engineer (PhD) Software Testing 6.5 6 ✓ ✓ ✓ ✓
P6 Associate Professor Software Evolution 15 13 ✓ ✓ ✓ ✗

P7 Lecturer (PhD) Software Testing 18 14 ✓ ✓ ✓ ✗

P8 Assistant Project Scientist (PhD) Software Engineering 12 6 ✓ ✓ ✓ ✗

P9 PhD Student Test Amplification 8 3 ✓ ✓ ✓ ✗

P10 Master Software Engineering 6 2 ✗ ✓ ✓ ✗

P11 Senior Professional Engineer Software Engineering 12 10 ✗ ✓ ✓ ✓
P12 Professional Engineer (PhD) Electric Engineering 10 5 ✗ ✓ ✓ ✓
P13 PhD Student Software Evolution 2 1 ✗ ✓ ✓ ✗

P14 PhD Student Software Evolution 8 7 ✗ ✓ ✓ ✓
P15 Student Computer Science 1 1 ✗ ✗ ✗ ✓
P16 Student Computer Science 4 1 ✗ ✗ ✗ ✓
P17 Student Computer Science 5 3 ✓ ✗ ✗ ✓
P18 Student Computer Science 5 2 ✓ ✗ ✗ ✓
P19 Senior Professional Engineer Software Engineering 25 10 ✗ ✗ ✗ ✓
P20 Professional Engineer Software Engineering 3.5 2.5 ✓ ✗ ✗ ✓
P21 PhD Student Software Engineering 8 6 ✓ ✗ ✗ ✓
P22 Senior Professional Engineer Software Engineering 30 28 ✓ ✗ ✗ ✓

4. NASA Task Load Index (TLX) – After completing each task participants
fills a NASA TLX 3 to detail their perceptions of the cognitive load of each
one of the tasks [20].

5. System Usability Scale (SUS) Form – After completing all their assigned
tasks each participant fill a usability using the SUS form 4, to evaluate the
usability of the proposed visualization [21].

6. Feedback – Finally, each participant verbally provides the advantages and
disadvantages, improvement suggestions, and other commnet that they
have about TestEvoViz.

We monitor the completion of the tasks and record participant’s screen
during all the experiments. Furthermore, we invite the participants to speak
out on their thoughts, questions, and indications about their progress while
carrying out the tasks. For this last point, we previously ask for participant
consent. The answers of all participants are anonymous and available online 5.

3 https://humansystems.arc.nasa.gov/groups/TLX/
4 https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.

html
5 https://bit.ly/3xHh6Yw
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Fig. 19: Work Session & Data Collection Overview

6.3 Results

6.3.1 RQ.1 What are developers usability perceptions of TestEvoViz?

Each participant uses a Likert scale to rate each one of the affirmations done in
the questionnaire. Figure 20 lists the questions and participant answers in the
system usability scale form (SUS). We sum up the score for each participant,
and then multiplied the score by 2.5 to convert the original scores of 0-40 to
0-100, as advised in the original description of the SUS form [21]. Participants’
usability score ranges from 42.5 to 100, with a median of 70.

In total, 18 participants agreed TestEvoViz was easy to use. Three par-
ticipants (P1, P8, P9) said that it was not as easy and P7 found TestEvoViz
complex. Regarding confidence, 19 of the 22 participants felt confident or par-
tially confident using it. P7 did not feel confident because the participant
doubted the usefulness of the information shown in the visualization tool, P18
said the middle panel (TestCase Evolution) was hard to understand because
it does not have a description of the components meaning (it is easy to forget
its meaning).

On the other hand, two participants (P2, P8) manifested that they would
not use it frequently, since they do not use test generation techniques fre-
quently either, and P7 said: “I would not say frequently, perhaps I’d use it
sometimes“. Other perceptions of the participants related to the tool were:
P13 - “I had problems to understand the tool, but even I’m not very familiar-
ized with genetic algorithm and test generation, I could use it and I think this
speaks well of the tool“. P16 - “The tool helps me to see if it is of any use to
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Fig. 20: SUS Scale Results. The system usability scale (SUS) consists of a ten
item questionnaire with five response options for respondents; from Strongly
disagree to Strongly agree (in a 5 point likert scale). This figure summarizes
the answers of 22 participants about the usability of TestEvoViz.

change these things, for example the number of generations, if it is of any use
to increase or not“. P6 - “The times I’ve used the generated tests, I’ve always
asked which was the similarity degree between the tests and many times I didn’t
have it clear. It means, I generated a lot of tests with EvoSuite, a big amount,
and I used to say to myself that I don’t see the diversity between the generated
tests, then I think this tool lets me see the panorama in those cases“.

Overall, eight participants’ scores were equal or greater than 85, ten partic-
ipants scored from 60 to 75, two participants scored 47,5, and one participant
scored 55, and the other 42,5.

Conclusions. According the comments of the 22 participants about the tool,
we can conclude:

– Most of the participants agreed the tool was easy to use and felt confident
using it;
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– Considering the threshold of 68, commonly used to qualify usability sys-
tems [21], we can claim that the usability of TestEvoViz is acceptable.

6.3.2 RQ.2 What are developers cognitive load perceptions of TestEvoViz?

Figure 21 shows that participants perceive more physical demand during task
T3. This is mainly because, task T3 consists in tuning hyperparameter values
which implicitly requires analyzing and comparing visualizations to under-
stand the effect of different parameters. Tasks T1 and T2 are less constrained
since participants have to characterize and compare the test generation pro-
cess without having to modify any values. Six and seven participants score
this task higher than the average.

We do not set any time restrictions for any of the three tasks. Some partic-
ipants completed the task faster than the other participants. The range of the
time for completing the task T1 was from 5 minutes to 37 minutes. For task
T2 the range was from 6 minutes to 30 minutes. And for task T3 was from 20
minutes to 87 minutes.
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The wide time gap in performance for task T3 is because participants ex-
plore different parameter configurations until they get satisfied with the gen-
erated tests. 11 participants perceived their performance from good to perfect
in the three tasks. But some participants (two in the tasks T1, T2, and three in
the task T3) felt kind of frustration while doing the tasks because they forgot
the usefulness of some components, or they could not get a higher coverage.

Regarding, the cognitive effort perceptions in mental demand, temporal de-
mand, effort, and frustration. Figure 21 show small differences between mean
values, however, there is not a strong difference between tasks. In these par-
ticular, the box plots in these dimensions are overlapping each other without
any clear difference.

Conclusions. According the answers of the participants about their cognitive
load perceptions, we argue that:

– Participants perceive task T3 as more physical demanding than task T1
and T2, since the activity of tuning hyperparameters requires also compar-
ing and analyzing the resulting visualizations;

– Participants have less confidence in their performance during task T3, since
they were unable to achieve higher coverage during the parameter tuning;

– All the tasks have similar perceptions about mental demand, temporal
demand, effort, and frustration.

6.3.3 RQ.3 How do developers use TestEvoViz to analyze and compare test
generation processes?

Task 1: Analyze. This task is about selecting 3 generations and detailing the
facts during the evolution process that participants found the most important.
Most selected generations were the ones that increased the branch coverage or
presented more colorful inner boxes. However, P3 selected the generation that
contained a test with many descendants, P4 selected the first generation since
most of the branches are discovered in this generation. Six participants (P2-P6,
P9) noticed the similarity between the tests in these generations. Participants
were curious about the generated code (using the popup), mainly to analyze
the similarity between tests. All of them prioritized the tests that contain inner
nodes, since they represent individuals that discover new branches regarding
their ancestors. Three participants (P2, P3, P9) used the interactions to high-
light the ancestors of a given test in order to understand why some tests were
similar. Spark circles and the branch evolution chart were only used to confirm
that a given test or generation contributes to the coverage increment.

Task 2: Comparison. In this task, participants analyzed two visualizations,
each one generated with a different set of hyperparameters. Participants had to
highlight the most relevant differences between two evolution processes, select
the one they consider most useful, and justify their selection. All participants
essentially focused on the final branch coverage value as a principal attribute
for their final decision. Eight of 14 participants (P1, P2, P4-P9) highlighted
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the importance of the test similarity in the final generation (note that we
had 22 participants, however each task was carried out by 14 participants to
avoid overloading the participants). Consequently, participants highlighted the
generated tests that have more coverage than their parents, and analyzed how
these tests contribute to achieving a higher coverage in future generations.
Only three participants (P6, P8, P9) related the differences among values in
the configurations and their impact in the generation process. However, P2,
P3 and P7 expressed their expectancy to get better results on visualizations
configured with a larger population size.

Conclusions. By observing the 14 participants completing the tasks T1 and
T2 (which are related to RQ.3), we make the following claims:

– All participants paid attention to the final branch coverage value as a
principal attribute for their final decision;

– 8 of 14 participants highlighted the importance of the test similarity in the
final generation.

6.3.4 RQ.4 How do developers use TestEvoViz to tune hyperparameters?

Task 3: Tuning. The task T3 consists in tuning the hyperparameters of three
different classes (ATM, Rectangle, and PMVector) and selecting a configura-
tion that generates better tests according to their personal criteria. A script
with a default setting of the hyperparameters values was given, for each class,
and the participants were able to change these values, execute the script, and
watch the effect of those changes in the visualization tool. The participants
could modify the values as many times they deemed necessary.

Figure 22 shows a visual summary of three participant sessions, in which
the contrast of the patterns are notorious (figures in Appendix show the visual
summary of all the participant sessions). Each row represents a participant
session, in particular, (i) the hyperparameters the participants modify and
(ii) the visual components they use to analyze the test generation process.
Each participant tunes hyperparameters for the three classes under study.
During the session participants generated tests multiple times with different
parameters, each test generation execution is represented with a dotted line.

Each row is split into two parts with a bold line. The top part displays
the visual components that participants analyze during the session. Each vi-
sual component is associated with a color and the component name is on the
left side. The bottom part shows the values of the hyperparameters. The nu-
meric hyperparameter is visualized with a circle where the ratio of the circle
is proportional to the hyperparameter value. This helps us identify if a hy-
perparameter was changed. The selection strategy kinds are depicted with a
triangle. We assign a color to each selection strategy, the figure legend shows
the supported strategies and their associated colors.

We observe that the main goal considered for all participants was the in-
creasing of the test coverage. Figure 22 shows the components observed, and
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the hyperparameter values modified by each participant for the test gener-
ations. 10 of the 14 participants (P2, P12, P14-P16, P18-P22) observed the
middle panel at least 50% of the time after executing the tool with a given
configuration. In similar way, it happened with the Coverage Evolution panel,
which was looked at by nine participants (P2, P3, P5, P11, P16, P18-P19,
P21-P22) at least 50% of the times after test generations were made. The prin-
cipal reason because these two components were more considered, in compar-
ison with the rest, is because they contain the coverage information achieved
through the generations, also they show how the evolution goes, i.e. if there
is an increasing of the coverage in the generation or not, the covered methods
or branches of the target class, which tests were selected to survive until the
last generation, etc. Another important component for nine participants (P3,
P5, P12, P14, P16-P20) is the Similarity panel, the participants modified the
hyperparameter values not just to get higher coverage, but also a greater di-
versity between tests. And finally, four participants (P15, P17, P18, P21) paid
attention also in the Contribution panel, because they took in consideration
the method and class coverage increasing for tuning the values.

Participants change different hyperparameters during task T3. Five partic-
ipants (P15, P16, P3, P5, P12) reduced the number of generations in some
executions because they saw that after a certain number the coverage did not
increase anymore. Three participants (P16, P5, P21) increased the generation
number because they observed that there was a gradual increase in the cov-
erage and they wanted to see if the coverage would still increase. While eight
participants (P2, P5, P11, P15, P17, P19, P20) considered, besides the cov-
erage, also the gradual evolution. It means, they took into account the new
methods or branches covered in the next generations after the first. And four
participants modified the mutation rate in order to diversify the tests.

Conclusions. Based on our observations, to complete the task related to
hyperparameter tuning, participants had the following behaviors:

– 10 of the 14 participants observed the evolution panel (middle panel) at
least 50% of the time after executing the tool with a given configuration
to analyze the tests that increment the coverage regarding their parents;

– 9 of the 14 participant observed the evolution panel to analyze the coverage
variations along generations;

– 9 of the 14 participant observed the similarity panel to get an overview of
the test diversity;

– The two most changed hyperparameters are the population size and the
number of generations.

6.3.5 Discussion & user feedback

A number of items are worth discussing.

Customization. P1 suggested that some components of TestEvoViz could
be optional for regular users of visualization, this participant said that the
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Fig. 22: Session visual summary – Summary of the session of three participants
during Task T3. The visual summary of the remaining participants may be
found in the appendix.
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center panel showing the test case evolution is the most important, and the
rest can be activated on demand. A similar suggestion is of P22, who said that
the coverage value achieved is very important, and if any user would like to
see details about the evolution (the similarity, methods or branches that were
covered), the other panels could be activated. On the other hand, P3 suggested
that very similar tests could be visually grouped in a box, and a way to see
the differences between tests of the same generation would be helpful. While
P19, P21, and P22 proposed the tool be capable of showing code differences
between parents and children. Other suggestions were given by P7, P3, and
P22, who proposed highlighting tests of the similarity chart when a user is
interacting with a test of the center panel and vice versa. P13, P14, P18, and
P20 suggested incorporating descriptions of the components of the tool, in
order to have quick access to the information in case of forgetfulness.

Discarded tests. To reduce the width of the visualization and the amount of
information, TestEvoViz does not show generated tests that do not contribute
to the final generation. However, P6 and P17 were curious to understand which
test cases were discarded to see if these tests were responsible for the increment
of the class coverage.

Branch granularity analysis. The test similarity metrics consider similarity
at method level and not at branch level, however, two participants (P3 and P9)
wanted to contrast the branches that were executing two tests to understand
the exact difference in a number of cases. That comparison can be possible
through inner boxes’ popups. But like the popup, it is just visible with the
interaction, and this can complicate the comparison a bit.

Similarity. Seven participants (P2, P7, P11-P13, P16-P17) expressed that
the similarity panel was hard to understand when the population size was
bigger. Initially, we designed the similarity panel to provide an overview of
how similar the generated tests are. However, a detailed exploration is not
possible without many complex interactions with the visualization. Therefore,
we conclude that dedicated tools to detailed similarity comparison are needed.

Hyperparameter tuning. In order to modify the hyperparameter values and
define the final value, P2, P15, and P19 suggested a summary table that shows
the values of the hyperparameters, and the coverage achieved using those val-
ues. P22 said that it would be helpful to have two windows, one showing the
graphic, produced by the visualization tool, of a previous execution, and the
other the graphic of the current execution.

7 Threats to Validity

As with any empirical evaluation, our user study has a number of threats to
validity. The following paragraphs report a number of them.

Scalability. TestEvoViz uses a grid layout, which makes the overall visual-
ization size depend on the population size and the number of generations.
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Therefore, a larger visualization typically requires scrollbars, which may in-
volve more interaction from a practitioner to enjoy the visualization. To miti-
gate the negative effect of this situation, our tool offers zoom-in and zoom-out
facilities using the mouse wheel. We argue that even though the size of the
nodes may be small when zoomed out, patterns remain identifiable.

Method colors. We assign a particular color to each method of the target
class. This color helps identify whether methods are discovered multiple times
by the algorithm or whether the test covers new branches in a method. In the
presence of a large number of methods, such an approach could lead to reduced
visualization readability. In this case, hovering the mouse gives a contextual
popup window information to precisely identify a method.

Pharo implementation of EvoSuite. Our visualization is implemented
over a test generator for Pharo called SmallSuiteGenerator6. SmallSuiteGen-
erator implements the original algorithm of EvoSuite presented at [11]. The
main difference between our implementation and EvoSuite is about resolving
type information to drive the test generation. EvoSuite operates in Java, which
is statically typed (i.e., each variable has a static type). Since Pharo is a dy-
namically typed language (like Python and JavaScript), SmallSuiteGenerator
has to use various strategies and heuristics to extract type information from
executing a Pharo application. Currently, TestEvoViz is not representing col-
lected or inferred type information that SmallSuiteGenerator uses to generate
tests.

Whole test suite generation approach.Our visualization targets the whole
suite test generation approach implemented by EvoSuite, which considers one
target at the time and a single fitness function. However, there is another
evolutionary algorithm that uses a many-objective optimization algorithm.
TestEvoViz may need to adapt a number of their components to assess the
evolution process of different test generation techniques [4].

Participants & session load. It is difficult to find people with an expertise
in genetic algorithm and/or test generation. Mainly because test generation
tools are not yet widely used in the industry. Participants without a back-
ground in the area have more difficulties using our visualization, and this is
one of the reasons that the sessions were longer. Although we send a open
invitation to participate in our study, we also personally invite people with
knowledge of test generation to reduce this threat. Therefore, we believe that
our study capture the feedback of a great variety of potential end users.

Project under study. The projects used in tasks T1 and T2 were not developed
by the participants, and they were unfamiliar with the tested code. However,
this is not an issue since in practice testers often test code developed by others.
We choose projects whose domain is simple enough to be understood and
tested in a reasonable time. For task T3, similar to previous studies [22], we
select classes that are well know for all participants, this is important since

6 https://github.com/OBJECTSEMANTICS/SmallSuiteGenerator
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they actually needed to analyze the resulting generated test to tune the hyper-
parameters. We also take into account the time needed for the tool to generate
tests, since for task T3 participants need to generated test multiple times.
Nevertheless, the selected projects and classes for the study limit the external
validity of our study.

Conclusion. We manually analyze and categorize participants’ answers, and
actions while they were using the visualization. Therefore, the conclusions and
discussions presented in the paper are limited by our perspective.

Generalization. Our visualization helps developers introspect the generation
process to understand how the algorithm is performing. As we see in our
case studies, a simple variation in the parameters may significantly impact
the algorithm behavior. However, it is important to clarify that the behavior
also depends on many other variables, for instance, the target class and the
complexity of their methods. Therefore, it is not possible to generalize the
findings outside the configuration on which the algorithm was run.

8 Related Work

Though genetic algorithms were proposed in the 60s, numerous efforts have
been made to improve and evaluate genetic algorithms. Most of the existing
works use standard visualizations (i.e. line charts and box plots) to show the
evolution of a number of metrics along evolution to describe each generation.
The spread of fitness along each individual of a generation is usually repre-
sented using charts as we do in the third panel of TestEvoViz. A number of
detailed visualizations have been proposed to better understand the evolution
process.

Our visualization was inspired by a number of visual techniques even
though they have a different purpose. We combined and adapted these to
build our proposed approach. We employ spark circles [6] to highlight cover-
age variations between iterations. Previous studies used Cartesian layouts to
visualize dynamic graphs, but normally applied to software evolution and call
graphs [23, 24, 25, 26]. We use a Cartesian layout to relate generated tests
with their corresponding iterations.

We associated a number of metrics to each node inspired in polymetric
view [27, 28, 29]. Polymetric views are commonly used to visually map entity
metrics in a glyph box glyph, this technique have been used to enhance nodes
within a graph. For instance, call graphs, and dependency graphs. At difference
of previous works, we use polymetric views to visualize different properties of
a given generated test along the evolution. Relationships between nodes with
their ancestors are represented as edges [30, 31]. Edge lines were inspired from
hierarchical bundle edges [32]. Similar to previous work, bezier lines help us
to void dense edge collision and facilitates the analysis.

Hart et al. [31] propose an ancestry view, to render all the ancestors of the
best individual after the generation process, using a tree layout and coloring
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nodes based on a number of individual properties (i.e., gene values, fitness,
and gene origins). Our approach use similar structure to show the ancestors,
however, our approach show all ancestors of the final generation and provide
highlights the ancestors of a particular node when clicking it.

Romero et al. [33] use color maps to visualize the individuals and chromo-
somes of the population. It use a matrix layout were each column is a genera-
tion, the cell of the matrix contains the fitness value of each element. Ito et al.
[34] proposed the use of pseudo-color to visualize binary-code individuals of
the population using pseudo-color, assigning a red pixel to chromosomes that
represent “1”, and a blue pixel to “0”. In contrast, we use a graph to represent
the relationship between elements.

Farooq et al. [35, 36] propose a visualization for interactive genetic algo-
rithms (IGA), IGA combines the evolution mechanism with user’s intelligent
evaluation, where users help the algorithm in the evolution process. In par-
ticular, this visualization helps users decide the generation for interaction. It
uses a two-axis dot plot visualization, where the horizontal axes are the gen-
eration number, and the vertical axes the coverage of each individual for all
generations.

Tomida et al. [37] propose a technique to visualize the evolution process
of automated program repair. It is based on a tree layout showing the code
genealogy. It highlights the nodes according to the operations and variants
performed in individuals of the population. These operations are particular to
tasks of automated program repair. At difference of this work, we focus in test
generation rather than program repair. The nodes within our graph highlight
test related metrics instead the algorithm operations.

At the difference of these works, our approach focuses on genetically-based
test coverage evolution. Therefore, our visualization renders information highly
related to test evolution, their operations and properties. As far as we know,
this is the first approach to help developers understand the test generation
process along the genetic algorithm.

Regarding the evaluation, all previous approaches present a number of
examples and case studies to highlight the usefulness of their proposed vi-
sualization [35, 36, 37, 34, 33, 31]. For instance, applying the visualization
to understand how the genetic algorithm reaches a number of solutions for
traditional problems like the rastrigin problem [33], a timetabling problem, a
jobshop scheduling problem, and Goldberg and Horn’s long-path problem [31].
In this paper, we present a dedicated user study with 22 participants, and an-
alyze the application of the genetic algorithm in a different domain which is
test generation.

9 Conclusion and Future Work

TestEvoViz is an interactive visualization approach that help developers to in-
trospect a genetic algorithm-based test generation process. It depicts different
concepts and decisions made by the genetic algorithm through various related
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visual components. We illustrated the applicability of our proposed visualiza-
tion thought two real world case studies. Complementary, we also performed an
user study involving 22 participants that use TestEvoViz to analyze, compare
and tune the test generation processes. Our finding shows that participants
mainly focus on the code coverage and test diversity as principal attributes
of the generated test. As a consequence, the most used visual components
by our participants are: (i) the similarity panel, which brings an overview of
the similarity between generated test; (ii) the evolution panel, which depicts
how the different test were evolving across generations, and (iii) the coverage
evolution panel which gives the minimum, maximum and average coverage for
each generation.

We believe TestEvoViz extends the State of the Art in comprehending
evolution-based test generation by means of an expressive, intuitive, and ef-
fective visualization. However, TestEvoViz may be considered as a contribution
on which numerous extensions can be built upon. In particular:

– Assertions are currently not represented in our visualization. Our future
work contemplates visualizing assertions as a combination of the program
coverage by the assertions and the syntactic components composing that
assertion;

– From an initial configuration of hyperparameters, TestEvoViz visualizes
the evolution of generated unit tests. As we have shown, assessing the im-
pact of some changes in the initial configuration is a manual task that
requires spotting differences between multiple visualizations. As a future
work, we will design a new visualization that shows the difference of the
evolution between two or more different initial configurations. Some ingre-
dient from our previous work will be considered [30];

– TestEvoViz has been designed to accommodate with the execution model
of EvoSuite. However, nothing prevents our visualization to operate with
a different execution model and metaheurstics. For example, our visualiza-
tion may be used to support other optimization techniques, such as Hill
Climber, or reinforcement learning [38].
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Fig. 23: Session visual summary of participants during Task T3
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Fig. 24: Session visual summary of participants during Task T3
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Fig. 25: Session visual summary of participants during Task T3
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Fig. 26: Session visual summary of participants during Task T3



50 Andreina Cota Vidaure et al.
A
T
M

R
e
c
ta

n
g

le
V

e
c
to

r

S
u
c
c
e
s
s
fu

l

E
rr

o
r

Tu
n
e
d

 v
a
lu

e

R
a
n
d

o
m

 s
e
le

c
ti

o
n

R
o
u
le

tt
e
 s

e
le

c
ti

o
n

R
a
n
k
 s

e
le

c
ti

o
n

To
u
rn

a
m

e
n
t 

s
e
le

c
ti

o
n

Tr
u
n
c
a
te

d
 s

e
le

c
ti

o
n

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
Se

le
ct

io
n 

st
ra

te
gy

Se
ed

M
ut

at
io

n 
ra

te

Po
p
u
la

ti
on

 s
iz

e

N
um

be
r 

of
 s

ta
te

m
en

ts

N
um

be
r 

of
 g

en
er

at
io

ns

C
ov

er
ag

e 
ev

ol
ut

io
n

Ev
ol

ut
io

n 
of

 G
A

G
e
n
e
ra

ti
o
n
 c

o
n
tr

ib
u
ti

o
n

D
in

am
yc

 s
im

ila
ri

ty

St
at

ic
 s

im
ila

ri
ty

Visual componentes

Te
st

 g
en

er
at

io
n

Hyperparameters

1
3

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

2
3

4
5

6
7

8
9

1
2

3
4

5
6

7
8

9
Se

le
ct

io
n 

st
ra

te
gy

Se
ed

M
ut

at
io

n 
ra

te

Po
p
u
la

ti
on

 s
iz

e

N
um

be
r 

of
 s

ta
te

m
en

ts

N
um

be
r 

of
 g

en
er

at
io

ns

C
ov

er
ag

e 
ev

ol
ut

io
n

Ev
ol

ut
io

n 
of

 G
A

G
e
n
e
ra

ti
o
n
 c

o
n
tr

ib
u
ti

o
n

D
in

am
yc

 s
im

ila
ri

ty

St
at

ic
 s

im
ila

ri
ty

Visual componentes
Te

st
 g

en
er

at
io

n
Hyperparameters

1
4

Fig. 27: Session visual summary of participants during Task T3
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