
Building an Expert Recommender Chatbot
Jhonny Cerezo1, Juraj Kubelka1, Romain Robbes2, Alexandre Bergel1

1 ISCLab, Department of Computer Science (DCC) University of Chile
2 SwSE Research Group, Free University of Bozen-Bolzano, Italy

Abstract—This paper presents our experience in implementing
a chatbot for expert recommendation tasks. The chatbot was
developed for the Pharo software ecosystem, and is integrated
with the Discord chat service, which is used by the Pharo
Community. We also report on a preliminary evaluation for
which; the recommendation system was welcomed, though the
conversational behavior was not; users expected a fully conver-
sational chatbot, capable of following the conversation flow that
the user handles. We discuss that such expectations might be
hard to meet because of the uncanny valley effect.

I. INTRODUCTION

Contributing to an open-source project is often considered
as a social activity [6]. The quality of communication among
developers may significantly impact their productivity. When
developers encounter issues that they cannot solve by them-
selves, they often look for assistance. However, identifying the
most adequate person to seek assistance is a challenging task
since: (i) developers work remotely and may not know each
other personally; (ii) nicknames instead of real names are used
in chats; (iii) expertise is usually not publicly exposed.

In a distributed software development context, in which
developers coordinate tasks using chat platforms, easing the
coordination through chatbots may impact the way a commu-
nity interact. Indeed, researchers predict that the conversational
chatbot interfaces could revolutionize the field of Human-
Computer Interaction (HCI) [10]. An expert recommendation
chatbot could fill the communication gap in distributed soft-
ware teams, utilizing information that is hard to access (e.g.,
commit history, developer identity relations between source
code repositories and chat platforms) in order to provide
accurate expert recommendations.

We developed a chatbot as an expertise recommendation
system to help developers find the right person to contact
within open source projects. The chatbot targets the Pharo soft-
ware ecosystem and developer community, and is integrated
with the Discord chat service that the Pharo community uses as
one of its main channels of communication. Our solution relies
on simple Natural Language Processing techniques for the
tasks of sentence-classification and key-concept identification,
using the term frequency (TF) and inverse document frequency
(IDF) algorithms respectively. We also implemented an ex-
pertise identification algorithm based on source code mining
techniques. Finally, we conducted a preliminary evaluation, in
which users interacted with the chatbot; the evaluation results
point out a series of challenges that we plan to address as a
future work.

II. BACKGROUND

Expertise. Several heuristics have been proposed to identify
software artifact experts. The earliest technique is known as the
“line 10 rule”, stemming from the fact that in some version
control systems, the 10th line of a commit log contains the
developer user name who performed the commit, e.g., the last
person who modified a code. This concept was refined into
implementation expertise, where expertise on a piece of code is
approximated to be the proportion of changes that a developer
contributed to the piece of code. Mockus and Herbsleb used
implementation expertise as part of their Expertise Browser
[16]. Another heuristic relies on the fact that developers gain
knowledge about source code artifacts using them. Schuler and
Zimmerman call this usage expertise [21], and claim that it
is a viable alternative for projects with little or no historical
information. Ma et al. [13] compared both metrics and found
them to have comparable levels of accuracy, allowing usage
expertise to substitute implementation expertise. Anvik and
Murphy used data from bug reports [5]; Robbes and Roethlis-
berger [19] used interaction data [14].

Software bots. Leboeuf developed a taxonomy of software
bots [12]. Følstad and Brandtzæg argue that HCI may tran-
sition from graphical to conversational interfaces via chatbots
[10]. They also conducted a survey of chatbot users, finding
that the most common reason, by far, was productivity (68%)
[8]. As productivity is a key concern in software engineering,
investigating chatbots in this context seems is an attractive
idea. Several bots have been integrated in chat platforms for
developers [11, 22], such as bots helping with tests or DevOps
activities, or even bots that integrate into Stack Overflow.
Beyond chatbots, bots were developed to contribute to soft-
ware projects [23], Stack Overflow [17], and Wikipedia [15].
Chatbots enable software people to engage in development
operations without needing technical knowledge [11].

Pharo. Pharo [7] is an open source programming language,
with a strong community concentrated in Discord (a chat
platform service) [2] and a mailing list. The Pharo community
encourages new collaborators to join Discord to ask ques-
tions, give feedback, and collaborate. Chatbot recommendation
systems therefore represent a resourceful tool to increase the
communication quality.

III. IMPLEMENTING THE CHATBOT EXPERT
RECOMMENDER

This section covers: the integration with the Discord API;
key-concept identification, recognizing main phrases (software

artifact names); sentence-classification; expertise mining tech-
niques; and result representations to users.

A. Chatbot Implementation
A chatbot design depends on chat platform APIs. Discord

provides a GameSDK (as Discord targets game communities),
Webhook, Gateway (WebSocket), and REST API [1]. We
developed the chatbot in Pharo using the DiscordSt library
[3], which connects to Discord using the Gateway and REST
APIs. The Discord chatbot deployment requires a token that
can be obtained at a Discord App console.

B. Sentence Classification
The first step towards recognizing user conversational in-

tentions is categorizing user messages. The chatbot classifies
sentences in the following empirically defined message cate-
gories:
• greeting, includes greeting and introductory messages,

e.g., “How are you doing?”
• package expert, includes questions explicitly asking for

package experts, e.g., “Who is Iceberg package expert?”
• class expert, includes questions explicitly asking for class

experts, e.g., “Who is GLMAction class expert?”
• method expert, includes questions explicitly asking for

method experts, e.g., “Who is method Object yourself
expert?”

• artifact expert, includes questions about a source code
artifacts without explicitly defining if the artifact is a
package, class, or method, e.g., “Who is the TestCase
expert?”

• informative, includes questions supported by the chatbot,
not fitting into the above mentioned categories, e.g.,
“What can I ask you for?”

• unrecognized message, includes user messages not sup-
ported by the chatbot, e.g., “Ok”

Next, we describe the sentence classification algorithm that
takes a user message and identifies a message category. The
algorithm uses a TF-dataset. Figure 1 exemplify the TF-dataset
with three tf-sentences: two for the artifact expert category
(artifact-exp lines); and one for the package expert category
(the package-exp line). A tf-sentence is thus a collection of
terms (words).

To compute weights for all ft-sentences we use a raw term
frequency algorithm (TF) that takes a user message word
(term, t), a tf-sentence (s) and computes the number of term
occurrences:

TF(t, s) = number of term t occurrences in s

The tf-sentence weight (see column weight) for a given user
message (T) is then computed as an average value of all user
message word weight values:

w(T, s) =

∑
∀t∈T TF(t, s)

|T |
We classify the user message into the category with the

highest weight. In case the maximum weight is less than 0.2,

the user message falls into the unrecognized message category.
A threshold is manually defined and the most appropriate value
is a matter of future research.

The described sentence classification algorithm get worse
results with an increasing number of message categories.
We therefore use a few categories in our study and proper
understanding of best sentence classification is a subject for
future work.

User message: Who is an expert in Roassal2 package ?

TF-Dataset
category tf-sentence weight

artifact-exp expert in 0.25
artifact-exp some one who knows about 0.125

package-exp an expert for package 0.375
Note. artifact-exp = artifact expert category. package-exp = package expert category.

Figure 1. Sentence classification computation

C. Key-Concept Identification

The next step (after the sentence classification) is a key-
concept identification. The chatbot identifies source code arti-
fact names (key-concepts) in user messages, e.g., in “Who is
GLMAction class expert?”, the key-concept is “GLMAction”.
It may be a method, class, and package name.

We use the inverse document frequency (IDF) algorithm
to compute the key-concept. IDF is a numerical statistical
method reflecting how important a term (word) is in a user
message [18, 20]. The algorithm uses an IDF-dataset (D) that
includes all questions that we extracted from the Pharo Discord
chat channels. We semi-automatically collected questions. A
detailed description of this dataset exceeds the paper size. The
IDF mathematical formula is:

IDF(t,D) = log
|D|

1 + TF(t,D)

where t is a user message word, D is the IDF-dataset,
and TF(t,D) is term frequency algorithm computing number
of term t occurrences in D. Figure 2 exemplifies the IDF
computation. It shows the number of term occurrences for
each user message word (TF) in the IDF-dataset and the IDF
function values. Roassal2 has the highest IDF value and is
identified as the key-concept, a source code artifact name.

User message Who is an expert in Roassal2 ?
TF(t,D) 78 1279 159 35 697 0 0

IDF(t,D) 1.706 0.496 1.399 2.047 0.760 3.604 0.0
Note. TF = term frequency. IDF = inverse document frequency.

Figure 2. Key-concept computation.

D. Expertise Recommendation System

Recommendation systems provide information to users ac-
cording to their preferences. Expertise recommendation sys-
tems help developers to contact other developers, who can give
them an information about what they seek for. This section
describes how we collect the expertise information.

Figure 3. Chatbot recommendation system

1) Expertise mining: We mined expertise from historical
Pharo source code changes, provided by the community in
each release, and from several well supported community
projects. The projects were selected considering Discord chan-
nels reserved to those projects. We use three techniques to
mine expertise: implementation [5], usage expertise [13], and
alternative expertise.

To mine implementation expertise from the Pharo project
we collect methods authorship from Pharo historical releases
and Pharo actual version. We included all Pharo releases from
the last five years. All authors were treated equally (we do not
apply any ranking).

We complement the expertise-dataset by including usage
and alternative expertise. We compute the usage expertise by
querying method references. If a method a calls a method
b, then we define a method b author as the method a usage
expert. Because of technical aspects, we had many methods
that did not include any author (expert). We therefore compute
alternative expertise considering an expert of an empty-author
method, its class author.

2) Experts profile: The expert profile is composed of a
source code expertise and a Discord nickname. In order to
join the code expertise and the nickname we automatically
associated Pharo contributors that used the same (or a similar)
identification (name, nickname) in the source code and on
Discord. We did manual source code expert and Discord
account pairing in other cases, asking developers for help.

IV. PRELIMINARY EVALUATION

Our preliminary evaluation consisted of two different setups.
In the first setup (Setup A), we asked three participants
to interact with the chatbot without providing them specific
tasks to achieve. The sessions were conducted remotely using
Discord chat. In the second setup (Setup B), we asked three
other participants to interact with the chatbot giving them

specific tasks. We then conducted semi-structured interviews,
and asked them to identify the emotions they felt while
interacting with the chatbot.

A. Chatbot interaction

Study setup. We asked participants to converse with the
chatbot. As this kind of interaction is rather informal and con-
sulting a chatbot documentation (tutorial) is not an expected
practice, we did not inform participants how to converse with
the chatbot. Participant had to figure out how to formulate
questions. Likewise, the chatbot did not provide any how-to-
ask-me examples.

Study A participants were free to converse about anything.
We asked Study B participants four tasks, each consisting
finding experts for source code artifacts (package and class
names). In total, we gathered 150 interactions of our 6
participants.

Successful interactions with the chatbot. Five out of the six
participants were able to successfully interact with the chatbot
and get expertise information from it. While some participants
were successful very quickly (one in his second interaction,
after greeting the chatbot), others had various unsuccessful
interactions before they finally could complete tasks (one
participant tried for more than 50 interactions before being
able to find experts—occasionally showing frustration with
the bot). The participant that did not complete the task did
figure out how to formulate a query, but the queries made did
not return results. After learning how the chatbot worked, half
of the participants tried to discover whether the chatbot had
additional functionality (see “Additional expectations” below),
while the other half stuck to the patterns they knew.

Reasons for failure. There were several reasons for the
failures; we mention the three most frequent. The first is that
participants asked questions in a format the chatbot did not
recognize (e.g., “Someone knows how to use GLMAction?”;
“ask Iceberg”; “what experts do you know?”). The second
was that the participant successfully formulated a query, but
the format of the source code entity was incorrect (e.g.,
“Who is the Roassal expert?”, when the actual entity was
Roassal2; referencing to an entity in lowercase when it should
be capitalized). The third one was that the participants asked
correctly, but the expertise recommendation system missed
information for some of the entities and was unable to find
suitable experts in these cases.

Additional expectations. We also observed that some par-
ticipants had additional expectations for the chatbot, beyond
identifying experts. Participants asked about summaries of the
capabilities of a source code entity (“what does GLMFormat-
edPresentation do?”), or directly asked questions meant for an
expert to answer (“How may I capitalize a ByteString object?”;
“How can I configure GLMAction?”).

B. Semi-structured interview

The three participants we interviewed were asked for their
previous experience with chatbots and any recommendation
systems; their expectations about chatbot interactions and

recommendation systems advices; whether the chatbot helps
them in the task of finding an expert; and how they felt during
the interaction with the chatbot, among other questions.

Overall, the interviews confirmed the observations gathered
from the analysis of the chat interactions. Participants felt
that the chatbot was too strict in which questions and source
code entities it recognized, and missed some information.
Participants mentioned that the chatbots should provide more
assistance to the users, such as providing examples of ques-
tions to ask, and provide suggestions when a source code entity
is misspelled. While some participants felt that the information
that the chatbot gave them was useful, others felt that the
chatbot could go further: returning a long list of experts does
not help in choosing a specific one; nor in giving a summary
of source code entities in addition to expert recommendations.

A theme that gained further importance in the interviews
was the participants’ expectations for chatbots. In particular,
participants had strong expectations that the chatbot should be
able to maintain conversations, not only answering queries.
One participant expected interactions to be more human-
like, while another raised the bar further, stressing that the
chatbot should be designed to replace a person, and that users
should not notice that they are interacting with a chatbot. Note
that despite those expectations, many real-world chatbot im-
plementations still maintain command-like interaction. Thus,
participants pointed out that significant improvements needed
to be made to the chatbot before it can be used in practice.

C. Emotion test

The emotion test in the study aims to reveal the subjective
experience of participants interaction with the chatbot. Beyond
the main purpose of the tool, emotion analysis allows us to see
user’s true perception of the chatbot. In this final part of the
study the three participants were asked to choose 10 emotions,
out of 114 pleasant feelings and 139 unpleasant feelings
[4] thinking about the chatbot interaction. The feelings are
aggregated into 8 positive and 8 negative categories to ease
analysis. They then had to rank the list, starting from which
emotion had been stronger through the interaction.

Overall, participants expressed indifference about the chat-
bot, likely due to them not using it in a real context. Partic-
ipants were confused while learning how to use the chatbot,
and also when it did not answer what the user expected. On
the other hand, the best ranked emotion category was open-
ness, reflecting that participants saw the potential of expert
recommendation beyond the chatbot’s current shortcomings.

V. DISCUSSION

Although the recommendation system was well accepted,
the lack of conversational behavior of the chatbot was not. As
any communication flow must be carried out to a satisfactory
conclusion, misleading feedback did not allow the information
to flow successfully. Note that our study setup was driven to
not provide any information on how the questions must be
formulated. Our intention was to discover which interaction
problems must be addressed. Participants emphasized several

improvements: they need guidance from the chatbot to ac-
complish the task; the chatbot must answer a wider variety
of questions; they also expected functionality that was not
intended to be the purpose of the chatbot. Participants expected
a fully conversational chatbot able to answer a variety of
questions and follow the flow of a conversation that the user
handles, leading to a user-driven conversations. We note
these high expectations may be very hard to meet, particularly
due to the “uncanny valley” effect, which states that artificial
behavior that is close (but not close enough) to human behavior
can cause more discomfort to humans than behavior that is less
human-like. Recent work has observed the uncanny valley in
chatbots [9].

In light of this, perhaps alternative strategies ought to be ex-
plored. For instance, a chatbot that focuses on single-purpose
conversational interaction and guides the user to accomplish
the specific task for which the chatbot has been built for (bot-
driven conversations). Another possibility would be to have
a proactive chatbot that analyzes questions asked on public
channels and provides expert information when it is able to
do so. This would avoid the need for humans to initiate the
conversation with the chatbot so they do not have to learn how
to interact with the chatbot. The chatbot would be silent when
unable to answer a question, which would not be as much of
an issue if users are not explicitly interacting with it.

VI. CONCLUSION AND FUTURE WORK

The chatbot expertise recommendation system we presented
increases the communication quality by giving open source
developers the ability to know who they can contact when
facing issues. Our chatbot relies on several components: the
Discord API, TF and IDF algorithms to perform sentence-
classification and key-concept collection respectively, and an
expertise recommendation system based on implementation
and usage expertise.

We conducted a preliminary study, where we analyzed their
interactions, and also conducted interviews and an emotion
test. The results show that while participants are open to the
potential of an expert recommendation system based on a chat-
bot, significant work is necessary to increase its acceptance.
In particular, participants expected the chatbot to be able to
conduct a conversation with them, rather than simply answer
queries.

Meeting these expectations may be a high bar; perhaps sim-
pler models of interaction may encounter higher acceptance in
the future. As future work we will extract information from
chat-logs (or other sources) to provide recommendation about
already answered questions in the communication history of
an open source project.

ACKNOWLEDGMENTS We thank Renato Cerro for his English
revisions, and three anonymous reviewers for their insights. Cerezo
thanks ObjectProfile for sponsoring this work. Kubelka is sup-
ported by a Ph.D. scholarship from CONICYT, Chile. CONICYT-
PCHA/Doctorado Nacional/2013-63130188. Bergel thanks Lam Re-
search for sponsoring part of this effort.

REFERENCES

[1] Discord API documentation. https://discordapp.com/developers/docs/
intro.

[2] Discord Website. https://discordapp.com.
[3] DiscordSt project, Discord Interfaces for Pharo. https://github.com/

JurajKubelka/DiscordSt.
[4] Emotion list. http://www.psychpage.com/learning/library/assess/

feelings.html.
[5] J. Anvik and G. C. Murphy. Determining implementation expertise from

bug reports. In Proceedings of the Fourth International Workshop on
Mining Software Repositories, page 2. IEEE Computer Society, 2007.

[6] M. Bergquist and J. Ljungberg. The power of gifts: organizing social
relationships in open source communities. Information Systems Journal,
11(4):305–320, 2001.

[7] A. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou, and
M. Denker. Pharo by Example. Square Bracket Associates, 2009.

[8] P. B. Brandtzaeg and A. Følstad. Why people use chatbots. In
International Conference on Internet Science, pages 377–392. Springer,
2017.

[9] L. Ciechanowski, A. Przegalinska, M. Magnuski, and P. Gloor. In the
shades of the uncanny valley: An experimental study of human–chatbot
interaction. Future Generation Computer Systems, 92:539–548, 2019.

[10] A. Følstad and P. B. Brandtzæg. Chatbots and the new world of hci.
interactions, 24(4):38–42, 2017.

[11] C. Lebeuf, M.-A. Storey, and A. Zagalsky. Software bots. IEEE
Software, 35(1):18–23, 2018.

[12] C. R. Lebeuf. A taxonomy of software bots: towards a deeper under-
standing of software bot characteristics. PhD thesis, 2018.

[13] D. Ma, D. Schuler, T. Zimmermann, and J. Sillito. Expert recommenda-
tion with usage expertise. In Software Maintenance, 2009. ICSM 2009.
IEEE International Conference on, pages 535–538. IEEE, 2009.

[14] W. Maalej, T. Fritz, and R. Robbes. Collecting and processing interaction
data for recommendation systems. In Recommendation Systems in
Software Engineering, pages 173–197. Springer, 2014.

[15] L. McLaughlin. Bot software spreads, causes new worries. IEEE
Distributed Systems Online, (6):1, 2004.

[16] A. Mockus and J. D. Herbsleb. Expertise browser: a quantitative
approach to identifying expertise. In Software Engineering, 2002. ICSE
2002. Proceedings of the 24rd International Conference on, pages 503–
512. IEEE, 2002.

[17] A. Murgia, D. Janssens, S. Demeyer, and B. Vasilescu. Among the ma-
chines: Human-bot interaction on social q&a websites. In Proceedings
of the 2016 CHI Conference Extended Abstracts on Human Factors in
Computing Systems, pages 1272–1279. ACM, 2016.

[18] J. Ramos et al. Using tf-idf to determine word relevance in document
queries. In Proceedings of the first instructional conference on machine
learning, volume 242, pages 133–142, 2003.

[19] R. Robbes and D. Röthlisberger. Using developer interaction data
to compare expertise metrics. In Proceedings of the 10th Working
Conference on Mining Software Repositories, pages 297–300. IEEE
Press, 2013.

[20] S. Robertson. Understanding inverse document frequency: on theoretical
arguments for idf. Journal of documentation, 60(5):503–520, 2004.

[21] D. Schuler and T. Zimmermann. Mining usage expertise from version
archives. In Proceedings of the 2008 international working conference
on Mining software repositories, pages 121–124. ACM, 2008.

[22] M.-A. Storey and A. Zagalsky. Disrupting developer productivity one bot
at a time. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 928–931.
ACM, 2016.

[23] S. Urli, Z. Yu, L. Seinturier, and M. Monperrus. How to design a pro-
gram repair bot?: insights from the repairnator project. In Proceedings
of the 40th International Conference on Software Engineering: Software
Engineering in Practice, pages 95–104. ACM, 2018.

https://discordapp.com/developers/docs/intro
https://discordapp.com/developers/docs/intro
https://discordapp.com
https://github.com/JurajKubelka/DiscordSt
https://github.com/JurajKubelka/DiscordSt
http://www.psychpage.com/learning/library/assess/feelings.html
http://www.psychpage.com/learning/library/assess/feelings.html

	I Introduction
	II Background
	III Implementing the Chatbot Expert Recommender
	III-A Chatbot Implementation
	III-B Sentence Classification
	III-C Key-Concept Identification
	III-D Expertise Recommendation System
	III-D1 Expertise mining
	III-D2 Experts profile

	IV Preliminary Evaluation
	IV-A Chatbot interaction
	IV-B Semi-structured interview
	IV-C Emotion test

	V Discussion
	VI Conclusion and future work
	References

