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ABSTRACT
Evaluating source code differences is an important task in software
engineering. Unified and split are two popular textual representa-
tions supported by clients for source code management. Whether
these representations differ in supporting source code commit as-
sessment is still unknown, despite its ubiquity in software produc-
tion environments.

This paper performs a controlled experiment to test the causality
between the textual representation of source code differences and
the performance in term of commit evaluation. Our experiment
shows that no significant difference was measured. We therefore
conclude that both unified and split equally support the source code
commit assessment for the tasks we considered.

CCS CONCEPTS
• Software and its engineering → Software maintenance tools;
Software version control; • General and reference→ Empirical
studies.
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1 INTRODUCTION
Comparing source code is an important activity in software en-
gineering. Source code comparison is done for multiple purposes.
From resolvingmerging conflicts when pushing the code to a source
code repository to finding the roots of a functional or a performance
failure cause by a code modification [9]. For this reason, source
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Figure 1: Unified and Split Representations: Source code
change done in the function 𝑏𝑖𝑜_𝑤𝑖𝑙𝑙_𝑔𝑎𝑝 in the GitHub
𝐿𝑖𝑛𝑢𝑥 project.

code repositories (e.g., GitHub) and integrated development envi-
ronments (IDE’s) provide a number of tools to assist developers in
the source code comparison process.

Most popular tools visually show the source code difference
using two main visual representations: Figure 1 illustrates both
representations by showing the source code changes done in the
method 𝑏𝑖𝑜_𝑤𝑖𝑙𝑙_𝑔𝑎𝑝 in the 𝐿𝑖𝑛𝑢𝑥 GitHub project. In the upper
part, we have the split view, which shows two snapshots of the
source code (before a commit on the left and after the commit
on the right). In the lower part, we have the unified view, which
shows the differences in the same textual panel. Although these
two representations are widely used in practice, little is known
about which one is more suitable for code comparison. Such textual
representations are frequently employed to explain a change that
introduces a bug or performance regression [1, 2, 10]. However,
there is no empirical evidence to help developers and researchers
choose a visual representation. Leaving open the following question:
Which of the split or unified representation is better to show source
code differences?

In this paper, we present a controlled experiment to answer this
question. We measure the performance of practitioners in contrast-
ing source code differences using both tools. We request partici-
pants to answer twenty true/false questions about four source code
method modifications. Two methods using the unified representa-
tion and two with the split representation. Our results show that
the visual representation does not impact on the correctness, the
completion time, and the cognitive load of analyzing source code
changes.
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2 VISUALIZING SOURCE CODE
DIFFERENCES

Both the split and unified representations are commonly used to
compare any textual files revision. In this paper, we limit ourselves
to assess source code revisions. This section, describes both visual
representations provided by GitHub to compare software versions.

Figure 2: Unified Representation: Source code changes done
in the method 𝑒𝑥𝑡4_𝑠𝑒𝑡𝑎𝑡𝑡𝑟 in the 𝐿𝑖𝑛𝑢𝑥 GitHub project.

2.1 Unified Representation
The unified view shows updated and existing content together in
a single view. The content of both versions are merged in a single
one that mainly highlights the line difference between versions.
Normally, the merge algorithm determines the smallest set of line
deletions and insertions to transform from one file to another. For
instance, Figure 2 shows the unified representation of merging two
versions of the method 𝑒𝑥𝑡4_𝑠𝑒𝑡𝑎𝑡𝑡𝑟 . Red lines represent deleted
lines and green lines represent added lines in the new version.

2.2 Split Representation
Similarly to the unified representation, the split representation
highlights the smallest set of lines that we need to delete and add
a revised source code. However, in this case the content of both
versions are not merged into one single view. They are instead
showed side by side. Since the number of lines may change from
one version to another, a number of empty lines are added in both
sides to synchronize each side. Figure 3 shows the same method
𝑒𝑥𝑡_4𝑠𝑒𝑡𝑎𝑡𝑡𝑟 but this time using a split representation. Note that
both representations use the same algorithm to compute the line
difference, and the same colors to highlight line additions and dele-
tions.

2.3 Discussion
Depending on the changes obtained from the differencing algo-
rithm, the language syntax and the visual representation may make
source code comparison difficult. For instance, consider the the pre-
vious example of the modification done in the method 𝑒𝑥𝑡4_𝑠𝑒𝑡𝑎𝑡𝑡𝑟
(Figure 3 and Figure 2), in particular, the comment block in the
source code. It has two sentences in one version and one sentence
was deleted in the newer version. However, in the unified repre-
sentation the first sentence appears twice, one in highlighted with
red and the second one with green. On the other hand, the split
representation highlights the sentences in the same way that the
unified view, the sentence appears in the left and right side and the
sentence is positioned in the same 𝑌 axis in both sides. Other case
is the method call 𝑒𝑥𝑡4_𝑤𝑎𝑖𝑡_𝑓 𝑜𝑟_𝑡𝑎𝑖𝑙_𝑝𝑎𝑔𝑒_𝑐𝑜𝑚𝑚𝑖𝑡 (𝑖𝑛𝑜𝑑𝑒). The
line remains the same in both versions, but it is also flagged with
red and green, and in this case the split representation shows this
line in different levels. Forcing practitioners manually map these
lines during the code comparison.

3 EXPERIMENT DESIGN
3.1 Research Questions & Hypotheses
We design a methodology to answer the following questions:

• Q1: Does the visual representation (unified or split) im-
pact the correctness of comparing two versions of the same
method?

• Q2: Does the visual representation (unified or split) im-
pact the time needed to compare two versions of the same
method?

• Q3: Does the visual representation (unified or split) impact
the cognitive load to compare two versions of the same
method?

The null hypotheses and alternative hypotheses corresponding
to the three questions are summarized in Table 1.

Table 1: Null and alternative hypotheses

Null hypothesis Alternative Hypothesis

𝐻10 : The visual representation does not
impact the correctness of comparing two
versions of the same method

𝐻1: The visual representation impacts the
correctness of comparing two versions of the
same method

𝐻20 : The visual representation does not
impact the time needed to compare two
versions of the same method

𝐻2: The visual representation impacts the
time needed to compare two versions of the
same method

𝐻30 : The visual representation does not
impact the cognitive load needed to compare
two versions of the same method

𝐻3: The visual representation impacts the
cognitive load needed to compare two
versions of the same method

3.2 Participants
We pick 24 participants all of them are second year students in
computer science, at the Bolivian Catholic University. Participants
did three programming courses using the C/C++ programming
language. Participant’s C/C++ experience ranges from 1 to 3 years,
and their age ranges from 18 to 23 years. Six participants were
women and only six participants had previous experienced with
source code comparison tools.
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Figure 3: Split Representation: Source code changes done in the method 𝑒𝑥𝑡4_𝑠𝑒𝑡𝑎𝑡𝑡𝑟 in the 𝐿𝑖𝑛𝑢𝑥 GitHub project.

3.3 Treatments
We use two visual representations: unified and split. Both imple-
mentations are provided by GitHub and are described in previous
sections. For the experiment, participants do not use GitHub di-
rectly, instead they use a printed sheet gathered from GitHub.

3.4 Code under Study
We provide each participant four method modifications. Partici-
pants have to analyze two modifications using a unified representa-
tion and two modifications with split representation. The method
modifications were collected from the linux GitHub repository. We
randomly choose four methods using which meet the following
criteria: their size is large enough to be printed in only one paper
sheet and have a relative good mix of unmodified lines, modified
lines, added lines and deleted lines.

3.5 Work Session
Each participant evaluated four method modifications using both
treatments, two methods with one and two with the other. We
defined the following work session:

• Demographic Form – We ask participants to fill a form with
basic demographic questions.

• Tutorials – We provide the same tutorial of both representa-
tions (unified and split) to all participants.

• Task1 – We request participants to use a visual representa-
tion (assigned randomly) to answer ten true/false questions
for each of the two modification methods.

• TLX Form – The NASA Task Load Index (TLX) is a tech-
nique to assess how an effort is perceived1. We use TLX as
a proxy to measure cognitive load. Participants fill a TLX
Form with 5 questions about mental, physical, temporal de-
mand; their performance, effort, and frustration. TLX Form

1https://humansystems.arc.nasa.gov/groups/TLX/

is a widely used technique for measuring subjective mental
workload [6].

• Task2 – We request participants to use a visual represen-
tation (different that the one use in Task1) to answer ten
true/false questions for each of the two modification meth-
ods.

• TLX Form – Participants fill a TLX Form with 5 questions.
• Open Questions – We ask participants an open question:
Do you have any additional comment about the task and the
representations?

3.6 Randomization
We randomly assign each participant to a treatment order, and the
method modifications to analyze. We also take care of balancing
this assignation, in a way that half participants first use the unified
representation and the other half start with the split. We also care-
fully assign the method modifications, so we have a good balance
order between method modifications and treatments.

3.7 True/False Questions
The true/false questions were done based in the four method mod-
ifications under analysis. These questions describe specific small
changes about the method that may or not be true. The method
modifications and the true/false questions are available online 2. For
instance, if a variable was deleted, if the particular control structure
was modified or if a specific method call was added or deleted. By
asking these questions, we intent that participants perform analy-
ses of the source code modification and have a deterministic way to
assign a score of their performance and correctness in their analysis.

3.8 Metrics
For comparing both visual representations, we use the following
metrics:

2https://github.com/AleCossioCh/DiffTool

https://humansystems.arc.nasa.gov/groups/TLX/
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• Correctness – Each participant answers no more than twenty
true/-false questions using each visual representation. We
define correctness as the ratio between the number of correct
answers of each participants and the total of questions for
each representation.

• Completion Time – Each participant analyzes two method
modifications for each representation in order to answering
no more than twenty true/false questions. The completion
time is the time spent for each participant in analyzing these
two methods.

• Cognitive Load Sum – Each participant answers five ques-
tions about their cognitive load after the analysis of two
methodswith each representation. The participants are asked
to rate their mental, physical, temporal demand, their perfor-
mance, effort, and frustration by assigning a value between
1 to 21 [6]. The Cognitive Load Sum is the total of the score
of the five questions, therefore it varies between 5 and 105.

4 RESULTS
4.1 Correctness
Figure 4 (left side) presents the box plot of the correctness of each
representation. By using the split representation participants have
an average of 87% of correctness and 85% when using the unified.

The difference in terms of precision is not significant. We run the
Mann-Whitney test (two-tailed), we obtained: P = 0.5447, Mann-
Whitney U = 258.5. We therefore conclude that the difference is not
significant since we do not have 𝑃 < 0.05. As a consequence, we
cannot reject the null-hypothesis.
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Figure 4: Correctness and Completion Time

4.2 Completion Time
Figure 4 (right side) gives the box plot of the completion time of
each representation. Participants use seven minutes on average to
complete the task with both visual representations. As Figure 4
illustrates, there is no difference between the completion time.

Similarly than for the precision, the difference in terms of com-
pletion time is not significant. We run the Mann-Whitney test (two-
tailed), we obtained: P = 0.7216, Mann-Whitney U = 270.5. We
therefore conclude that the difference is not significant since we
do not have 𝑃 < 0.05. As a consequence, we cannot reject the
null-hypothesis.

4.3 Cognitive Load
Figure 5 summarizes the answers of the five questions in the TLX
form of all participants. It shows that there is not a visual difference
between box plots in all questions.
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Figure 6 gives the results of the TLX Sum metrics. It shows that
there is a small difference between both representations. We cannot
establish a strong affirmation because the sum may miss lead to
individual results in each questions as we can see in Figure 5.

The difference in terms of cognitive load, measured at the TLX
Sum is not significant. We run the Mann-Whitney test (two-tailed),
we obtained: P = 0.4456, Mann-Whitney U = 250.5. We therefore
conclude that the difference is not significant since we do not have
𝑃 < 0.05. As a consequence, we cannot reject the null-hypothesis.
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4.4 Feedback
Similar to previous results, there is not a clear tendency between
participants about which of the two treatments is the most difficult
to use. However, six participants commented that the unified repre-
sentations seems to be more useful while analyzing short methods.
One participant mentioned that the unified representation is more
useful to see deleted lines. Other participant mentioned that the
split representation forced him to move his head (left to right) to
resolve the tasks.
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5 DISCUSSION & THREATS TO VALIDITY
5.1 Internal Validity

Participant Experience. Six participants have previous experience
with comparison tools. Therefore, there is a chance that they per-
form better than the other participants. To reduce this possibility,
the tasks and method analysis order was assigned randomly.

Learning Effect. Participants performance increase while they an-
alyze the method modifications. To reduce this threat we randomly
assign the order of the tasks. In a way that half of participants start
the analysis using the unified representation and the other half
using the split representation.

True/False Questions. The questions were designed in a way that
participants have to analyze the difference to answer them and
quantify the correctness of the activity. Although, we could use
more open questions (i.e., describe the changes done in this method),
then the answers could be qualitative and subjective, making it more
difficult to compare between approaches.

5.2 External Validity

Code under Study. We pick medium size method modifications
to be able to print them in a sheet of paper. By using paper sheet
we control that participants only use the visual insights of the
representations to resolve the task. In addition, it controls that
all participants have the same font size, and avoid scroll events
that may also influence participants performance. Even though, we
randomly pick the four methods under analysis with a good mix of
changes. We are not sure how the participants performance may
vary with larger methods.

Programming Language. Our experiment focuses on the C/C++
programming language. Although there are many programming
languages that were inspired by the C/C++ syntax. The syntax of
the programming language may also influence the performance of
the task. As future work, we plan to replicate our experiment in
other languages including JavaScript and Python, to see how the
effect of the syntax on the comparison activity.

Participants. The experiment was conducted with students from
the Bolivian Catholic University. Therefore, the results may be rep-
resentative only in this academic context. As future work, we plan
involve practitioners with industrial experience in our experiment.

Method Modifications. Our experiment was designed to evalu-
ate the performance of comparing two versions of a same method.
However, depending of the language and the project, there may be
another kind of code changes. For instance, changes in the configu-
ration settings, instance variables, or class hierarchy.

6 RELATEDWORK
Diverse approaches have been proposed to improve the source code
differencing algorithms [3–5, 7, 8]. For instance, Falleri et al. [3]
introduced a a new algorithm for source code differencing, which
instead of focusing on adding and deleting lines, they measure
the difference at the abstract syntax tree granularity. As we see
in Section 2, the comparison strategy may also affect the way we

highlight the code difference in the visualization. Although there
are a variety of differencing strategies, popular IDE’s and code
repositories mainly provide the split and unified representation for
code comparison.

Our work does not compare the source code differencing algo-
rithms. Instead, our motivation is about understanding whether the
visual representation affects the comparison analysis. As far as we
know, this is the first empirical study that compare practitioners
performance while comparing source code differences.

7 CONCLUSION
This paper presents a controlled experiment run with 24 partici-
pants to evaluate whether or not the visual representation, unified
and split, affects the code comparison between two versions of the
method. Our results shows that the visual representation does not
impact the correctness, and completion time of the code comparison
analysis. However, participants total cognitive load is lower while
using the split representation, but this difference is not significative.
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