
TestEvoViz: Visual Introspection for
Genetically-Based Test Coverage Evolution

Andreina Cota Vidaure
Semantics S.R.L.

Cochabamba, Bolivia
andycotvy@gmail.com

Evelyn Cusi Lopez
Semantics S.R.L.

Cochabamba, Bolivia
cusi.evelyn@gmail.com

Juan Pablo Sandoval Alcocer
Departamento de Ciencias Exactas e Ingenieria

Universidad Catolica Boliviana “San Pablo”
Cochabamba, Bolivia
jsandoval@ucb.edu.bo

Alexandre Bergel
ISCLab, Department of Computer Science (DCC)

University of Chile
Santiago, Chile

abergel@dcc.uchile.cl

Abstract—Genetic algorithms are an efficient mechanism to
generate unit tests. Automatically generated unit tests are known
to be an important asset to identify software defects and define
oracles. However, configuring the test generation is a tedious
activity for a practitioner due to the inherent difficulty to
adequately tuning the generation process.

This paper presents TestEvoViz, a visual technique to in-
trospect the generation of unit tests using genetic algorithms.
TestEvoViz offers the practitioners a visual support to expose
some of the decisions made by the test generation. A number
of case studies are presented to illustrate the expressiveness of
TestEvoViz to understand the effect of the algorithm configura-
tion.

Index Terms—visualization, genetic algorithms, test generation

Artifact – https://github.com/andreina-covi/ArtifactSSG

I. INTRODUCTION

Automatic test generation is a crucial area in the field of
software testing. It consists of generating executable unit test
cases from a given source code base. A wide spectrum of tech-
niques is commonly employed to generate tests, in particular
fuzzing [1], test amplification [2], and genetic algorithms [3].
The unit tests generated are a valuable asset to identify the
dead code or software defects as well as to define oracles [4].

This paper focuses on supporting the activity of test gen-
eration using genetic algorithms. EvoSuite1 [3] is a popular
genetically-based test generation tool. In this paper, we target
the execution model proposed by EvoSuite, and as such,
the scope of this paper is offering a visual support tool to
(i) understand the final result of a test generation and (ii)
comprehend the process of getting to this result.

The effort related to EvoSuite has significantly strengthened
the field of genetically-based test generation. EvoSuite is
considered a reference in the field and it has remarkable
traction by using genetic algorithms to generate tests. How-
ever, it is surprising to see that EvoSuite does not provide

1http://www.evosuite.org

much tooling for understanding and assessing how tests are
effectively generated. In particular, EvoSuite does not provide
any mechanism to precisely expose the decision made by
the genetic algorithm. As a consequence, understanding and
characterizing the genetic algorithm execution is difficult.
Such a situation may contribute to an inadequate tuning of
the unit test generation algorithm. Adequately configuring
a genetically-based test generation algorithm is difficult, in
particular, (i) determining whether some hyperparameters are
properly chosen or (ii) adequately identifying the algorithm
termination condition to end the test generation algorithm are
two notoriously challenges that practitioners must face to enjoy
generated unit tests of a good quality.

We hypothesize that the difficulties in configuring a
genetically-based test generation stem from the lack of in-
trospection mechanism related to the algorithm execution.

TestEvoViz. We propose TestEvoViz, a visual introspection
mechanism for genetically-based test generation. TestEvoViz
visually represents the execution of the test generation, with
the objective of assisting a practitioner understand decisions
made by the genetic algorithm.

Figure 1 gives an example of TestEvoViz on a generation
of unit test for the classical class Stack, describing a stack
data structure. The visualization reads from top to bottom
in which each line represents an iteration of the algorithm.
TestEvoViz provides a range of glyphs detailing some aspects
of the test generation. The figure shows that the test evolution
goes through 6 iterations.

TestEvoViz is composed of three panels. The left-most panel
indicates the contributions made for each of the 6 iterations.
The contribution of each iteration is expressed using a spark
circle [5], which summarizes three metrics related to test
coverage: a big spark circle indicates a significant contribution
of the generation in terms of covered code. The panel located
in the middle represents the evolving unit tests that contribute
to the final iteration. The right-most panel plots the evolution

Generation
Contribution

Test Case
Evolution

Coverage
Evolution %

Class Coverage
Method coverage
Branch coverage

Testcase (TC)
TC with higher coverage than parents

Executed methods

Lowest-Fitness
Average-Fitness
Fittest-Fitness

Fig. 1. TestEvoViz - Illustrating example: Test generation process for the Stack class. Left panel shows the coverage variation at project level between a
given generation and its predecessor. Each box inside the middle panel represents a generated test. Links associate each test with their parents. A strong box
border highlights tests that have greater coverage than their parents. The value of each box gives the percentage of code covered by the generated test. Inner
boxes depict methods from which their test coverage changes with regard to their parents. Right panel reports the coverage evolution along generations by
rendering the average, lowest and fittest coverage reached in each generation.

of test coverage evolution in terms of the best, average, and
worse fitness. These curves are relevant to assess the diversity
of the genetic information in the unit tests at each iteration
of the algorithm. This right-most panel indicates that the
generated tests covers 100% of the base component under test.

We have applied TestEvoViz to a number of non-trivial
examples. TestEvoViz helps us characterize the behavior of
the genetic algorithm.

Outline. The paper is structured as follows: Section II gives the
necessary background to readers unfamiliar with genetically-
based test generation; Section III describes the TestEvoViz
visualization and the introspection mechanism; Section IV
presents some examples that illustrates TestEvoViz in practice;
Section V presents some real world case studies that highlight
the benefits of TestEvoViz; Section VII gives an overview of
the works related to this paper; Section VIII concludes and
presents our future work.

II. BACKGROUND: GENETICALLY-BASED UNIT-TEST
GENERATION

A. Unit-Test Generation

A number of techniques have been proposed to automati-
cally generate tests [3], [4], [6]. In this paper, we voluntary
focus on EvoSuite [3], a testing tool suite, which uses a
genetic algorithm to generate unit tests. Unit tests are evolved
by applying genetic operation to maximize the test coverage
of a class belonging to the base application code. Such a
class represents the target component EvoSuite is generating
tests for. The coverage of the target class is considered the
fitness function that the genetic algorithm is optimizing. A
population of tests is evolved by EvoSuite using primitive
genetic operations.

Each individual of the population is a test, which is com-
posed of a number of executable source code statements.
The statements contained in each test represent the genetic
information, commonly referred to as chromosome. There are
four kinds of statements considered by EvoSuite: primitive,

2

which represents a literal value (e.g., number, boolean, string),
constructor to create an object from a class of the application
under test, method call to send a message to an object, and
access field to access an object variable. After having built the
tests, another algorithm generates assertions by using values
produced by the statements.

Each test contained in an unit test is composed of an ini-
tialization code portion and a set of assertions. Figure 2 gives
an example of a test method. Test methods are generated to
maximize the execution coverage and the whole test generation
is oriented to executing the largest portion of the target class.
As such, TestEvoViz does not represent assertions.

int var0 = 0;

int var1 = 1;

Point var2 = new Point(var0,var0);

Point var3 = new Point(var1,var0);

int var5 = var2.x;

double var4 = var2.distance(var3);

primitive

statement kind

primitive

constructor
constructor
method call
access field

Generated Unit Test

assertEquals(var5,var0);

assertEquals(var4,1);

Assertion
Assertion

assertEquals(var2.toString(),”0,0”); Assertion

Fig. 2. Unit test as individual of the Population

Initial Population. First, the algorithm creates N tests, and
each test has M randomly generated statements. Each state-
ment tries to benefit from the previous statements contained in
the same test by using variables previously defined. Figure 2
gives an example of a test in which the third statement uses
the variable var0 defined in the first statement.

Evolution. Once the initial population is defined, four steps
are performed to produce a new iteration, and therefore a new
population of evolved tests, by the algorithm:

• Coverage measurement – Each test is executed and the
code coverage of that test is measured through three
different metrics, as we will see later on.

• Selection – In a given population of tests, only the better-
performing tests are evolved. The selection algorithm
determines which tests have to be evolved. Many al-
gorithms are available (e.g., ranking selection, roulette,
tournament).

• Crossover – The genetic information of two selected unit
tests are combined using the crossover genetic operation.
A crossover between two tests consists in merging their
statements to generate two new tests.

• Mutation – The tests resulting from a crossover may
be randomly altered using a mutation genetic operation.
A mutation replaces a statement with a new one or
a variation of it. Numerous mutation operators can be
applied, including changing a parameter for another (e.g.,

replacing a variable name for another or changing a prim-
itive literal value for another). Mutations are necessary to
produce diversity in the genetic information.

These operations are performed multiple times to produce a
new and evolved generation of unit tests.

B. Challenges

The complexity of the underlying genetic algorithm makes
the activity of generating test difficult and tedious for a
practitioner. In particular, a number of technical issues have
to be considered in order to properly generate unit tests of a
good quality:

• Hyperparameter tuning – A hyperparameter is a param-
eter whose value is used to control the test generation
process. Numerous hyperparameters are associated with
genetically-based test generation: statement mutation rate,
size of the population, selection algorithm, crossover rate,
just to name a few. Identifying adequate hyperpameter
values is a process that typically follows a try-and-adjust
fashion.

• Stopping the genetic algorithm – Generating unit tests
may take hours or even days for a non-trivial software
component. A central question is: When to stop the
evolution of the unit tests? This question is hard to answer
in practice. The behavior that is commonly followed by
practitioners is to maximize the number of generations
in order to reach the best result. However, it frequently
happens that most of the best-performing tests (i.e., the
ones with the a high coverage) are generated in an early
iteration. Furthermore, unit test generation is a com-
putationally intensive process and avoiding unnecessary
iterations has a significant practical impact.

These two problems cannot be easily solved. The coming
section presents TestEvoViz, which alleviates these problems
by providing to practitioners essential information about the
test generation algorithm execution.

III. TESTEVOVIZ

We propose TestEvoViz, a visual approach to represent the
generation of unit tests using genetic algorithms. TestEvoViz
visually introspects the algorithm internal to let a practitioner
better understand decisions taken by the algorithm. TestEvoViz
has three main visual components to convey different aspects
regarding the iterative evolution of the population of unit
tests. This section describes a data model and each one
of these components using as example the Figure 1, which
illustrates the test generation for the Stack class. Table I details
the relation between the genetic algorithm concepts and the
proposed visualization.

A. Data Model and Introspection

Our approach is designed to visualize how test cases are
evolving across generations in order to achieve a higher
coverage. Let Gn = {g0, g1, . . . , gn} be the set of populations
created by the genetic algorithm, where g refers to a population

3

TABLE I
MAPPING GENETIC ALGORITHM CONCEPT IN TESTEVOVIZ

Initialization Population is composed by N tests (chromosome), which are composed by M
statements (genes).

13.333%

26.667% 53.333% 66.667% 60.0%_var0 := SStack newStack.
 _var1 := _var0 firstLinkStack.

Fitness

The fitness is given by the branch coverage of each test and it is shown at the
bottom of each node. In addition, the left panel shows the class, method and
branch coverage variation of each generation. Each of these metrics is associated
to a ring in a spark circle.

13.333%
66.667%

Selection

Each node in the middle panel represents a test that contributes to the final
generation. These tests were selected during the generation process using a
selection criteria (i.e., rank selection). Our visualization also shows the number
of nodes that were discarded in each generation.

80.0% 86.667% 86.667% 86.667%

86.667% 86.667% 86.667%

86.667%

80.0%

100.0%

93.333%

4

5

Crossover Tests that participate in a crossover operation are visually linked to their child.
53.333% 66.667%

86.667%

Mutation
Statements that were mutated after a crossover operation may be detected by
contrasting the source code of a given test with the source code of their parents.

0%

20.0%_var0 := ‘Ana’.
_var1 := 0.

_var0 := 0.
_var1 := SStack new.
_var2 := _var1 push: _var0.
_var3 := _var1 top.

26.667%

_var0 := 50.
_var1 := SStack newStack.
_var2 := _var1 push: _var0.
_var3 := _var1 pop.

of tests: the numerical subscript is the iteration index, and
n is the number of iterations. The initial random popula-
tion is denoted g0. Each population gk consists of m tests
gk = {t0, t1, . . . , tm}, where m is the size of the population.
A tuple (ti, gj) defines a test i of the population in the iteration
j. Let ancestors(ti, gj) be the set of ancestors of the tuple
(ti, gj), each tuple (ti, gj) may have one or two ancestors. We
define ancestors(ti, gj) as the tests of the previous population
in iteration j − 1 that participate in the creation of the test ti.

We have augmented the genetic algorithm to emit events
at relevant steps during its execution, e.g, before and after
each iteration, application of a genetic operation. These events
are used to build a detailed logging facility from which
TestEvoViz extracts relevant information to build the visual-
ization.

B. Generation Contribution

The left-hand side panel of TestEvoViz contains a spark
circle for each generation of the evolution (Figure 3, left-
hand side). A spark circle is a small bar chart which is drawn
in a circular fashion. Our approach uses a spark circle with
three ring sections. Each spark circle summarizes the coverage
variation of a given population gj compared from its previous
population gj−1 at three levels of granularity:

• Branch Coverage – Let Bcov(gj) be the ratio between
the number of executed branches by all the tests of the
generation and the number of existing branches in the
system. The total number of branches is the sum of the
branches of all methods in the application under test.

• Method Coverage – Let Mcov(gj) be the ratio between
the number of executed methods and the number of
methods of the application under test.

• Class Coverage – Let Ccov(gj) be the ratio between the
number of classes that have at least one method executed
regarding all the classes in the application under test.

We define the coverage variation between gj and gj−1 as
follows:

∆cov(gj , gj−1) = (cov(gj)− cov(gj−1))/(cov(gj−1))

This definition is used to measure coverage variation at branch
(Bcov), method (Mcov) and class (Ccov) level. The execution
of a generated test case may cover different methods and
classes of a system. Therefore, height of each ring section
is associated to the variation of the three coverage metrics:
branch coverage variation (green section), method coverage
(red section), and class coverage variation (blue section), as
indicated in Figure 3. In Figure 1, we see that the evolution
brought by the test in generations 1, 2, and 5, contribute to
significant increment the branch coverage. In generation 1
we also see that the method coverage and the class coverage
reached its maximum since these two metrics did not change
in the later iterations.

C. Test Case Evolution

The middle panel of TestEvoViz (Figure 1) details the unit
test evolution along the iterations.

Nodes. Each node represents a test case of a particular
generation (ti, gj). Tests at a given iteration are horizon-

4

Value
test case

branch coverage
branch coverage

variation

method
coverage
variation

class coverage
variation

Generated Test Case

Inner boxes
methods that
increase their

branch coverage

links to
parents

links to
children

border
whether or not
a test has more

coverage
than their
parents.

Generation
Coverage Variation

Fig. 3. Spark circle and node glyph

tally aligned as represented in Figure 1 and Figure 4. Let
Bcov(ti, targetClass) be the ratio between the number of
executed branches in the target class regarding the total, and
Bcov(ti,m) the branch coverage of a method m. We define
the visual cues associated to a unit test node (Figure 3) as
follows:

• Border – A thick border indicates that a test case
(ti, gj) has a higher branch coverage than its ancestors
Bcov(ti, targetClass) > Bcov(th, targetClass), for
all th ∈ ancestor(ti, gj). If the coverage remains the
same or does not improve then the box has a thin border.

• Inner boxes – Each colored inner box represents a
method m of the target class that improves its branch
coverage regarding the unit test ancestors Bcov(ti,m) >
Bcov(th,m), for all th ∈ ancestor(ti, gj). To differen-
tiate the methods, each method of the target class has a
unique color. Note that different tests may increase their
coverage of the same methods.

• Value – The bottom value gives the class branch
coverage obtained after executing a given test case
Bcov(ti, targetClass).

Edges. Edges connect tests and indicate the historical evolu-
tion of these tests. An edge joins a unit test to its ancestors. A
unit test may have one or two ancestors. A unit test with two
ancestors means that the unit test is the result of a crossover
operation of two previous unit tests. In some cases, a node
has only had one ancestor, because either (i) the unit test was
the best of the generation and it survives due to the elitism
strategy; (ii) or produced children have a lower coverage than
their parents, in this case, the algorithm chooses to let one of
the two parents survive in the next generation.

Killed unit tests. To not overload the visualization, TestEvoViz
does not represent unit tests that do not contribute to the final
generation. During the evolution, many generated unit tests are
poorly performing (i.e., have a low coverage), and therefore
are killed (i.e., not considered for selected for being combined
with other unit test). The amount of killed unit tests for each
generation is represented as a horizontal bar, located on the
right hand side of the middle panel (Figure 1).

Interaction. TestEvoViz provides a number of interactions to
inspect the source code and track a test case genealogical tree.
Clicking on a node highlights their ancestors. Hovering the

mouse over a unit test shows the generated test code, and
hovering the mouse cursor over an inner box shows the source
code of the corresponding method. Figure 4 shows all the
ancestors of a test, and also shows the source code of the
selected test.

Fig. 4. Highlighting ancestors and obtaining source code

D. Coverage Evolution

The panel located on the right-hand side of TestEvoViz
indicates the evolution of the coverage by means of three
curves (Figure 1): the fittest unit test per generation (green
line), the average of the unit test coverage in a generation (blue
line), and the worse unit test per generation (pink line). The
distance between the worst and the fittest helps in assessing
the overall health of the generation: more distance between
these two curves, more diverse in the genetic information and
the population are.

IV. EXAMPLES

This section describes an application of TestEvoViz to
introspect the test generation of two classes of the Pharo
programming language: Stack and DataFrame. These are two
popular data structures implemented in Pharo. While the first
one is a classical linear data structure, the second one is a
two-dimensional structure commonly used for data analysis.
We use TestEvoViz to generate tests for these classes and
introspect the generation process. Figure 1 and Figure 5 depict
the results obtained for Stack and DataFrame, respectively.
The following paragraphs detail the test generation as executed
by EvoSuite.

Improving Ancestors Coverage. Along the evolution there
are a number of nodes that have a better coverage than their
ancestors. These tests are the ones that have a thick border.
The tests for Stack (Figure 1) show that eight nodes (i.e., tests)
perform better than their parents (i.e., the children tests have
a higher coverage than their parents). Each iteration generates

5

Fig. 5. TestEvoViz on the DataFrame class

exactly two new test cases with a better coverage. On the other
hand, the evolution of tests for DataFrame (Figure 5) has also
ten nodes, however the difference is that five of these ten nodes
were discovered in the last iteration. We can categorize these
nodes in two:

• With inner boxes – Nodes with inner boxes represent
test cases that cover new branches or methods regarding
their ancestors. The color of inner boxes helps us to
differentiate this situation. If a color does not appear
before, then it indicates that a new method is discovered,
otherwise, a new branch of a previously executed method
is discovered.

• Without inner boxes – A node without any inner box
represents a test case that has a better coverage than its
parents, but did not cover any new method or branch.
This happens when its parents cover different branches
of the target class, and their child covers part of all these
branches together due the crossover mechanism.

Improving Generation Coverage. Although some tests of an
iteration have a better coverage than their parents, they may
discover new branches that may be already covered by the
others tests in the same iteration. As such, the algorithm is
discovering the same findings multiple times. The generation
contribution panel helps us identify this situation. Figure 1
shows this situation in generation 3 and 4 although there
are tests that cover new branches regarding their parents.
The coverage of the population does not increase at all.
Therefore, these tests cover branches already covered by other
individuals of the population. On the other hand, in the second
and fifth iteration the new tests discover new branches (i.e.,
not previously discovered). This fact is also reflected in the
coverage evolution component, every time that a new test
covers new branches, both the fittest and average coverage
of the population increase.

Discovering Dependencies. Sometimes, discovering a new
branch is due to code statements that involve method calls
to method or classes that were not covered in the previous
iterations. This fact is also reflected in the generation contri-
bution panel, which shows the coverage variation at method

and class level. For instance, Figure 1 shows that all but the
last iterations discover new branches that did not involve any
new method or class. However, Figure 5 shows that the method
coverage improves in the iterations 3 and 6, meaning that new
methods have been called by a given generation of tests.

Discarding weak tests. In each generation, the selection
algorithm discards tests that do not participate in the creation
of the new population. This fact is shown by the gray bars
positioned at the right side evolution component. Since, the
purpose of the selection algorithm is to discard weak tests from
the population (i.e., poorly performing with a low coverage).
The selection algorithm is related to the metric lowest coverage
on the population, which is shown by the coverage evolution
component. For instance, Figure 1 and Figure 5 show that
the selection algorithm does a good job, because at every
generation, tests with a low coverage are excluded, and the
lowest coverage is increasing. A particular situation is shown
in the second iteration in Figure 5, because, none of the tests
of that iteration improve their coverage. However, the lowest
coverage increases. This means that even though there were
no improvement the algorithm discards test cases with low
coverage.

V. CASE STUDIES

This section presents two case studies on which we analyze
the generation process of two Pharo projects to address two
questions:

• Q1: What are the effects of the number of statements on
the test generation process?

• Q2: What are the effects of the population size on the
test generation process?

A. Regex

Regex is a standard Pharo library to parse and match regular
expression expressions. In this case study, we use the class
RxMatcher as a target class. RxMatcher is a recursive
regular expression matcher that has 27 methods.

Baseline. For this case study, we use a base con-
figuration as follows: number of statements = 5,

6

Fig. 6. TestEvoViz – Regex project; number of statements = 5;
number of iterations = 5; selection algorithm = rank selection;
and population size = 10

Fig. 7. TestEvoViz – Regex project; number of statements = 3;
number of iterations = 5; selection algorithm = rank selection;
and population size = 10

number of iterations = 5, selection algorithm =
rank selection, and population size = 10. Figure 6 gives
the results of running the algorithm with previous configura-
tion. As we can see, most of the methods and branches are
covered at the beginning of the first iteration. Only in the
fifth iteration a test case improves its coverage regarding their
parents, but that branch was already covered since the spark
circle of that iteration does not present any coverage variation.
After five iterations the tests with the highest branch coverage
is 16%. In this particular case study, there are generated tests
with 0% of coverage. This is because the algorithm only
creates object creation statements basically calling to class
default constructors.

Q1: Number of Statements. Figure 7 depicts the generation
process using the same base configuration, with the exception
that this time we set the number of statements as three.
Figure 7 shows that more tests of the first iteration survive
regarding the baseline. However, the first iteration test cases
have similar coverage than in the baseline. This means that the
first iteration, although having less number of lines, covers the
same amount of branches.

Along the evolution four tests have more coverage than
their ancestors, one may notice this by searching for nodes

with a thick border. The generation contribution panel shows
that the fourth and fifth iteration discover new methods and
branches not previously discover. This particular visualization
shows that the crossover operations between individual with
less statements achieve a higher coverage compared to the
baseline. With this configuration, the best generated test case
covers 36% branches of the target class, which is more than
baseline.

Q2: Population Size. Figure 8 depicts the generation process
using the same base configuration, with the exception that this
time we use a population size of 20. Figure 8 shows that in
the crossover operation between two test results in a new test
case that covers new branches, methods and classes. This fact
is indicated by the spark circle of the third iteration. Similarly
to the baseline, the visualization shows that there are few tests
that have better coverage than their ancestors. But in this case,
the algorithm found a new test case which got a better coverage
than the baseline.

B. NeoJSON

NeoJSON is the standard JSON reader and writer of the
Pharo programming language. In this case study, we generate
tests for the class NeoJSONObjectMapping which has 17
methods.

Baseline. We use the following base configuration:
number of statements = 20; number of iterations =
10; selection algorithm = rank selection; and
population size = 20. Using a greater number of iterations
and statements has the effect to produce a larger visualization.
Figure 9 shows the test evolution process for the class
NeoJSONObjectMapping. As we can see, most of the target
class is covered with the tests from the first iteration.
Iterations 3 and 5 slightly increment the branch coverage
This fact is showed by the coverage evolution and generation
contribution panel. There were four generations (between six
and ten) where the algorithm could not evolve until the last
iteration. Though the last generation has a better coverage
than their parents, it does not discover any new branches.

Q1: Number of Statements. To address the first question
we increase the number of statements from 10 to 20.
Figure 10 shows the visualization result of this change. First,
we notice that (i) the last generation has a greater coverage,
and (ii) most of the branches are discovered by the first three
generations. Regarding the baseline that most of the coverage
is discovered in the first five iterations. Therefore, we conclude
that in this particular case a greater number of number of
statements helps discover more branches quickly. In addition
the last generation covers more portion of the target class than
the baseline.

Q2: Population Size. To address the second question, we use
the base configuration but use a population size of 30 instead
of 20. Figure 11 shows the resulting evolution process. Since,
the population is larger, there are more tests that survive on the
first generation. The visualization shows that the coverage is

7

Fig. 8. TestEvoViz – Regex project; number of statements = 5; number of iterations = 5; selection algorithm = rank selection; and
population size = 20

Fig. 9. TestEvoViz – NeoJSON project; number of statements = 10; number of iterations = 10; selection algorithm = rank selection; and
population size = 20

improved by four iterations (second, third, fourth and seventh),
which is two more than the baseline. There are also more tests
that have a better coverage than their parents. However, the
coverage reached by the last generation is 12 % bigger than
the baseline.

VI. DISCUSSION

Scalability. TestEvoViz uses a grid layout, which makes the
overall visualization size depend on the population size and the
number of iterations. Therefore, a larger visualization typically
requires scrollbars which may involve more interaction from a
practitioner to enjoy the visualization. To mitigate the negative

8

Fig. 10. TestEvoViz – NeoJSON project; number of statements = 20; number of iterations = 10; selection algorithm = rank selection;
and population size = 20

Fig. 11. TestEvoViz – NeoJSON project; number of statements = 10; number of iterations = 10; selection algorithm = rank selection;
and population size = 30

effect of this situation, our tool offers zoom-in and zoom-out
facilities using the mouse wheel. We argue that even though
the size of the nodes may be small when zoomed out, patterns
remain identifiable.

Method Colors. We assign a particular color to each method
of the target class. This color helps identify whether methods
are discovered multiple times by the algorithm or whether the
test covers new branches in method. In presence of a large
number of methods, such an approach could lead to reduced

9

visualization readability. In this case, hovering the mouse gives
a contextual popup window information to precisely identify
a method.

Pharo Implementation of EvoSuite. Our visualization is
implemented over a test generator for Pharo called Small-
SuiteGenerator2. The main difference between our implemen-
tation and EvoSuite is about resolving type information to
drive the test generation. EvoSuite operates in Java, which is
statically typed (i.e., each variable has a static type). Since
Pharo is a dynamically typed language (like Python and
JavaScript), SmallSuiteGenerator has to use various strategies
and heuristics to extract type information from executing a
Pharo application. Currently, TestEvoViz is not representing
collected or inferred type information that application uses to
generate tests.

Generalization. Our visualization helps developers introspect
the generation process to understand how the algorithm is
performing. As we see in our case studies, a simple variation
in the parameters may significantly impact the algorithm
behavior. However, it is important to clarify that the behavior
also depends on many other variables, for instance, the target
class and the complexity of their methods. Therefore, it is not
possible to generalize the findings outside the configuration
on which the algorithm was run.

VII. RELATED WORK

Genetic algorithms have been proposed in the 60s, since
then, numerous efforts have been made to improve and
evaluate genetic algorithms. Most of the existing works use
standard visualizations (i.e. line charts and box plots) to
show the evolution of a number of metrics along evolution
to describe each generation. The spread of the fitness along
each individual of a generation is usually represented using
chart as we do in the third panel of TestEvoViz. A number of
detailed visualizations have been proposed to better understand
the evolution process.

Our visualization was inspired by a number of visual
techniques even though they have a different purpose. We
combined and adapted these to build our proposed approach.
We employ spark circle [5] to highlight coverage variations
between iterations. We use a Cartesian layout to relate gen-
erated tests with their corresponding iterations [7]–[10]. We
associated a number of metrics to each node inspired in
polymetric view [11]–[13] and edge lines were inspired from
hierarchical bundle edges [14].

Representing generated tests with target class‘ executed
methods was tailored of [15], which uses boxes to represent
methods. In other hand, relationships between nodes with their
ancestors are represented as edges [15], [16] . TestEvoViz
also shares similarities with [16] to represent fitness progress
through iterations.

Hart et al. [16] propose an ancestry view, to render all the
ancestors of the best individual after the generation process,

2https://github.com/OBJECTSEMANTICS/SmallSuiteGenerator

using a tree layout and coloring nodes based on a number
of individual properties (i.e gene values, fitness, and gene
origins). Romero et al. [17] use color maps to visualize the
individuals and chromosomes of the population.

Farooq et al. [18], [19] propose a visualization for interac-
tive genetic algorithms (IGA), IGA combines the evolution
mechanism with user’s intelligent evaluation, where users
help the algorithm in the evolution process. In particular,
this visualization helps users to decide the generation for
interaction. It uses a two axis dot plot visualization, where
the horizontal axes are the generation number, and the vertical
axes the coverage of each individual all generations.

Ito et al. [20] proposed the use of pseudo-color to visualize
binary-code individuals of the population using pseudo-color
assigning a red pixel to chromosomes that represent “1”, and
a blue pixel to “0”.

Tomida et al. [21] proposes a technique to visualize the
evolution process of automated program repair. It is based in
a tree layout showing the code genealogy. It highlights the
nodes according to the operations and variants performed in
individuals of the population. These operations are particular
to tasks of automated program repair. This work is related to
our effort.

At the difference of these works, our approach focuses on
genetically-based test coverage evolution. Therefore, our visu-
alization renders information highly related to test evolution,
their operations and properties. As far as we know, this is the
first approach to help developers understand the test generation
process along the genetic algorithm.

VIII. CONCLUSION AND FUTURE WORK

TestEvoViz introspects a test generation algorithm execution
and uses a visualization to expose some aspects of the gener-
ation process. The resulting visualization may be exploited by
practitioners to adjust the algorithm configuration.

We also present some situations in which TestEvoViz is able
to support a non-trivial analysis of the test generation.

As future work, we will support differences of algorithm ex-
ecution. Currently, TestEvoViz visualizes the execution based
on one single algorithm configuration. In the future, we will
make TestEvoViz show differences between multiple execu-
tions of the algorithm.

ACKNOWLEDGMENT

We are deeply grateful to Lam Research (4800054170 and
4800043946). Alexandre Bergel is grateful to the FONDECYT
Regular project 1200067 for having partially sponsored the
work presented in this article. We thank Renato Cerro for his
help reviewing an early draft of the manuscript.

REFERENCES

[1] A. Zeller, R. Gopinath, M. Böhme, G. Fraser, and C. Holler,
“The fuzzing book,” in The Fuzzing Book. Saarland University,
2019, retrieved 2019-09-09 16:42:54+02:00. [Online]. Available:
https://www.fuzzingbook.org/

10

[2] B. Danglot, O. Vera-Perez, Z. Yu, A. Zaidman, M. Monperrus, and
B. Baudry, “A snowballing literature study on test amplification,”
Journal of Systems and Software, vol. 157, p. 110398, 2019.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0164121219301736

[3] G. Fraser and A. Arcuri, “Evolutionary generation of whole test suites,”
in International Conference On Quality Software (QSIC). IEEE
Computer Society, 2011, pp. 31–40.

[4] G. Fraser and A. Zeller, “Mutation-driven generation of unit tests
and oracles,” in Proceedings of the ACM International Symposium on
Software Testing and Analysis, ser. ISSTA ’10. ACM, 2010, pp. 147–
158. [Online]. Available: http://doi.acm.org/10.1145/1831708.1831728

[5] J. P. Sandoval Alcocer, H. Camacho Jaimes, D. Costa, A. Bergel, and
F. Beck, “Enhancing commit graphs with visual runtime clues,” in 2019
Working Conference on Software Visualization (VISSOFT), 2019, pp.
28–32.

[6] A. Arcuri and G. Fraser, “On parameter tuning in search based software
engineering,” in Proceedings of the Third International Conference on
Search Based Software Engineering, ser. SSBSE’11. Springer-Verlag,
2011, pp. 33–47. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2042243.2042252

[7] M. Lanza, “The evolution matrix: Recovering software evolution using
software visualization techniques,” International Workshop on Principles
of Software Evolution (IWPSE), 09 2001.

[8] F. Beck, M. Burch, C. Vehlow, S. Diehl, and D. Weiskopf, “Rapid serial
visual presentation in dynamic graph visualization,” 09 2012, pp. 185–
192.

[9] J. P. Sandoval Alcocer, A. Bergel, S. Ducasse, and M. Denker, “Per-
formance Evolution Blueprint: Understanding the impact of software
evolution on performance,” in Proceedings of the 1st IEEE Working
Conference on Software Visualization, ser. VISSOFT. IEEE, 2013, pp.
1–9.

[10] J. P. Sandoval Alcocer, F. Beck, and A. Bergel, “Performance Evolution
Matrix: Visualizing performance variations along software versions,”
in Proceedings of the 7th IEEE Working Conference on Software
Visualization, ser. VISSOFT, 2019.

[11] M. Lanza and S. Ducasse, “Polymetric views - a lightweight visual
approach to reverse engineering,” IEEE Transactions on Software Engi-
neering, vol. 29, no. 9, pp. 782–795, 2003.

[12] A. Bergel, F. Bañados, R. Robbes, and W. Binder, “Execution profiling
blueprints,” Software: Practice and Experience, vol. 42, 09 2012.

[13] A. Bergel and V. Peña, “Increasing test coverage with hapao,”
Science of Computer Programming, vol. 79, pp. 86 – 100,
2014, experimental Software and Toolkits (EST 4): A special
issue of the Workshop on Academic Software Development Tools
and Techniques (WASDeTT-3 2010). [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0167642312000706

[14] D. Holten, “Hierarchical edge bundles: Visualization of adjacency re-
lations in hierarchical data,” IEEE Transactions on Visualization and
Computer Graphics, vol. 12, no. 5, pp. 741–748, 2006.

[15] J. P. Sandoval Alcocer, A. Bergel, S. Ducasse, and M. Denker, “Per-
formance evolution blueprint: Understanding the impact of software
evolution on performance,” in 2013 First IEEE Working Conference on
Software Visualization (VISSOFT), Sep. 2013, pp. 1–9.

[16] E. Hart and P. Ross, “Gavel - a new tool for genetic algorithm
visualization,” IEEE Transactions on Evolutionary Computation, vol. 5,
no. 4, pp. 335–348, 2001.

[17] G. Romero, J. J. M. Guervós, P. A. C. Valdivieso, J. G. Castellano, and
M. G. Arenas, “Genetic algorithm visualization using self-organizing
maps,” in Proceedings of the 7th International Conference on Parallel
Problem Solving from Nature, ser. PPSN VII. Berlin, Heidelberg:
Springer-Verlag, 2002, p. 442–451.

[18] H. Farooq, N. Zakaria, and M. T. Siddique, “An interactive
visualization of genetic algorithm on 2-d graph,” Int. J. Softw. Sci.
Comput. Intell., vol. 4, no. 1, p. 34–54, Jan. 2012. [Online]. Available:
https://doi.org/10.4018/jssci.2012010102

[19] H. Farooq and M. T. Siddique, “A comparative study on user
interfaces of interactive genetic algorithm,” Procedia Computer
Science, vol. 32, pp. 45 – 52, 2014, the 5th International Conference
on Ambient Systems, Networks and Technologies (ANT-2014), the
4th International Conference on Sustainable Energy Information
Technology (SEIT-2014). [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S1877050914005961

[20] S.-I. Ito, Y. Mitsukura, H. N. Miyamura, T. Saito, and M. Fukumi, A
Visualization of Genetic Algorithm Using the Pseudo-Color. Berlin,
Heidelberg: Springer-Verlag, 2008, p. 444–452. [Online]. Available:
https://doi.org/10.1007/978-3-540-69162-4\ 46

[21] Y. Tomida, Y. Higo, S. Matsumoto, and S. Kusumoto, “Visualizing code
genealogy: How code is evolutionarily fixed in program repair?” in 2019
Working Conference on Software Visualization (VISSOFT), 2019, pp.
23–27.

11

